Vulnerability Analysis of Construction Safety System for Tropical Island Building Projects Based on GV-IB Model
Abstract
1. Introduction
2. Methodology
2.1. Screening Indicators
2.1.1. Expertise Level of Computation
| Level of Understanding | Incomprehension | Not Quite Understand | General Understanding | Understand | Very Understanding |
|---|---|---|---|---|---|
| Weight | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
| Judgment Basis | Excellent | Average | Poor |
|---|---|---|---|
| Practical experience | 0.5 | 0.4 | 0.3 |
| Theoretical analysis | 0.3 | 0.2 | 0.1 |
| Peer understanding | 0.3 | 0.2 | 0.1 |
2.1.2. Calculate the Coefficient of Variation
2.2. Use GRA Validation Indicators
2.2.1. Quantifying the Authority Value of Experts in the Questionnaire
2.2.2. Determine the Sequence
2.2.3. Dimensionless Treatment
2.2.4. Calculate the Deviation Matrix and Correlation Coefficient
2.3. Constructing a Vulnerability Indicator Analysis System
2.4. Improved Bayesian Network Method
2.4.1. IBN Structure Learning
2.4.2. IBN Parameter Learning
Positive Causal Reasoning
Reverse Diagnostic Reasoning
Sensitivity Analysis
3. Case Study
4. Result
4.1. Results of the Screening Indicators
4.1.1. Calculation Results of Expert Professionalism
4.1.2. Calculation Results of the Coefficient of Variation of the Index
4.2. GRA Validation Indicator Results
4.2.1. The Authoritative Quantification Results of Experts
4.2.2. The Result of Constructing the Sequence
4.2.3. Results of Serial Numberless Tempering Treatment
4.2.4. Deviation Matrix and Correlation Coefficient Results
4.3. Vulnerability Index System for CSSTIBPs
4.4. Results of the Improved Bayesian Method
4.4.1. IBN Structure Learning Results
4.4.2. IBN Parameter Learning Results
Positive Causal Reasoning Results
Reverse Diagnostic Reasoning Results
Sensitivity Analysis Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Questionnaire on Vulnerability Factors of Construction Safety Systems in Tropical Island Buildings
- Dear Experts,
- (1)
- Educational background
- (2)
- Years of working experience
- (3)
- The number of participants in tropical island construction projects
- (4)
- Professional title
- (5)
- Number of research projects led and participated in
- (6)
- Number of books authored or co-authored
- (7)
- Number of published research papers
- (8)
- Number of authorized patents
- (9)
- Number of science and technology awards received
- (10)
- Number of registered software copyrights
- (11)
- Department type
- (12)
- Familiarity with the survey subjects
- (13)
- Self-evaluation of practical experience
- (14)
- Self-evaluation of theoretical analysis
- (15)
- Self-assessment by domestic and international peers
| Survey Indicators | Expert Scoring | |||||
|---|---|---|---|---|---|---|
| Serial Number | Indicators | 1 | 2 | 3 | 4 | 5 |
| 1 | Worker safety protection | |||||
| 2 | Accident response time | |||||
| 3 | Workface Management | |||||
| 4 | Equipment quality | |||||
| 5 | High-temperature work duration | |||||
| 6 | Equipment maintenance | |||||
| 7 | Safety training | |||||
| 8 | Fatigue work hours | |||||
| 9 | Construction layout | |||||
| 10 | Construction information monitoring technology | |||||
| 11 | Worker health | |||||
| 12 | High-altitude operations | |||||
| 13 | Emergency response time | |||||
| 14 | Nighttime construction duration | |||||
| 15 | Hazard investigation time | |||||
| 16 | Worker’s Certificate Validity Period | |||||
