Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = bubble size distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 21767 KB  
Article
Reservoir Characteristics and Productivity Controlling Factors of the Wufeng–Longmaxi Formations in the Lu203–Yang101 Well Block, Southern Sichuan Basin, China
by Zhi Gao, Tian Tang, Cheng Yang, Jing Li, Yijia Wu, Ying Wang, Jingru Ruan, Yi Xiao, Hu Li and Kun Zhang
Energies 2026, 19(2), 444; https://doi.org/10.3390/en19020444 - 16 Jan 2026
Viewed by 181
Abstract
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction [...] Read more.
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction (XRD), scanning electron microscopy (SEM), low-pressure N2 adsorption, and nuclear magnetic resonance (NMR)—to characterize the macro- and micro-scale characteristics of these deep shales. By comparing with shallower shales in adjacent areas, we investigated differences in pore structure between deep and shallow shales and the main controlling factors for high gas-well productivity. The results show that the Long 11 sub-member shales are rich in organic matter, with total organic carbon (TOC) content decreasing upward. The mineral composition is dominated by quartz (averaging ~51%), which slightly decreases upward, while clay content increases upward. Porosity ranges from 1% to 7%; the Long11-1-3 sublayers average 4–6%, locally >6%. Gas content correlates closely with TOC and porosity, highest in the Long11-1 sublayer (6–10 m3/t) and decreasing upward, and the central part of the study area has higher gas content than adjacent areas. The micro-pore structure exhibits pronounced stratigraphic differences: the WF Formation top and Long11-1 and Long11-3 sublayers are dominated by connected round or bubble-like organic pores (50–100 nm), whereas the Long11-2 and Long11-4 sublayers contain mainly smaller isolated organic pores (5–50 nm). Compared to shallow shales nearby, the deep shales have a slightly lower proportion of organic pores, smaller pore sizes with more isolated pores, inorganic pores of mainly intraparticle types, and more developed microfractures, confirming that greater burial depth leads to a more complex pore structure. Type I high-quality reservoirs are primarily distributed from the top of the WF Formation to the Long11-3 sublayer, with a thickness of 15.6–38.5 m and a continuous thickness of 13–23 m. The Lu206–Yang101 area has the thickest high-quality reservoir, with a cumulative thickness of Type I + II exceeding 60 m. Shale gas-well high productivity is jointly controlled by multiple factors: an oxygen-depleted, stagnant deep-shelf environment, with deposited organic-rich, biogenic siliceous shales providing the material basis for high yields; abnormally high pore-fluid pressure with preserved abundant large organic pores and increased free gas content; and effective multi-stage massive fracturing connecting a greater reservoir volume, which is the key to achieving high gas-well production. This study provides a scientific basis for evaluating deep marine shale gas reservoirs in southern Sichuan and understanding the enrichment patterns for high productivity. Full article
Show Figures

Figure 1

18 pages, 8933 KB  
Article
CO2-Induced Foaming and Gelation for the Fabrication of Macroporous Alginate Aerogel Scaffolds
by Natalia Menshutina, Eldar Golubev, Andrey Abramov and Pavel Tsygankov
Gels 2026, 12(1), 17; https://doi.org/10.3390/gels12010017 - 24 Dec 2025
Viewed by 298
Abstract
Alginate aerogels are attractive candidates for biomedical scaffolds because they combine high mesoporosity with biocompatibility and can be processed into open, interconnected macroporous networks suitable for tissue engineering. Here, we systematically investigate how CO2-induced foaming parameters govern the hierarchical pore structure [...] Read more.
Alginate aerogels are attractive candidates for biomedical scaffolds because they combine high mesoporosity with biocompatibility and can be processed into open, interconnected macroporous networks suitable for tissue engineering. Here, we systematically investigate how CO2-induced foaming parameters govern the hierarchical pore structure of alginate aerogels produced by subsequent supercritical CO2 drying. Sodium alginate–CaCO3 suspensions are foamed in a CO2 atmosphere at 50 or 100 bar, depressurization rates of 50 or 0.05 bar·s−1, temperatures of 5 or 25 °C, and, optionally, under pulsed pressure or with Pluronic F-68 as a surfactant. The resulting gels are dried using supercritical CO2 and characterized by micro-computed tomography and N2 sorption. High pressure combined with slow depressurization (100 bar, 0.05 bar·s−1) yields a homogeneous macroporous network with pores predominantly in the 200–500 µm range and a mesoporous texture with 15–35 nm pores, whereas fast depressurization promotes bubble coalescence and the appearance of large (>2100 µm) macropores and a broader mesopore distribution. Lowering the temperature, applying pulsed pressure, and adding surfactant enable further tuning of macropore size and connectivity with a limited impact on mesoporosity. Interpretation in terms of Peclet and Deborah numbers links processing conditions to non-equilibrium mass transfer and gel viscoelasticity, providing a physically grounded map for designing hierarchically porous alginate aerogel scaffolds for biomedical applications. Full article
(This article belongs to the Special Issue Gel-Based Scaffolds for Tissue Engineering)
Show Figures

