Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = building EMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6149 KB  
Review
Energy Management in Microgrids: Commercial, Industrial, and Residential Perspectives
by Mohamed Atef, Sanath Alahakoon, Peter Wolfs, Umme Mumtahina, Tamer Khatib and Moslem Uddin
Energies 2026, 19(2), 419; https://doi.org/10.3390/en19020419 - 15 Jan 2026
Viewed by 193
Abstract
This study aims to review the energy management of microgrids with a structured focus on residential, commercial, and industrial applications. Building on early optimization and control strategies, this study synthesizes advances in forecasting, uncertainty management, computational intelligence, and digital twin integration. Particular attention [...] Read more.
This study aims to review the energy management of microgrids with a structured focus on residential, commercial, and industrial applications. Building on early optimization and control strategies, this study synthesizes advances in forecasting, uncertainty management, computational intelligence, and digital twin integration. Particular attention is given to multi-energy coupling through storage technologies, including hydrogen and thermal pathways, along with life cycle, trilemma, and sustainability considerations. Sector-specific energy management system (EMS) strategies are compared in terms of objectives, methods, and implementation challenges, highlighting both converging and unique requirements across application domains. Cross-sectoral challenges, such as interoperability, cyber-security, resilience valuation, and policy gaps, are analyzed, and emerging research directions, including artificial intelligence (AI)-driven optimization, hierarchical and multi-agent frameworks, and hydrogen-enabled autonomy, are outlined. This review aims to equip researchers, practitioners, and policymakers with a consolidated reference on microgrid EMS, bridging technical innovation with sustainable and resilient energy transitions. Full article
Show Figures

Figure 1

15 pages, 3234 KB  
Article
Optically Transparent Frequency Selective Surfaces for Electromagnetic Shielding in Cybersecurity Applications
by Pierpaolo Usai, Gabriele Sabatini, Danilo Brizi and Agostino Monorchio
Appl. Sci. 2026, 16(2), 821; https://doi.org/10.3390/app16020821 - 13 Jan 2026
Viewed by 277
Abstract
With the widespread diffusion of personal Internet of Things (IoT) devices, Electromagnetic Side-Channel Attacks (EM-SCAs), which exploit electromagnetic emissions to uncover critical data such as cryptographic keys, are becoming extremely common. Existing shielding approaches typically rely on bulky or opaque materials, which limit [...] Read more.
With the widespread diffusion of personal Internet of Things (IoT) devices, Electromagnetic Side-Channel Attacks (EM-SCAs), which exploit electromagnetic emissions to uncover critical data such as cryptographic keys, are becoming extremely common. Existing shielding approaches typically rely on bulky or opaque materials, which limit integration in modern IoT environments; this motivates the need for a transparent, lightweight, and easily integrable solution. Thus, to address this threat, we propose the use of electromagnetic metasurfaces with shielding capabilities, fabricated with an optically transparent conductive film. This film can be easily integrated into glass substrates, offering a novel and discrete shielding solution to traditional methods, which are typically based on opaque dielectric media. The paper presents two proof-of-concept case studies for shielding against EM-SCAs. The first one investigates the design and fabrication of a passive metasurface aimed at shielding emissions from chip processors in IoT devices. The metasurface is conceived to attenuate a specific frequency range, characteristic of the considered IoT processor, with a target attenuation of 30 dB. At the same time, the metasurface ensures that signals from 4G and 5G services are not affected, thus preserving normal wireless communication functioning. Conversely, the second case study introduces an active metasurface for dynamic shielding/transmission behavior, which can be modulated through diodes according to user requirements. This active metasurface is designed to block undesired electromagnetic emissions within the 150–465 MHz frequency range, which is a common band for screen gleaning security threats. The experimental results demonstrate an attenuation of approximately 10 dB across the frequency band when the shielding mode is activated, indicating a substantial reduction in signal transmission. Both the case studies highlight the potential of transparent metasurfaces for secure and dynamic electromagnetic shielding, suggesting their discrete integration in building windows or other environmental structural elements. Full article
(This article belongs to the Special Issue Cybersecurity: Novel Technologies and Applications)
Show Figures