| 17 | Shift system | |||||
| 18 | Safety supervision policy formulation | |||||
| 19 | Work environment | |||||
| 20 | Monitoring reminder time | |||||
| 21 | Duration of severe weather | |||||
| 22 | Site recovery | |||||
| 23 | Geological environment | |||||
| 24 | Information reporting time | |||||
| 25 | Comprehensiveness of emergency response plan | |||||
| 26 | emergency funds | |||||
| 27 | Alarm evacuation time | |||||
| 28 | Equipment recovery | |||||
| 29 | Regulatory feedback time | |||||
| 30 | Water and electricity restoration time | |||||
| 31 | Equipment operating procedures | |||||
| 32 | Equipment Applicability | |||||
| 33 | Resource recovery rate | |||||
| 34 | Safety signs | |||||
| 35 | Facility recovery time | |||||
| 36 | Worker communication efficiency | |||||
| 37 | Building restoration | |||||
| 38 | Site recovery time | |||||
| 39 | Standardized signage | |||||
| 40 | Perceptual error | |||||
Appendix B. Questionnaire for Verification of Vulnerability Indicators of Construction Safety Systems in Tropical Island Buildings
- Dear Experts,
| Indicators | Expert Scoring | ||||
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |
| X1 Safety signs | |||||
| X2 Accident response time | |||||
| X3 Equipment recovery | |||||
| X4 Geological environment | |||||
| X5 Worker safety protection | |||||
| X6 Work environment | |||||
| X7 Hazard investigation time | |||||
| X8 Nighttime construction duration | |||||
| X9 Site recovery | |||||
| X10 Safety training | |||||
| X11 Equipment Applicability | |||||
| X12 Emergency response time | |||||
| X13 Information reporting time | |||||
| X14 Water and electricity restoration time | |||||
| X15 Worker’s Certificate Validity Period | |||||
| X16 Workface management | |||||
| X17 Emergency funds | |||||
| X18 Regulatory feedback time | |||||
| X19 Resource recovery rate | |||||
| X20 Equipment maintenance | |||||
| X21 Equipment quality | |||||
| X22 High-altitude operations | |||||
| X23 Alarm evacuation time | |||||
| X24 Fatigue work hours | |||||
| X25 Facility recovery time | |||||
| X26 Equipment operating procedures | |||||
| X27 High-temperature work duration | |||||
| X28 Site recovery time | |||||
| X29 Monitoring reminder time | |||||
| X30 Building restoration | |||||
| X31 Shift system | |||||
| X32 Construction layout | |||||
| X33 Duration of severe weather | |||||
| X34 Perceptual error | |||||
| X35 Worker health | |||||
References
- Chen, Q.; Long, D.; Yang, C.; Xu, H. Knowledge graph improved dynamic risk analysis method for behavior-based safety management on a construction site. J. Manag. Eng. 2023, 39, 04023023. [Google Scholar] [CrossRef]
- Brooks, R. Myth and machine: Building boom: Population growth and climate change have an upside. IEEE Spectr. 2022, 59, 23. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Q. Early warning and real-time control of construction safety risk of underground engineering based on building information modeling and internet of things. Neural Comput. Appl. 2022, 34, 3433–3442. [Google Scholar] [CrossRef]
- Martins, L.; Silva, V. Development of a fragility and vulnerability model for global seismic risk analyses. Bull. Earthq. Eng. 2021, 19, 6719–6745. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Sridharan, B.; Saha, N.; Sannasiraj, S.A.; Kuiry, S.N. Assessment of coastal vulnerability for extreme events. Int. J. Disaster Risk Reduct. 2022, 82, 103341. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Yuan, C. Fire Resilience Evaluation of a Historic University Building in China. Appl. Sci. 2025, 15, 9131. [Google Scholar] [CrossRef]