Figure 1

17 pages, 4789 KB  
Article
Flash-Boiling Effect on Water–Methanol Blends Sprays Generated Under Low Injection Pressure
by Łukasz Boruc and Łukasz Jan Kapusta
Appl. Sci. 2026, 16(1), 106; https://doi.org/10.3390/app16010106 - 22 Dec 2025
Viewed by 275
Abstract
This study presents experimental research on the injection of water–methanol mixtures under both subcooled and superheated conditions. Injecting superheated liquid results in the formation of flash-boiling sprays, generating smaller droplets compared to non-superheated conditions. This improved atomisation leads to a decrease in spray [...] Read more.
This study presents experimental research on the injection of water–methanol mixtures under both subcooled and superheated conditions. Injecting superheated liquid results in the formation of flash-boiling sprays, generating smaller droplets compared to non-superheated conditions. This improved atomisation leads to a decrease in spray penetration and evaporation time. The mixture of water and methanol is a non-azeotropic mixture, meaning it exhibits different bubble and dew points. Non-azeotropic mixtures are the most common type of mixture. This study investigates the atomisation characteristics of water–methanol mixtures injected under low pressure (0.5 MPa) into a quiescent ambience. The experiments were conducted in an open environment at 1-atm absolute pressure and 22 °C temperature. Five different compositions were tested, including pure water, pure methanol (99.9%), and mixtures with water–methanol volume ratios of 75/25, 50/50, and 25/75. Using laser shadowgraphy with long-distance microscopy, droplet size distributions were measured at four distinct locations. Under high superheat conditions, the droplet distribution was similar for all mixtures. The Sauter mean diameter (SMD) rapidly decreased for all liquids when subjected to superheated injection. This led to the conclusion that the composition of non-azeotropic substances has little significance in terms of droplet diameter at high superheat. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

28 pages, 5982 KB  
Article
Numerical Investigation into Effects of Gas Sparger and Horizontal Baffles on Hydrodynamics of Flat Bubble Column
by Masroor Abro, Imran Nazir Unar, Junaid Korai, Abdul Qudoos, Sikandar Almani, Abdul Qadeer Laghari, Liang Yu and Abdul Sattar Jatoi
ChemEngineering 2025, 9(6), 144; https://doi.org/10.3390/chemengineering9060144 - 12 Dec 2025
Viewed by 534
Abstract
Computational fluid dynamics (CFD) was used to investigate influence of different gas sparger configurations and the presence of horizontal baffles on hydrodynamic characteristics in a flat bubble column. CFD results of time-averaged local and global gas holdup, liquid axial velocity, and Sauter mean [...] Read more.
Computational fluid dynamics (CFD) was used to investigate influence of different gas sparger configurations and the presence of horizontal baffles on hydrodynamic characteristics in a flat bubble column. CFD results of time-averaged local and global gas holdup, liquid axial velocity, and Sauter mean diameter were experimentally validated. Subsequently, the validated CFD model was extended to investigate the effects of different gas sparger configurations, i.e., S1, S3, S4, S5, S8, and S72, and baffles arrangements, i.e., Config-A and Config-B on overall hydrodynamics at different superficial gas velocities (Ug = 0.0014 m/s and 0.0073 m/s). CFD results demonstrated significant influence of both sparger and Ug. Gas holdup and interfacial area increased with smaller, more numerous sparger openings, such that S72 achieved ~1.55 times higher holdup and ~2 higher interfacial area than that of S1. Spargers with fewer and larger openings induced stronger turbulence, which intensified early breakup and coalescence and broadened the bubble size distribution. Results revealed that spargers with many small openings (S72) produced the narrowest distribution, retaining a high fraction of bubbles of initial size (5 mm), whereas spargers with fewer larger openings (S1) generated broader distributions with significant coalescence, especially at higher Ug. The inclusion of baffles enhanced liquid circulation and gas–liquid mixing and contact. However, intensified turbulence below each baffle significantly increased coalescence, producing larger bubbles and resulting in only marginal changes in interfacial area despite increased gas holdup. Full article
Show Figures