Figure 1

37 pages, 26273 KB  
Article
Vulnerability Analysis of Construction Safety System for Tropical Island Building Projects Based on GV-IB Model
by Bo Huang, Junwu Wang and Jun Huang
Systems 2026, 14(1), 70; https://doi.org/10.3390/systems14010070 - 9 Jan 2026
Viewed by 168
Abstract
The unique natural environment and climate of tropical island regions present significant challenges to construction. Under these variable natural conditions and complex construction processes, identifying and analyzing potential risks that could lead to vulnerabilities in construction safety systems and clarifying their transmission pathways [...] Read more.
The unique natural environment and climate of tropical island regions present significant challenges to construction. Under these variable natural conditions and complex construction processes, identifying and analyzing potential risks that could lead to vulnerabilities in construction safety systems and clarifying their transmission pathways remains a pressing issue. To fill this research gap, a GV-IB model for vulnerability analysis of construction safety systems in tropical island building projects (CSSTIBPs) was established. This model constructs a vulnerability analysis index system for tropical island construction safety systems based on the Grey Relational Analysis (GRA) and Vulnerability Scoping Diagram (VSD), considering exposure, sensitivity, and adaptability. By combining the artificial fish swarm algorithm with the K2 algorithm and the EM algorithm, an Improved Bayesian Network (IBN) is constructed to analyze and infer the influencing factors and disaster chains of vulnerability in tropical island construction safety systems. The IBN can effectively overcome the dependence on node order and data gaps in traditional Bayesian Network construction methods. The effectiveness of the model is verified by analyzing Hainan Island, China. The research results show that (a) The IBN stability verification showed an Area Under ROC Curve (AUC) of 0.783 > 0.7, indicating high effectiveness in identifying vulnerability factors. (b) Within the vulnerability measurement nodes of the CSSTIBPs, the influence on the system decreases in the following order is exposure (0.41), sensitivity (0.31), and adaptability (0.03). (c) Emergency response time, safety training, hazard identification time, accident response time, and duration of severe weather are key factors affecting the vulnerability of CSSTIBPs. Full article
(This article belongs to the Special Issue Systems Approach to Innovation in Construction Projects)
Show Figures

Figure 1

13 pages, 1291 KB  
Article
Laboratory Measurements of Electromagnetic Wave Attenuation of Building Materials in the W-Band (75–110 GHz)
by Krzysztof Maniak and Remigiusz Mydlikowski
Appl. Sci. 2025, 15(24), 13178; https://doi.org/10.3390/app152413178 - 16 Dec 2025
Viewed by 436
Abstract
Recent developments in sixth-generation (6G) communication systems have increased interest in using sub-terahertz frequencies, particularly the W-band (75–110 GHz), for high-capacity indoor links. At these frequencies, electromagnetic (EM) wave attenuation introduced by building materials becomes a key factor limiting system performance. The objective [...] Read more.
Recent developments in sixth-generation (6G) communication systems have increased interest in using sub-terahertz frequencies, particularly the W-band (75–110 GHz), for high-capacity indoor links. At these frequencies, electromagnetic (EM) wave attenuation introduced by building materials becomes a key factor limiting system performance. The objective of this study is to provide continuous, laboratory-validated attenuation characteristics of commonly used construction and finishing materials across the full W-band. Measurements were conducted in an accredited electromagnetic compatibility laboratory using a calibrated far-field setup with a vector network analyzer, W-band frequency extenders, and standard-gain horn antennas inside an anechoic chamber. For each frequency point, 20 measurements were recorded under controlled environmental conditions. The results show distinct attenuation behaviour depending on material type: wood-based materials exhibit 6–13 dB/cm, construction materials 2–4 dB/cm, and insulation materials below 0.3 dB/cm, while ceramic materials exceed 15–23 dB/cm. A general increase in attenuation with frequency is observed, particularly for materials with higher dielectric losses. The presented dataset enables more accurate indoor propagation modelling, supports ray-tracing and link-budget analyses, and provides practical guidelines for designing radio-transparent building components for future 6G communication systems. Full article
Show Figures