- Jospin, L.V.; Laga, H.; Boussaid, F. Hands-on Bayesian neural networks—A tutorial for deep learning users. IEEE Comput. Intell. Mag. 2022, 17, 29–48. [Google Scholar] [CrossRef]
- Moe, S.J.S.; Rizwan, A.; Khan, A.N.; Xu, R.; Kim, D.H. Safety monitoring digital twin-based centralized model consolidation mechanism using dynamic node selection for multi-worker safety prediction. Eng. Appl. Artif. Intell. 2025, 161, 112186. [Google Scholar] [CrossRef]
- Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajayi, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 2020, 32, 101827. [Google Scholar] [CrossRef]
- Caleca, F.; Lombardo, L.; Steger, S.; Tanyas, H.; Raspini, F.; Dahal, A.; Nefros, C.; Margarint, M.C.; Drouin, V.; Jemec-Auflic, M.; et al. Pan-European landslide risk assessment: From theory to practice. Rev. Geophys. 2025, 63, e2023RG000825. [Google Scholar] [CrossRef]
- Lovon, H.; Silva, V.; Vicente, R.; Ferreira, T.M. Analytical vulnerability functions for assessing fatalities in masonry buildings. Earthq. Eng. Struct. Dyn. 2024, 53, 3588–3606. [Google Scholar] [CrossRef]
- Hughes, W.; Zhang, W.; Ding, Z.; Li, X. Integrated structural and socioeconomic hurricane resilience assessment of residential buildings in coastal communities. Nat. Hazards Rev. 2022, 23, 04022017. [Google Scholar] [CrossRef]
- Ruggieri, S.; Cardellicchio, A.; Leggieri, V.; Uva, G. Machine-learning based vulnerability analysis of existing buildings. Autom. Constr. 2021, 132, 103936. [Google Scholar] [CrossRef]
- Luo, L.; Hu, S.; Chen, K.; Liu, Y.; Li, C. Exploring safety vulnerability in prefabricated construction and mitigation effects of internet of things. IEEE Trans. Eng. Manag. 2024, 71, 8531–8547. [Google Scholar] [CrossRef]
- Duan, P.; Zhou, J. Cascading vulnerability analysis of unsafe behaviors of construction workers from the perspective of network modeling. Eng. Constr. Archit. Manag. 2023, 30, 1037–1060. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, Y.; Ren, C. Seismic Vulnerability Analysis of Multispan Continuous Bridges Subjected to Mainshock-Aftershock Earthquake Sequences. Adv. Civ. Eng. 2020, 2020, 7483850. [Google Scholar] [CrossRef]
- Ouyang, M.; Liu, C.; Wu, S. Worst-case vulnerability assessment and mitigation model of urban utility tunnels. Reliab. Eng. Syst. Saf. 2020, 197, 106856. [Google Scholar] [CrossRef]
- Mantha, B.R.K.; Sonkor, M.S.; Soto, B.G. Investigation of the cyber vulnerabilities of construction networks using an agent-based model. Dev. Built Environ. 2024, 18, 100452. [Google Scholar] [CrossRef]
- Luo, H.Y.; Zhang, L.M.; Zhang, L.L.; He, J.; Yin, K.S. Vulnerability of buildings to landslides: The state of the art and future needs. Earth Sci. Rev. 2023, 238, 104329. [Google Scholar] [CrossRef]
- Poggi, F.; Caleca, F.; Nardini, O.; Barbadori, F.; Soldato, M.D.; Luca, C.D.; Casu, F.; Bonano, M.; Lanari, R.; Tofani, V.; et al. Sentinel-1 imagery for wide-scale quantitative landslide vulnerability assessment of buildings. Remote Sens. Environ. 2026, 334, 115199. [Google Scholar] [CrossRef]
- Hussain, M.; Ye, Z.; Chi, H.L.; Hsu, S. Automated safety risk assessment for crane operations using cascade learning. Autom. Constr. 2026, 181, 106686. [Google Scholar] [CrossRef]