Figure 1

37 pages, 7884 KB  
Article
Numerical Simulation Study of Air Flotation Zone of Horizontal Compact Swirling Flow Air Flotation Device
by Lei Zhang, Xiaolong Xiao, Mingxiu Yao, Leiyou Hai, Huiyun Men, Wenming Jiang and Yang Liu
Processes 2025, 13(12), 3848; https://doi.org/10.3390/pr13123848 - 28 Nov 2025
Viewed by 440
Abstract
Air flotation separation technology has emerged as one of the core techniques for oily wastewater treatment in oilfields, owing to its advantages of high throughput, high separation efficiency, and short retention time. Originally applied in mineral processing, this technology was first introduced to [...] Read more.
Air flotation separation technology has emerged as one of the core techniques for oily wastewater treatment in oilfields, owing to its advantages of high throughput, high separation efficiency, and short retention time. Originally applied in mineral processing, this technology was first introduced to oilfield produced water treatment by Shell in 1960. With the optimization of microbubble generators, advances in microbubble generation technology—characterized by small size, high stability, and uniformity—have further expanded its applications across various wastewater treatment scenarios. To optimize the separation performance of a horizontal compact closed-loop cyclonic air flotation unit, this study employs CFD numerical simulation to investigate two key aspects: First, for the flotation zone, the effects of structural parameters (deflector height, inclination angle) and operational parameters (gas–oil ratio, bubble size, inlet velocity) on flow patterns and gas distribution were systematically examined. Device performance was evaluated using metrics such as gas–oil ratio distribution curves and flow field characteristics, enabling the identification of operating conditions for stratified flow formation and the determination of optimal deflector structural parameters. Second, based on the Eulerian multiphase flow model and RSM turbulence model, a numerical simulation model for the oil–gas–water three-phase flow field was established. The influences of key parameters (bubble size, throughput, gas–oil ratio) on oil–water separation efficiency were investigated, and the optimal operating conditions for the unit were determined by integrating oil-phase/gas-phase distribution characteristics with oil removal rate data. This research provides theoretical support for the structural optimization and engineering application of horizontal compact closed-loop cyclonic flotation units. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

18 pages, 3550 KB  
Article
Experimental Study on the Variation Pattern of Saline Ice Microstructure with Temperature
by Haokun Li, Miao Yu, Peng Lu and Qingkai Wang
Water 2025, 17(23), 3343; https://doi.org/10.3390/w17233343 - 21 Nov 2025
Viewed by 630
Abstract
By employing high-resolution imaging and image processing techniques, a quantitative analysis was conducted on the changes in volume fraction and size of microstructures, such as brine inclusions and air bubbles, within natural saline ice at different temperatures. This study revealed the distinct stratified [...] Read more.
By employing high-resolution imaging and image processing techniques, a quantitative analysis was conducted on the changes in volume fraction and size of microstructures, such as brine inclusions and air bubbles, within natural saline ice at different temperatures. This study revealed the distinct stratified distribution characteristics of ice microstructure parameters along the depth direction and elucidated the differential response mechanisms of various ice layers to temperature changes. The results indicate that the sizes of brine inclusions and air bubbles decrease progressively from the surface layer to the bottom layer, with the size distribution of microstructures being most concentrated in the bottom layer. Changes in the size of microstructures in the surface ice layer are primarily dominated by solar radiation, showing strong correlations (brine inclusions: r = 0.96, p < 0.01; air bubbles: r = 0.95, p < 0.02). In contrast, the size changes of microstructures in the middle ice layer show a more significant response to ice temperature, with strong linear relationships between the sizes of brine inclusions/air bubbles and ice temperature (brine inclusions: r = 0.70, p < 0.04; air bubbles: r = 0.69, p < 0.05). The temperature of the bottom ice layer, influenced by the stable lake water temperature, remains relatively constant, and no significant correlation was observed between its microstructure size changes and ice temperature. Derived from field experiments, this study provides quantified, layer-specific mechanisms of how saline ice microstructure responds to temperature. These mechanisms offer crucial observational constraints for refining the parameterizations of ice thermodynamics and albedo feedback in cryosphere and climate system models. Full article
Show Figures