Figure 1

17 pages, 1067 KB  
Article
Quantifying Global Wildfire Regimes and Disparities in Evacuation Efficacy in the Anthropocene
by Jiaqi Han and Maowei Bai
Fire 2025, 8(12), 477; https://doi.org/10.3390/fire8120477 - 15 Dec 2025
Viewed by 506
Abstract
Against the backdrop of intensifying global climate change and human activities, the increasing frequency and evolution of major wildfire events pose severe challenges to global disaster prevention and mitigation systems. Systematically understanding their disaster characteristics, spatiotemporal patterns, and societal response efficacy is an [...] Read more.
Against the backdrop of intensifying global climate change and human activities, the increasing frequency and evolution of major wildfire events pose severe challenges to global disaster prevention and mitigation systems. Systematically understanding their disaster characteristics, spatiotemporal patterns, and societal response efficacy is an urgent scientific requirement for formulating effective coping strategies. This study constructed a comprehensive database covering 137 major global wildfire events from 2018 to 2024, with data sourced from GFED, EM-DAT, and official national reports. Utilizing a synthesis of methods including descriptive statistics, spatiotemporal clustering analysis, K-means pattern recognition, and non-parametric tests, a multi-dimensional quantitative analysis was conducted on disaster characteristics, evolutionary trends, casualty patterns, and policy effectiveness. Despite potential reporting biases and heterogeneous data standards across countries, the analysis reveals the following: (1) All key wildfire metrics (e.g., burned area, casualties, evacuation scale) exhibited extreme right-skewed distributions, indicating that a minority of catastrophic events dominate the overall risk profile; (2) Global wildfire hotspots demonstrated dynamic expansion, spreading from traditional regions in North America and Australia to emerging areas such as Mediterranean Europe, Chile, and the Russian Far East, forming three significant spatiotemporal clusters; (3) Four distinct casualty patterns were identified: “High-Lethality”, “Large-Scale Evacuation”, “Routine-Control”, and “Ecological-Destruction”, revealing the differentiated formation mechanisms under various disaster scenarios; (4) A substantial gap of nearly 65 times in emergency evacuation efficiency—defined as the ratio of evacuated individuals to total casualties—was observed between developed and developing countries, highlighting a significant “development gap” in emergency management capabilities. This study finds evidence of increasing extremization, expansion, and polarization in global wildfire risk within the 2018–2024 event sample. The conclusions emphasize that future risk management must shift from addressing “normal” events to prioritizing preparedness for “catastrophic” scenarios and adopt refined strategies based on casualty patterns. Simultaneously, the international community needs to focus on bridging the emergency response capability gap between nations to collectively build a more resilient global wildfire governance system. Full article
(This article belongs to the Special Issue Effects of Climate Change on Fire Danger)
Show Figures