- Bai, X.P.; Zhao, Y.H. A novel method for occupational safety risk analysis of high-altitude fall accident in architecture construction engineering. J. Asian Archit. Build. Eng. 2021, 20, 314–325. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Qi, H. Mitigating subway construction collapse risk using Bayesian network modeling. Autom. Constr. 2022, 143, 104541. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, Q.; Zhang, T. A method for assessing the crossed risk of construction safety. Saf. Sci. 2022, 146, 105531. [Google Scholar] [CrossRef]
- Huang, B.; Liu, X.; Liu, L.; Li, Z.; Wu, Z.; Huang, B.; Jia, Z. Unveiling the Influencing Factors of the Residual Life of Historical Buildings: A Study of the Wuhan Lutheran Missions Home and Agency Building. Buildings 2025, 15, 246. [Google Scholar] [CrossRef]
- Galasso, C.; Pregnolato, M.; Parisi, F. A model taxonomy for flood fragility and vulnerability assessment of buildings. Int. J. Disaster Risk Reduct. 2021, 53, 101985. [Google Scholar] [CrossRef]
- Tanim, A.H.; Goharian, E. Toward an integrated probabilistic coastal vulnerability assessment: A novel copula-based vulnerability index. Water Resour. Res. 2023, 59, e2022WR033603. [Google Scholar] [CrossRef]
- Chen, J.; Pei, T.; Li, M.; Song, C.; Ma, T.; Lu, F.; Shaw, S. An enhanced model for evacuation vulnerability assessment in urban areas. Comput. Environ. Urban Syst. 2020, 84, 101540. [Google Scholar] [CrossRef]
- Kasthala, S.; Parthasarathy, D.; Narayanan, K.; Inamdar, A.B. Classification and evaluation of current climate vulnerability assessment methods. Soc. Indic. Res. 2024, 171, 605–639. [Google Scholar] [CrossRef]
- Fontenele, A.; Gama, L.; Mota, L.; Campos, V.; Vicente, R.; Mesquita, E. Structural vulnerability assessment of facades of Ceará historic cities. J. Build. Eng. 2021, 42, 102461. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Kramer, M.; Paull, D.J. Enhancing groundwater vulnerability assessment through Bayesian inference. J. Hydrol. 2025, 653, 132781. [Google Scholar] [CrossRef]
- Sabouhi, H.; Doroudi, A.; Fotuhi-Firuzabad, M.; Bashiri, M. A novel matrix based systematic approach for vulnerability assessment. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2021, 40, 1–17. [Google Scholar] [CrossRef]
- Liang, B.; Hou, J.; He, Z. Rapid assessment method to assess vulnerability of structures using vulnerability index and disaster matrix. Bull. Earthq. Eng. 2023, 21, 2691–2722. [Google Scholar] [CrossRef]
- Mosaffaie, J.; Salehpour Jam, A.; Sarfaraz, F. Landslide risk assessment based on susceptibility and vulnerability. Environ. Dev. Sustain. 2024, 26, 9285. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Neal, W.J.; Bonetti, J.; Anfuso, G.; Jonge, V.N. Vulnerability assessments as a tool for the coastal and marine hazards management: An overview. Ocean. Coast. Manag. 2020, 189, 105134. [Google Scholar] [CrossRef]
- Crameri, N.J.; Ellison, J.C. Atoll inland and coastal mangrove climate change vulnerability assessment. Wetl. Ecol. Manag. 2022, 30, 527–546. [Google Scholar] [CrossRef]
- Acosta-Michlik, L.; Espaldon, V. Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent’s adaptation to global environmental change. Glob. Environ. Change 2008, 18, 554–563. [Google Scholar] [CrossRef]
- Polsky, C.; Neff, R.; Yarnal, B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram. Glob. Environ. Change 2007, 17, 472–485. [Google Scholar] [CrossRef]