Figure 1

15 pages, 2414 KB  
Article
Numerical Simulation of Double-Pore Bubble Coalescence Behavior in Direct Methanol Fuel Cells
by Zemu Tian, Hongxiu Zhou, Jiahao Wang, Yu Tong and Junhao Zhu
Energies 2025, 18(22), 6041; https://doi.org/10.3390/en18226041 - 19 Nov 2025
Viewed by 358
Abstract
Direct methanol fuel cells (DMFCs) offer advantages such as high energy density and ease of storage and transportation. However, carbon dioxide bubbles generated in the anode flow channels are one factor affecting cell performance. To investigate the multi-bubble coalescence phenomenon of CO2 [...] Read more.
Direct methanol fuel cells (DMFCs) offer advantages such as high energy density and ease of storage and transportation. However, carbon dioxide bubbles generated in the anode flow channels are one factor affecting cell performance. To investigate the multi-bubble coalescence phenomenon of CO2 bubbles in DMFC flow channels, a three-dimensional anode channel dual-pore model of DMFC is established using the software COMSOL Multiphysics. Through numerical simulation, a systematic study is conducted on the kinetic mechanisms governing the growth, detachment, and coalescence behavior of CO2 bubbles in the DMFC anode flow channel. The study reveals that bubbles readily coalesce to form large-scale plug flow with low-methanol velocity, whereas high-flow velocity inhibits coalescence and promotes rapid bubble discharge. Pore size significantly influences the aggregation and detachment of CO2 bubbles, due to the increase in surface tension with the increasing pore diameter, which prevents bubbles from detaching and makes neighboring bubbles more prone to coalescence. Pore spacing directly influences the frequency and intensity of aggregation behavior; increasing pore spacing helps suppress bubble aggregation. The contact angle indirectly affects bubble coalescence and distribution uniformity by regulating bubble detachment rates, and hydrophilic wall surfaces inhibit bubble coalescence. Full article
Show Figures