Figure 1

16 pages, 1674 KB  
Article
Analysis of Factors Affecting the Results of the Embodied Environmental Footprint of a Built Environment Using a Selected Office Building as an Example
by Aleksandra Pacholska, Michał Pierzchalski and Anna Wojcieszek
Sustainability 2025, 17(24), 11154; https://doi.org/10.3390/su172411154 - 12 Dec 2025
Viewed by 575
Abstract
The huge impact of construction on the environment is becoming increasingly apparent, and it is unacceptable to many engineers and designers. A growing interest in sustainable construction has been observed for several years. This is especially true for commercial buildings, where achieving an [...] Read more.
The huge impact of construction on the environment is becoming increasingly apparent, and it is unacceptable to many engineers and designers. A growing interest in sustainable construction has been observed for several years. This is especially true for commercial buildings, where achieving an appropriate standard is often the main criterion for investment. Many current publications deal with the topic of energy related to building use. In contrast, knowledge of the so-called embodied carbon footprint is not yet widespread but increasingly important in the context of low-carbon construction. The study created six different building types by juxtaposing different construction variants with different facade variants. The analysis was given to the “cradle to grave” phases, i.e., A1–A4, B4–B5 and C1–C4. Module D (material recycling) is omitted, as well as phases B1–B3 and B6–B7 related to use, maintenance, repair and energy and water consumption. Phases B1–B3 refer to maintenance repair and use activities that are the responsibility of the building manager, so they are taken as estimates at the concept stage. Phase B6 and B7 were excluded from the study, due to the fact that they are not responsible for the embodied carbon footprint, but the operational one. It was assumed that the values for B6 would be shown independently in the building’s energy performance and the final values would be comparable. The purpose of the study was to verify the factors that have the greatest impact on the results of the embodied environmental footprint. The study showed that changes in the building’s design and facade have the greatest impact on the embodied carbon footprint. Furthermore, not only the quantity of materials used but also their durability is crucial, so using durable finishes to minimize the need for repair and replacement can play a key role in reducing the building’s embodied carbon footprint. Differences between the variants reached approximately 107 kg CO2e/m2 (about 15%). The comparison of impact categories further indicates that solutions optimized for global warming potential are not necessarily favorable in other environmental dimensions. Finally, the relatively moderate spread between the most and least favorable variants within the analyzed scope indicates that material substitution alone is insufficient to achieve deep decarbonization of office buildings. Comprehensive strategies addressing material selection, durability, service life and design for disassembly and reuse are therefore required. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

14 pages, 4696 KB  
Article
Regulatory Gap Versus Performance Reality: Thermal Assessment of a Social Housing Module in the Peruvian Andes
by Emilio Palomino-Olivera, Miriam Ancco-Peralta, Víctor Salas Velásquez, Enrique Mejia-Solis and Edwin Gudiel Rodriguez
Buildings 2025, 15(24), 4401; https://doi.org/10.3390/buildings15244401 - 5 Dec 2025
Viewed by 703
Abstract
In high-altitude regions of the Global South, social housing programs are essential for mitigating vulnerability to low temperatures, but their standardized designs often fail to meet thermal performance codes. This study evaluates a “Sumaq Wasi” adobe housing module in the Peruvian Andes (Kunturkanki, [...] Read more.
In high-altitude regions of the Global South, social housing programs are essential for mitigating vulnerability to low temperatures, but their standardized designs often fail to meet thermal performance codes. This study evaluates a “Sumaq Wasi” adobe housing module in the Peruvian Andes (Kunturkanki, 4237 m a.s.l.) during the 2023 frost season. We comparatively applied the 2014 and 2022 draft versions of the Peruvian standard EM.110 to assess the building envelope’s thermal transmittance and condensation risk, benchmarking monitored indoor temperatures against adaptive comfort models. The results revealed widespread non-compliance with thermal transmittance limits, especially for the roof and floor, although condensation risk was low. While indoor temperatures failed to meet conventional standards, they aligned with regionally adapted comfort ranges. We conclude that the standardized module design is insufficient for local climatic demands and argue that social housing policies must evolve, balancing regulatory stringency with context-aware bioclimatic design to be effective. Full article
(This article belongs to the Topic Energy Systems in Buildings and Occupant Comfort)
Show Figures