- Watts, M.J.; Bohle, H.G. The space of vulnerability: The causal structure of hunger and famine. Prog. Hum. Geogr. 1993, 17, 43–67. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef]
- Burton, I. The Growth of Adaptation Capacity: Practice and Policy; Springer: New York, NY, USA, 1996; pp. 55–67. [Google Scholar] [CrossRef]
- Al Hanipa, R.; Kamal, T.M.; Fikri, M.H.; Mase, L.Z.; Misliniyati, R.; Supriani, F.; Refrizon. Advancements in integrated seismic vulnerability assessment using geophysical approaches. Acta Geophys. 2025, 73, 4037–4057. [Google Scholar] [CrossRef]
- Pianese, G.; Chieffo, N.; Milani, G.; Partov, D.; Formisano, A. Seismic vulnerability assessment of historical buildings in Sofia: A multi-Methodological approach. J. Build. Eng. 2025, 101, 111834. [Google Scholar] [CrossRef]
- Smith, B.; Diedrich, A. A systematic review of current progress in community based vulnerability assessments. Reg. Environ. Change 2024, 24, 21. [Google Scholar] [CrossRef]
- Zammit-Mangion, A.; Kaminski, M.D.; Tran, B.H.; Filippone, M.; Cressie, N. Spatial Bayesian neural networks. Spat. Stat. 2024, 60, 100825. [Google Scholar] [CrossRef]
- Faggian, C.; Pautasso, D.; Vanoni, G. Higher order bayesian networks, exactly. Proc. ACM Program. Lang. 2024, 8, 2514–2546. [Google Scholar] [CrossRef]
- Chien, J.T.; Chang, S.T. Bayesian asymmetric quantized neural networks. Pattern Recognit. 2023, 139, 109463. [Google Scholar] [CrossRef]
- Saha, E.; Fanfani, V.; Mandros, P.; Guebila, M.B.; Fischer, J.; Shutta, K.H.; DeMeo, D.L.; Lopes-Ramos, C.M.; Quackenbush, J. Bayesian inference of sample-specific coexpression networks. Genome Res. 2024, 34, 1397–1410. [Google Scholar] [CrossRef]
- Vomlel, J.; Kratochvíl, V.; Kratochvíl, F. Structural learning of mixed noisy-OR Bayesian networks. Int. J. Approx. Reason. 2023, 161, 108990. [Google Scholar] [CrossRef]
- Mun, C.; Bai, J.W.; Song, J. Hierarchical Bayesian models with subdomain clustering for parameter estimation of discrete Bayesian network. Struct. Saf. 2025, 114, 102570. [Google Scholar] [CrossRef]
- Magris, M.; Iosifidis, A. Bayesian learning for neural networks: An algorithmic survey. Artif. Intell. Rev. 2023, 56, 11773–11823. [Google Scholar] [CrossRef]
- Wicker, M.; Laurenti, L.; Patane, A.; Paoletti, N.; Abate, A.; Kwiatkowska, M. Probabilistic reach-avoid for Bayesian neural networks. Artif. Intell. 2024, 334, 104132. [Google Scholar] [CrossRef]
- Fathallah, W.; Amor, N.B.; Leray, P. Approximate inference on optimized quantum Bayesian networks. Int. J. Approx. Reason. 2024, 175, 109307. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, Y.; Xiang, L.; Li, Y.; Huang, H. Reliability analysis for wireless communication networks via dynamic Bayesian network. J. Syst. Eng. Electron. 2023, 34, 1368–1374. [Google Scholar] [CrossRef]
- Ruskey, B.; Rosenberg, E. Minimizing risk in Bayesian supply chain networks. Comput. Ind. Eng. 2022, 169, 108134. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, L.; Cheng, G.; Gao, X.; Feng, T.; Zhou, Y. A quantitative framework for network resilience evaluation using Dynamic Bayesian Network. Comput. Commun. 2022, 194, 387–398. [Google Scholar] [CrossRef]
- Schreuder, A.N.; Bosman, A.S.; Engelbrecht, A.P.; Cleghorn, C.W. Training feedforward neural networks with Bayesian hyper-heuristics. Inf. Sci. 2025, 686, 121363. [Google Scholar] [CrossRef]