Figure 1

16 pages, 4432 KB  
Article
Enhancing Biofilm Performance and Ammonia Removal in MBBR Systems Using Nanobubble Aeration: A Pilot-Scale Experimental Study
by Putu Ayustin Suriasni, Ferry Faizal, Camellia Panatarani, Wawan Hermawan, Ujang Subhan, Fitrilawati Fitrilawati and I Made Joni
Water 2025, 17(22), 3215; https://doi.org/10.3390/w17223215 - 11 Nov 2025
Viewed by 1153
Abstract
The recirculating aquaculture system (RAS) provides a sustainable approach to sustaining aquaculture output while reducing environmental pollution and excessive water consumption. Nonetheless, high concentrations of Total Ammonia Nitrogen (TAN) continue to be a significant obstacle in RAS operations. To address this issue, the [...] Read more.
The recirculating aquaculture system (RAS) provides a sustainable approach to sustaining aquaculture output while reducing environmental pollution and excessive water consumption. Nonetheless, high concentrations of Total Ammonia Nitrogen (TAN) continue to be a significant obstacle in RAS operations. To address this issue, the Moving Bed Biofilm Reactor (MBBR), with bubble aeration, is important for promoting ammonia degradation. Bubble size impacts the effectiveness of bubble aeration, influencing both oxygen transfer and microbial activity. This research involved a 35-day experiment to evaluate the effects of bubble size, produced by nanobubble and coarse bubble aerators, on biofilm development and TAN decrease. The maximum biofilm thickness of 172.88 µm was recorded during nanobubble aeration, which also produced a higher quantity of microbial colonies (293 × 107 CFU) in comparison to coarse bubble aeration (89 × 107 CFU), as validated by Total Plate Count analysis. SEM–EDX imaging additionally demonstrated a more compact and consistent biofilm structure in the presence of nanobubbles. These results align with an increased TAN degradation efficiency, achieving 83.33% with nanobubble aeration, while coarse bubble aeration reached only 50%. The findings indicate that nanobubble aeration enhances biofilm functionality by improving bacterial dispersion and oxygen availability within the biofilm matrix, thereby promoting a more uniform distribution of microorganisms and nutrients. This mechanism represents a promising approach for improving water quality and overall treatment efficiency in recirculating aquaculture systems (RAS). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2344 KB  
Article
Investigation of Gas Evolution on Nickel Wire Electrodes During Alkaline Water Electrolysis
by Junxu Liu, Jingxin Zeng, Yuhang An, Yuanyuan Duan and Qiang Song
Energies 2025, 18(22), 5888; https://doi.org/10.3390/en18225888 - 8 Nov 2025
Viewed by 787
Abstract
The pursuit of higher current densities and device miniaturization intensifies gas evolution in alkaline water electrolysis, thereby reducing catalyst utilization and degrading system performance. In this work, a visualized alkaline electrolysis system was developed to investigate bubble dynamics on vertically oriented nickel wire [...] Read more.
The pursuit of higher current densities and device miniaturization intensifies gas evolution in alkaline water electrolysis, thereby reducing catalyst utilization and degrading system performance. In this work, a visualized alkaline electrolysis system was developed to investigate bubble dynamics on vertically oriented nickel wire electrodes. High-speed imaging coupled with a Yolov8 deep learning model enabled quantitative analysis of oxygen evolution behavior, revealing distinct bubble evolution modes such as isolated growth and coalescence. Systematic experiments demonstrated that current density, electrode diameter, and KOH concentration exert significant influences on bubble size distribution. Further correlation with electrochemical performance showed that increases in bubble population and size result in higher overpotentials, while bubble volume exhibits a strong linear relationship with the system’s ohmic resistance. These findings provide mechanistic insights into the coupling between bubble evolution and electrochemical performance, offering guidance for the design of efficient alkaline electrolyzers. Full article
Show Figures

Figure 1

24 pages, 4204 KB  
Article
Effect of Twin-Fluid Mass Ratio on Near-Field Spray Characteristics and Dynamics of a Novel Two-Phase Injector with an Internal Swirl
by Rachel Swinney, Md Shakil Ahmed and Lulin Jiang
Fire 2025, 8(11), 425; https://doi.org/10.3390/fire8110425 - 31 Oct 2025
Viewed by 856
Abstract
The present study investigates the influence of atomizing air-to-liquid mass ratio (ALR) on the near-field spray characteristics and stability of a novel twin-fluid injector that integrates bubble-bursting for primary atomization and shear-induced secondary atomization. Unlike conventional injectors, the novel design generates ultra-fine sprays [...] Read more.
The present study investigates the influence of atomizing air-to-liquid mass ratio (ALR) on the near-field spray characteristics and stability of a novel twin-fluid injector that integrates bubble-bursting for primary atomization and shear-induced secondary atomization. Unlike conventional injectors, the novel design generates ultra-fine sprays at the exit with low sensitivity to liquid properties. The previous version improved secondary atomization even for highly viscous liquids, showing strong potential in hydrogel-based fire suppression. The current design improves primary atomization, leading to more stable and finer sprays. The near-field spray characteristics are quantified using a high-speed shadowgraph across ALRs ranging from 1.25 to 2.00. This study found that stable and finely atomized sprays are produced across all the tested ALRs. Increasing ALR reduces droplet size, while the spray is the widest at 1.25. Sauter Mean Diameter (SMD) contours show larger droplets at the edges and smaller ones toward the center, with ALR 2.00 yielding the most uniform size distribution. As per the atomization efficiency, ALR of 1.25 shows the best performance. Overall, an optimum ALR of 1.75 is identified, offering balanced droplet size distribution, stability, and atomization efficiency, making the injector potentially suitable for fire suppression and liquid-fueled gas turbines requiring high stability and fuel flexibility. Full article
Show Figures