Figure 1

16 pages, 4089 KB  
Article
Effect of High Carbon Nanotube Content on Electromagnetic Shielding and Mechanical Properties of Cementitious Mortars
by Ivan Vrdoljak, Ivana Miličević, Oliver Romić and Robert Bušić
J. Compos. Sci. 2025, 9(12), 664; https://doi.org/10.3390/jcs9120664 - 2 Dec 2025
Viewed by 493
Abstract
The increasing exposure to non-ionizing electromagnetic (EM) radiation driven by urbanization and digitalization has encouraged the development of building materials with EM shielding properties. This study investigates the potential of enhancing the electromagnetic shielding properties of cement mortars by incorporating multi-walled carbon nanotubes [...] Read more.
The increasing exposure to non-ionizing electromagnetic (EM) radiation driven by urbanization and digitalization has encouraged the development of building materials with EM shielding properties. This study investigates the potential of enhancing the electromagnetic shielding properties of cement mortars by incorporating multi-walled carbon nanotubes (MWCNT) in various dosages (1%, 3%, 6%, 9% and 10% by binder mass). The microstructural and mechanical effects of MWCNT addition, as well as their efficiency in reducing EM transmission in the frequency range of 1.5–10 GHz (covering LTE, 5G, WiFi, and radar systems), were analyzed. S21 measurements were performed using a modified coaxial transmission line method with a vector network analyzer. Results show that increasing the MWCNT content enhances EM shielding effectiveness but simultaneously affects the mortar’s microstructure and mechanical properties. Higher MWCNT levels achieved the best EM shielding, with an improvement of up to 27.66 dB compared to ordinary mortar in the navigation radar frequency range. These findings confirm the potential of MWCNT-modified mortars for protecting buildings and sensitive infrastructure—such a hospitals, communication hubs, data centers and military facilities—from EM radiation. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

52 pages, 4973 KB  
Article
TESE-Informed Evolution Pathways for Photovoltaic Systems: Bridging Technology Trajectories and Market Needs
by Jadwiga Gorączkowska, Marta Moczulska and Sergey Yatsunenko
Energies 2025, 18(23), 6216; https://doi.org/10.3390/en18236216 - 27 Nov 2025
Viewed by 749
Abstract
Challenges related to energy security require support for investments in renewable energy sources. One of the most dynamically developing technologies in this area is photovoltaics. The literature provides numerous publications indicating PV development directions; however, strategic development planning remains fragmented between purely technological [...] Read more.
Challenges related to energy security require support for investments in renewable energy sources. One of the most dynamically developing technologies in this area is photovoltaics. The literature provides numerous publications indicating PV development directions; however, strategic development planning remains fragmented between purely technological solutions and market-economic analyses. Systematic integration of both perspectives with customer needs is lacking. This study fills this gap: applying the Trends of Engineering System Evolution (TESE) methodology enables identification of PV system development trends with particular attention to PV user needs and consideration of market-economic and technological conditions. The TESE framework was used to identify the Main Parameter of Value (MPV), which indicates which technology features are important to consumers. Two key MPVs were identified: “profitability” and “independence.” These reflect the fundamental decision criteria of customers in residential and commercial segments. The analysis revealed that profitability is between stages 2 and 3 of the technology S-curve, while independence is at stage 2. As areas worth developing in terms of the indicated MPVs, the authors proposed: increasing panel efficiency, building integrated platforms containing PV, batteries, and an efficient management system (PV + ESS + EMS), and creating PV microgrids with energy storage. The integration of photovoltaic systems with energy storage solutions proved to be the most important strategic direction, simultaneously addressing both MPVs and enabling advanced energy management capabilities. The study provides manufacturers and technology developers with evidence-based recommendations concerning resource allocation in photovoltaic innovation. It combines the technology development approach and market demand through systematically verified evolutionary patterns. This methodology offers a repeatable framework for strategic technology planning in renewable energy sectors. Full article
Show Figures