- Andrade, D.; Sato, K. On the effectiveness of partially deterministic Bayesian neural networks. Comput. Stat. 2025, 40, 2491–2518. [Google Scholar] [CrossRef]
- Metelli, S.; Mavridis, D.; Créquit, P.; Chaimani, A. Bayesian model-based outlier detection in network meta-analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2023, 186, 754–771. [Google Scholar] [CrossRef]
- Cacioppo, R. A categorical and entropic framework for Bayesian networks and consciousness. BioSystems 2025, 256, 105542. [Google Scholar] [CrossRef]
- Kennedy, D.M. A review of the vulnerability of low-lying reef island landscapes to climate change and ways forward for sustainable management. Ocean. Coast. Manag. 2024, 249, 106984. [Google Scholar] [CrossRef]
- Guo, C.; Yan, W.; Li, L. Analysis of vulnerability formation mechanism of intelligent construction site safety system using an ISM-MICMAC approach. Eng. Constr. Archit. Manag. 2025. early access. [Google Scholar] [CrossRef]
- Ma, G.; Wu, Z. BIM-based building fire emergency management: Combining building users’ behavior decisions. Autom. Constr. 2020, 109, 102975. [Google Scholar] [CrossRef]
- Ensafi, M.; Harode, A.; Thabet, W. Developing systems-centric as-built BIMs to support facility emergency management: A case study approach. Autom. Constr. 2022, 133, 104003. [Google Scholar] [CrossRef]














| Educational Background | Associate Degree | Bachelor | Master | PhD |
|---|---|---|---|---|
| Weight | 2.5 | 5 | 7.5 | 10 |
| Years of working experience | 3–5 | 6–10 | 11–15 | 16+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| The number of participants in tropical island construction projects | 1–5 | 6–10 | 11–20 | 20+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Professional title | Junior | Intermediate | Associate Senior | Senior Professional |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Scientific research project | 0–5 | 6–10 | 11–15 | 16+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Books | 0–2 | 2–5 | 6–8 | 9+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Research paper | 0–10 | 11–20 | 21–30 | 31+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Invention patent | 0–5 | 6–10 | 11–15 | 16+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Science and Technology Awards | 0–2 | 3–4 | 5–6 | 7+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Software copyright | 0–3 | 4–6 | 7–10 | 11+ |
| Weight | 2.5 | 5 | 7.5 | 10 |
| Serial Number | Index | Frequency | Serial Number | Index | Frequency |
|---|---|---|---|---|---|
| 1 | Worker safety protection | 102 | 21 | Duration of severe weather | 47 |
| 2 | Accident response time | 97 | 22 | Site recovery | 45 |
| 3 | Workface Management | 91 | 23 | Geological environment | 43 |
| 4 | Equipment quality | 90 | 24 | Information reporting time | 40 |
| 5 | High-temperature work duration | 90 | 25 | Comprehensiveness of emergency response plan | 38 |
| 6 | Equipment maintenance | 89 | 26 | emergency funds | 37 |
| 7 | Safety training | 87 | 27 | Alarm evacuation time | 35 |
| 8 | Fatigue work hours | 84 | 28 | Equipment recovery | 34 |
| 9 | Construction layout | 82 | 29 | Regulatory feedback time | 33 |
| 10 | Construction information monitoring technology | 81 | 30 | Water and electricity restoration time | 31 |
| 11 | Worker health | 78 | 31 | Equipment operating procedures | 29 |
| 12 | High-altitude operations | 71 | 32 | Equipment Applicability | 25 |
| 13 | Emergency response time | 69 | 33 | Resource recovery rate | 22 |