Graphical abstract

18 pages, 6253 KB  
Article
Long-Term Stability of Nanobubbles Generated via Pressure Oscillation-Hydrodynamic Cavitation: A Rapid Assessment by UV–Vis Spectrophotometry
by Lei Huang, Jiaqi Dong, Ming Chen, Lei Li and Ruichao Zhang
Nanomaterials 2025, 15(21), 1613; https://doi.org/10.3390/nano15211613 - 23 Oct 2025
Cited by 1 | Viewed by 1579
Abstract
The long-term stability of bulk nanobubbles is crucial for their functional applications; however, understanding the evolution of their size distribution remains a significant challenge. While conventional characterization methods, such as Dynamic Light Scattering and Nanoparticle Tracking Analysis, provide size information, they are often [...] Read more.
The long-term stability of bulk nanobubbles is crucial for their functional applications; however, understanding the evolution of their size distribution remains a significant challenge. While conventional characterization methods, such as Dynamic Light Scattering and Nanoparticle Tracking Analysis, provide size information, they are often sample-intensive and expensive, making them ill-suited for high-throughput or long-term dynamic monitoring of size distribution polydispersity. This research validated UV–Vis spectrophotometry as a simple, powerful tool for tracking these dynamic changes. Air nanobubbles generated via pressure oscillation-hydraulic cavitation were systematically monitored over 30 days using correlative DLS, NTA, and UV–Vis spectroscopy. A distinct two-stage evolution was identified: an initial “purification” phase marked by the dissolution of unstable bubbles, followed by a long-term “maturation” phase governed by Ostwald ripening. The Ångström exponent (n), derived from the full extinction spectrum, is a highly sensitive descriptor of this process. The evolution of n traced a unique V-shaped trajectory, which resulted in a pronounced hysteresis loop when plotted against the mean diameter from DLS. This hysteresis reveals that systems with identical mean diameters can possess vastly different distribution morphologies, which are inaccessible through traditional sizing methods alone. This research establishes full-spectrum UV–Vis analysis as a robust methodology, enabling rapid and efficient assessment of nanobubble stability and providing a deeper mechanistic understanding of their complex evolution. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

17 pages, 8936 KB  
Article
Grain Boundary Engineering of an Additively Manufactured AlSi10Mg Alloy for Advanced Energy Systems: Grain Size Effects on He Bubbles Distribution and Evolution
by Przemysław Snopiński, Marek Barlak, Jerzy Zagórski and Marek Pagač
Energies 2025, 18(20), 5445; https://doi.org/10.3390/en18205445 - 15 Oct 2025
Viewed by 604
Abstract
The development of advanced energy materials is critical for the safety and efficiency of next-generation nuclear energy systems. Aluminum alloys present a compelling option due to their excellent neutronic properties, notably a low thermal neutron absorption cross-section. However, their historically poor high-temperature performance [...] Read more.
The development of advanced energy materials is critical for the safety and efficiency of next-generation nuclear energy systems. Aluminum alloys present a compelling option due to their excellent neutronic properties, notably a low thermal neutron absorption cross-section. However, their historically poor high-temperature performance has limited their use in commercial power reactors. This makes them prime candidates for specialized, lower-temperature but high-radiation environments, such as research reactors, spent fuel storage systems, and spallation neutron sources. In these applications, mitigating radiation damage—particularly swelling and embrittlement from helium produced during irradiation—remains a paramount challenge. Grain Boundary Engineering (GBE) is a potent strategy to mitigate radiation damage by increasing the fraction of low-energy Coincident Site Lattice (CSL) boundaries. These interfaces act as effective sinks for radiation-induced point defects (vacancies and self-interstitials), suppressing their accumulation and subsequent clustering into damaging dislocation loops and voids. By controlling the defect population, GBE can substantially reduce macroscopic effects like volumetric swelling and embrittlement, enhancing material performance in harsh radiation environments. In this article we evaluate the efficacy of GBE in an AlSi10Mg alloy, a candidate material for nuclear applications. Samples were prepared via KOBO extrusion, with a subset undergoing subsequent annealing to produce varied initial grain sizes and grain boundary character distributions. This allows for a direct comparison of how these microstructural features influence the material’s response to helium ion irradiation, which simulates damage from fission and fusion reactions. The resulting post-irradiation defect structures and their interaction with the engineered grain boundary network were characterized using a combination of Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM), providing crucial insights for designing next-generation, radiation-tolerant energy materials. Full article
Show Figures