Figure 1

45 pages, 3086 KB  
Review
Modelling of Insulation Thermal Ageing: Historical Evolution from Fundamental Chemistry Towards Becoming an Electrical Machine Design Tool
by Antonis Theofanous, Israr Ullah, Michael Galea, Paolo Giangrande, Vincenzo Madonna, Yatai Ji, John Licari and Maurice Apap
Energies 2025, 18(23), 6087; https://doi.org/10.3390/en18236087 - 21 Nov 2025
Viewed by 902
Abstract
Electrical insulation systems (EISs) are the principal reliability bottleneck of modern electrical machines (EMs). Among the many stresses acting on insulation, thermal stress is the most pervasive because it accelerates chemical reactions that progressively erode dielectric and mechanical integrity, ultimately dictating service life. [...] Read more.
Electrical insulation systems (EISs) are the principal reliability bottleneck of modern electrical machines (EMs). Among the many stresses acting on insulation, thermal stress is the most pervasive because it accelerates chemical reactions that progressively erode dielectric and mechanical integrity, ultimately dictating service life. As EMs migrate into compact, high-power-density platforms—automotive, aerospace, and industrial drives—designers need lifetime models that are not merely explanatory but actionable, linking operating temperatures and missions to quantified ageing and risk. This review article traces the evolution of thermal-ageing modelling from fundamental chemistry to a practical design tool. The historical empirical lineage of Arrhenius equation, Arrhenius–Dakin model, and Montsinger model is first revisited, clarifying their assumptions, parameter definitions, and the construction of thermal endurance curves. A discussion then follows on extensions that address deviations from first-order kinetics and demonstrate how variable temperature histories can be incorporated through cumulative damage formulations suitable for duty-cycle analysis. Since models are required to be anchored in data, accelerated thermal ageing (ATA) practices on representative specimens are outlined, alongside a description of the Weibull post-processing for deriving percentile lifetimes aligned with design targets. Building upon these foundations, the Physics-of-Failure (PoF) approach is introduced as a reliability-oriented design (ROD) methodology, in which validated lifetime models guide material selection and geometry optimisation while supporting prognostics and health management during operation. The emerging trend towards a hybrid PoF–AI approach is also discussed, which integrates artificial intelligence to identify nonlinear degradation patterns and drifting parameter relationships beyond the reach of empirical models, with physical constraints ensuring that predictions remain consistent with known ageing mechanisms. Such integration enables the learning process to adapt to operational variability and coupled stress effects, thereby improving both the accuracy and physical interpretability of lifetime estimation. The review aims to provide a concise view of models, tests, and workflows that convert thermal-ageing knowledge into robust, design-time decisions. By linking empirical and physics-based insights with modern data-driven learning, these developments support proactive maintenance, sustainable asset management, and extended operational lifetimes for next-generation EMs. Full article
Show Figures

Figure 1

36 pages, 8124 KB  
Article
Declaration-Ready Climate-Neutral PEDs: Budget-Based, Hourly LCA Including Mobility and Flexibility
by Simon Schneider, Thomas Zelger, Raphael Drexel, Manfred Schindler, Paul Krainer and José Baptista
Designs 2025, 9(6), 123; https://doi.org/10.3390/designs9060123 - 27 Oct 2025
Viewed by 808
Abstract
In recent years, Positive Energy Districts (PEDs) have been interpreted in many—and often conflicting—ways. We recast PEDs as a vehicle for verifiable climate neutrality and present a declaration-ready assessment that integrates (i) a cumulative, science-based GHG budget per m2 gross floor area [...] Read more.
In recent years, Positive Energy Districts (PEDs) have been interpreted in many—and often conflicting—ways. We recast PEDs as a vehicle for verifiable climate neutrality and present a declaration-ready assessment that integrates (i) a cumulative, science-based GHG budget per m2 gross floor area (GFA), (ii) full life-cycle accounting, and (iii) time-resolved conversion factors that include everyday motorized individual mobility and quantify flexibility. Two KPIs anchor the framework: the cumulative GHG LCA balance (2025–2075) against a maximum compliant budget of 320 kgCO2e·m−2GFA and the annual primary energy balance used to declare PED status with or without mobility. We follow EN 15978 and apply time-resolved emission factors that decline to zero by 2050. Its applicability is demonstrated on six Austrian districts spanning new builds and renovations, diverse energy systems, densities, and mobility contexts. The baseline scenarios show heterogeneous outcomes—only two out of six meet both the cumulative GHG budget and the positive primary energy balance—but design iterations indicate that all six districts can reach the targets with realistic, ambitious packages (e.g., high energy efficiency and flexibility, local renewables, ecological building materials, BESS/V2G, and mobility electrification). Hourly emission factors and flexibility signals can lower import-weighted emission intensity versus monthly or annual factors by up to 15% and reveal seasonal import–export asymmetries. Built on transparent, auditable rules and open tooling, this framework both diagnoses performance gaps and maps credible pathways to compliance—steering PED design away from project-specific targets toward verifiable climate neutrality. It now serves as the basis for the national labeling/declaration scheme klimaaktiv “Climate-Neutral Positive Energy Districts”. Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