| 14 | Nighttime construction duration | 67 | 34 | Safety signs | 20 |
| 15 | Hazard investigation time | 65 | 35 | Facility recovery time | 18 |
| 16 | Worker’s Certificate Validity Period | 58 | 36 | Worker communication efficiency | 16 |
| 17 | Shift system | 55 | 37 | Building restoration | 14 |
| 18 | Safety supervision policy formulation | 54 | 38 | Site recovery time | 13 |
| 19 | Work environment | 51 | 39 | Standardized signage | 11 |
| 20 | Monitoring reminder time | 49 | 40 | Perceptual error | 10 |
| Expert Situation | First Round of Participants | Percentage | Second Round of Participants | Percentage | |
|---|---|---|---|---|---|
| Years of service | 3–5 | 11 | 12.2% | 9 | 9.4% |
| 6–10 | 23 | 25.6% | 25 | 26% | |
| 11–15 | 27 | 30% | 30 | 31.3% | |
| 16+ | 29 | 32.2% | 32 | 33.3% | |
| Professional field | Architectural Design | 8 | 8.9% | 7 | 7.3% |
| Structural Engineering | 21 | 23.3% | 26 | 27.1% | |
| Geotechnical Engineering | 14 | 15.6% | 11 | 11.5% | |
| Water supply and drainage engineering | 16 | 17.8% | 15 | 15.6% | |
| Building equipment | 12 | 13.3% | 13 | 13.5% | |
| Engineering Management | 19 | 21.1% | 24 | 25% | |
| Department | University | 14 | 15.6% | 16 | 16.7% |
| Government | 9 | 10% | 8 | 8.3% | |
| Design Institute | 18 | 20% | 19 | 19.8% | |
| Construction unit | 23 | 25.6% | 24 | 25% | |
| Engineering testing | 21 | 23.3% | 22 | 22.9% | |
| Surveying unit | 5 | 5.5% | 7 | 7.3% | |
| Level of Understanding | Incomprehension | Not Quite Understand | General Understanding | Understand | Very Understanding |
|---|---|---|---|---|---|
| The first round | 0 | 0 | 5 | 34 | 51 |
| The second round | 0 | 0 | 3 | 26 | 67 |
| Judgment Basis | Excellent | Average | Poor | |||
|---|---|---|---|---|---|---|
| The First Round | The Second Round | The First Round | The Second Round | The First Round | The Second Round | |
| Practical experience | 47 | 49 | 38 | 41 | 5 | 6 |
| Theoretical Analysis | 48 | 51 | 35 | 36 | 7 | 9 |
| Peer understanding | 46 | 50 | 41 | 42 | 3 | 4 |
| Index/Expert | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 |
|---|---|---|---|---|---|---|---|---|---|---|
| X1 | 4 | 3 | 3 | 4 | 5 | 3 | 3 | 4 | 5 | 3 |
| X2 | 3 | 4 | 4 | 3 | 3 | 4 | 5 | 3 | 3 | 5 |
| X3 | 4 | 5 | 4 | 5 | 4 | 3 | 4 | 4 | 4 | 4 |
| X4 | 3 | 4 | 5 | 4 | 4 | 5 | 4 | 4 | 4 | 4 |
| X5 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 |
| X6 | 2 | 1 | 2 | 3 | 2 | 1 | 3 | 1 | 3 | 2 |
| X7 | 4 | 3 | 5 | 4 | 5 | 3 | 4 | 3 | 4 | 3 |
| X8 | 4 | 5 | 4 | 3 | 4 | 5 | 4 | 4 | 5 | 4 |
| X9 | 5 | 4 | 4 | 5 | 3 | 4 | 5 | 5 | 4 | 5 |
| X10 | 5 | 4 | 5 | 4 | 4 | 3 | 5 | 3 | 5 | 5 |
| X11 | 2 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 1 | 2 |
| X12 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 |
| X13 | 5 | 4 | 5 | 5 | 4 | 3 | 4 | 4 | 3 | 5 |
| X14 | 4 | 3 | 4 | 4 | 5 | 4 | 5 | 5 | 5 | 4 |
| X15 | 5 | 5 | 3 | 5 | 4 | 3 | 4 | 4 | 5 | 5 |
| X16 | 4 | 4 | 5 | 3 | 4 | 5 | 5 | 5 | 4 | 4 |
| X17 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| X18 | 4 | 5 | 4 | 4 | 4 | 5 | 4 | 5 | 4 | 4 |
| X19 | 5 | 4 | 5 | 5 | 4 | 3 | 4 | 4 | 3 | 5 |
| X20 | 4 | 5 | 4 | 4 | 5 | 4 | 5 | 4 | 4 | 5 |
| X21 | 5 | 4 | 5 | 5 | 4 | 5 | 4 | 4 | 5 | 4 |
| X22 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 |
| X23 | 4 | 3 | 5 | 4 | 4 | 5 | 3 | 5 | 4 | 4 |
| X24 | 5 | 5 | 4 | 5 | 4 | 4 | 4 | 3 | 5 | 5 |
| X25 | 2 | 2 | 1 | 3 | 2 | 3 | 2 | 2 | 1 | 1 |