34 pages, 3428 KB  
Review
A Literature Review on Energy Management Systems and Their Application on Harbour Activities
by Dimitrios Apostolou
Energies 2025, 18(18), 4887; https://doi.org/10.3390/en18184887 - 14 Sep 2025
Viewed by 1922
Abstract
The growing global concern for sustainability and energy conservation has led to the adoption of energy management systems to minimise the impacts of energy intensive processes. This study reviews the evolution, the applications, and implementation techniques of energy management systems with an emphasis [...] Read more.
The growing global concern for sustainability and energy conservation has led to the adoption of energy management systems to minimise the impacts of energy intensive processes. This study reviews the evolution, the applications, and implementation techniques of energy management systems with an emphasis on harbour operations. Through the mapping of the research on energy management systems post-1973, the literature review demonstrated a substantial transformation of the systems from basic monitoring in the building sector to complex artificial intelligence analyses in smart and microgrids, industries, renewable energy sources integration, transportation, and harbours. Initial broad search (1973–2025) identified 22,003 EMS-related records; targeted port–EMS queries yielded 214 records, of which 139 unique records remained after de-duplication and 78 full texts were assessed. Finally, 27 studies were included in the quantitative synthesis. A meta-analysis in conjunction with an article review, and a weighted sum model coupled with sensitivity analyses revealed promising results for harbour energy management system implementation in terms of peak/load shifting, on-shore power supply, and real-time energy monitoring. The findings showed that energy management system efficacy is linked to maturity levels and strategic deployment of the measures/policies in each stage. Full article
Show Figures

Figure 1

20 pages, 1158 KB  
Article
Integrated Optimization Method of External Wall Insulation for Granaries in Different Climate Regions in China
by Ruili Liu, Zhu He, Chengzhou Guo and Haitao Wang
Sustainability 2025, 17(16), 7489; https://doi.org/10.3390/su17167489 - 19 Aug 2025
Viewed by 856
Abstract
The use of thermal insulation material in building envelopes is closely related to economic benefits, energy-savings, and carbon reduction of buildings. The construction forms of different components in building envelopes have an important influence on the optimization design of thermal insulation in building [...] Read more.
The use of thermal insulation material in building envelopes is closely related to economic benefits, energy-savings, and carbon reduction of buildings. The construction forms of different components in building envelopes have an important influence on the optimization design of thermal insulation in building envelopes. In this study, an integrated optimization approach is proposed to search for the best solution of thermal insulation in external walls and the optimal combination scheme of different construction forms of envelope components in granaries. The integrated optimization approach consists of an orthogonal experimental design (OEDM) method-based determination module of an optimal combination scheme of different construction forms of components, an assessment model-based quantitative analysis module, and an integrated assessment indicator-based selection module of the best solution of external wall insulation. Firstly, the OEDM method is used to determine the optimal combination scheme of different construction forms of the foundation wall of an external wall, thermal insulation material, external window, roof, and floors in buildings. Secondly, integrated economic, energy, and carbon analysis models are developed to analyze comprehensive performance of external wall insulation. Finally, an integrated assessment indicator consisting of an energy balanced index, a carbon balanced index, and weight coefficients is presented to determine the best solution of external wall insulation. The applications of this optimization approach in different ecological grain storage zones in China demonstrated that the outdoor air temperature characteristics could affect the comprehensive performance of external wall insulation in granaries, significantly. The best solution of external wall insulation in granaries in Turpan city, Daqing city, Kaifeng city, Changsha city, Anshun city, and Danzhou city was expanded polystyrene insulation (EPS) with a layer thickness of 0.078 m, 0.048 m, 0.083 m, 0.089 m, 0.062 m, and 0.131 m, respectively. The greatest difference in the lowest entire construction cost and the lowest carbon emission of external wall insulation among different typical climate regions in China was 12.987 USD/m2 and 6.3 kgCO2e/m2, respectively. Full article
Show Figures

Figure 1

27 pages, 5901 KB  
Article
Assessment of Energy Saving Potential from Heating Room Relocation in Rural Houses Under Varying Meteorological and Design Conditions
by Weixiao Han, Guochen Sang, Shaofu Bai, Junyang Liu, Lei Zhang and Hong Xi
Buildings 2025, 15(16), 2867; https://doi.org/10.3390/buildings15162867 - 13 Aug 2025
Viewed by 716
Abstract
Space layout design has been recognized as a key technical challenge in achieving low-energy and low-carbon rural houses. Adjustment of room location can influence building energy performance and is subject to both meteorological and design parameters. To elucidate the impact of these parameters [...] Read more.
Space layout design has been recognized as a key technical challenge in achieving low-energy and low-carbon rural houses. Adjustment of room location can influence building energy performance and is subject to both meteorological and design parameters. To elucidate the impact of these parameters on the energy saving potential of room relocation (ESR), this study investigated rural houses in Northwest China using dynamic simulations to compare the relative energy saving rates (RES) associated with three types of single heated room location changes: from the west side to the middle (WM), from the east side to the middle (EM), and from the west side to the east side (WE). Simulations were conducted across different climate regions (Lhasa, Xi’an, Tuotuohe, and Altay) and design parameters, including exterior wall U-value, building orientation (BO), building height (BH), and window-to-wall ratio (WWR). Additionally, the maximum differences in energy consumption (MD) among six layouts with multiple heated rooms were assessed. The results demonstrated that ESR varied significantly with room relocation. The ranges of RESWM, RESEM, and RESWE were −7.89% to 13.20%, −7.82% to 10.25%, and −2.29% to 3.36%, respectively. The MD values ranged from 2.42% to 15.01%. For single heated rooms, including direct normal irradiance (Idn), the difference between east and west solar-air temperature (△Tsa), outdoor dry bulb temperature (Te), exterior wall heat transfer coefficient (U), and WWR significantly influenced RESWM and RESEM. The ranking of the factor contributions was U > △Tsa > Idn > Te > WWR for RESWM and U > Idn > △Tsa > Te > WWR for RESEM. In the case of RESWE, Idn, △Tsa, Te, exterior wall U value, and BO had significant effects, ranking Idn > △Tsa > Te > BO > U. For MD, the key influencing factors were Idn, △Tsa, Te, exterior wall U value, and WWR, which were ranked as Idn > △Tsa > U > Te > WWR. The effects of design parameters on ESR varied under different climatic conditions. In high-temperature regions, the exterior wall U-value had a stronger influence on the ESR of WE. In regions with larger |△Tsa|, BO exerted a more pronounced effect on the ESR of WE. In regions characterized by high temperatures and radiation, WWR and BH significantly influenced the ESR of WM and EM. Similarly, in these regions, WWR and BH exhibited a greater impact on MD. Finally, among the meteorological parameters, Idn and △Tsa were significantly correlated with ESR (p < 0.01). These findings provide a valuable reference for the energy-efficient layout design of rural houses in Northwest China and cold regions and support the future development of intelligent and automated rural residential spatial layout design. Full article
Show Figures

Figure 1

15 pages, 5152 KB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Cited by 1 | Viewed by 1456
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

Back to TopTop