| X26 | 4 | 4 | 5 | 4 | 3 | 5 | 5 | 4 | 5 | 4 |
| X27 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 3 | 4 | 5 |
| X28 | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 4 | 5 | 4 |
| X29 | 5 | 3 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 5 |
| X30 | 5 | 5 | 4 | 5 | 4 | 5 | 5 | 3 | 4 | 4 |
| X31 | 1 | 1 | 2 | 3 | 2 | 2 | 1 | 3 | 2 | 1 |
| X32 | 4 | 4 | 5 | 4 | 5 | 4 | 4 | 5 | 5 | 5 |
| X33 | 5 | 3 | 5 | 3 | 4 | 5 | 4 | 5 | 4 | 5 |
| X34 | 3 | 2 | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 2 |
| X35 | 4 | 5 | 4 | 4 | 3 | 5 | 5 | 3 | 5 | 5 |
| Y | 135 | 127 | 136 | 134 | 130 | 129 | 135 | 125 | 133 | 135 |
| Criterion Layer | Primary Indicators | Secondary Indicators | Symbol |
|---|---|---|---|
| Exposure (E) | Exposure time (E1) | Worker’s Certificate Validity Period | E11 |
| Duration of severe weather | E12 | ||
| Fatigue work hours | E13 | ||
| High-temperature work duration | E14 | ||
| Nighttime construction duration | E15 | ||
| Exposed location (E2) | Construction layout | E21 | |
| Safety training | E22 | ||
| Equipment quality | E23 | ||
| Equipment operating procedures | E24 | ||
| Sensitivity (S) | Reaction time (S1) | Information reporting time | S11 |
| Monitoring reminder time | S12 | ||
| Accident response time | S13 | ||
| Alarm evacuation time | S14 | ||
| Regulatory feedback time | S15 | ||
| Reaction limit (S2) | Worker health | S21 | |
| Equipment maintenance | S22 | ||
| Equipment Applicability | S23 | ||
| Workface Management | S24 | ||
| Worker safety protection | S25 | ||
| Adaptability (A) | Recovery time (A1) | Facility recovery time | A11 |
| Emergency response time | A12 | ||
| Hazard investigation time | A13 | ||
| Site recovery time | A14 | ||
| Water and electricity restoration time | A15 | ||
| Degree of recovery (A2) | Building restoration | A21 | |
| Site recovery | A22 | ||
| Equipment recovery | A23 | ||
| Material recovery rate | A24 |
| Number | E | E1 | … | S1 | S12 | … | A1 | … | A2 | … | V |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | … | 0 | 0 | … | 1 | … | 0 | … | 0 |
| 2 | 0 | 0 | … | 0 | 0 | … | 0 | … | 0 | … | 0 |
| 3 | 1 | 0 | … | 0 | 0 | … | 0 | … | 0 | … | 0 |
| 4 | 1 | 0 | … | 1 | 0 | … | 0 | … | 0 | … | 0 |
| 5 | 0 | 0 | … | 0 | 0 | … | 0 | … | 1 | … | 0 |
| 6 | 1 | 0 | … | 0 | 0 | … | 1 | … | 0 | … | 0 |
| 7 | 1 | 0 | … | 0 | 0 | … | 0 | … | 0 | … | 0 |
| 8 | 0 | 0 | … | 0 | 1 | … | 1 | … | 0 | … | 0 |
| … | |||||||||||
| 225 | 1 | 0 | … | 0 | 0 | … | 0 | … | 0 | … | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Huang, B.; Wang, J.; Huang, J. Vulnerability Analysis of Construction Safety System for Tropical Island Building Projects Based on GV-IB Model. Systems 2026, 14, 70. https://doi.org/10.3390/systems14010070
Huang B, Wang J, Huang J. Vulnerability Analysis of Construction Safety System for Tropical Island Building Projects Based on GV-IB Model. Systems. 2026; 14(1):70. https://doi.org/10.3390/systems14010070
Chicago/Turabian StyleHuang, Bo, Junwu Wang, and Jun Huang. 2026. "Vulnerability Analysis of Construction Safety System for Tropical Island Building Projects Based on GV-IB Model" Systems 14, no. 1: 70. https://doi.org/10.3390/systems14010070
APA StyleHuang, B., Wang, J., & Huang, J. (2026). Vulnerability Analysis of Construction Safety System for Tropical Island Building Projects Based on GV-IB Model. Systems, 14(1), 70. https://doi.org/10.3390/systems14010070