Figure 1

15 pages, 2258 KB  
Article
Assessing the Reliability of 3D-Printed Custom Silicone Boluses in Radiotherapy: Thickness and Air Bubble Considerations
by Yun Sung Shin, Sang Jun Byun, Byungyong Kim and Myeongsoo Kim
Appl. Sci. 2025, 15(19), 10486; https://doi.org/10.3390/app151910486 - 28 Sep 2025
Viewed by 789
Abstract
This study aimed to evaluate the scientific reliability of 3D-printed silicone boluses fabricated with patient-specific molds, focusing on fabrication-related uncertainties such as internal air bubbles, thickness variations, and density differences, thereby providing evidence for clinical quality assurance. Custom silicone boluses were fabricated using [...] Read more.
This study aimed to evaluate the scientific reliability of 3D-printed silicone boluses fabricated with patient-specific molds, focusing on fabrication-related uncertainties such as internal air bubbles, thickness variations, and density differences, thereby providing evidence for clinical quality assurance. Custom silicone boluses were fabricated using 3D-printed molds with varying vacuum degassing times (1, 5, and 10 min). Air bubble size and depth were quantified using scanner image analysis, while density and Hounsfield unit (HU) values were compared with a commercial bolus. Dosimetric evaluation was performed using a VitalBeam linear accelerator (6 MV photons, Varian Medical Systems, Palo Alto, CA, USA) and a MatriXX 2D detector (IBA Dosimetry, Schwarzenbruck, Germany), comparing treatment planning system (TPS) calculated doses with measured doses across a 3 × 3 grid. Surface dose distributions were further analyzed using EBT3 film. Results showed that bubble size increased with longer vacuum times, interpreted as coalescence due to limited degassing and silicone viscosity. The density of 3D boluses ranged from 0.980 to 1.104 g/cm3 (commercial: 0.988 g/cm3), with HU values of +240 to +250 (commercial: −110). In point-wise comparisons, mean dose differences were less than 1% for 1- and 5 min samples and approximately 1% for 10 min, with all conditions within |Δ| ≤ 3%. Film analysis confirmed equivalent surface dose distributions. These findings demonstrate, for the first time, that microscopic bubbles in 3D-printed silicone boluses have negligible clinical impact, supporting their safe adoption without requiring complex degassing procedures. Full article
Show Figures

Figure 1

56 pages, 1658 KB  
Review
The Potential of CFD in Sustainable Microbial Fermenter Design: A Review
by Fatima Imran, Markus Bösenhofer, Christian Jordan and Michael Harasek
Processes 2025, 13(9), 3005; https://doi.org/10.3390/pr13093005 - 20 Sep 2025
Cited by 2 | Viewed by 2322
Abstract
Due to the regulated nature and purity standards of the bioprocess and biotechnology industries, the sector has seen comparatively less sustainable practices than other chemical industries have. The achievement of sustainability in microbial fermenter design requires that quantitative tools with links between process [...] Read more.
Due to the regulated nature and purity standards of the bioprocess and biotechnology industries, the sector has seen comparatively less sustainable practices than other chemical industries have. The achievement of sustainability in microbial fermenter design requires that quantitative tools with links between process parameters and end-environmental outcomes are employed. This review begins with environmentally friendly metrics such as process mass intensity, water and energy intensity, and related indicators that act as a template for resource usage and waste generation assessment. The objective of this paper is to highlight the primary focus on computational fluid dynamics (CFD) applied to bioprocesses in aerated stirred bioreactors using Escherichia coli (E. coli). Second, the objective of this paper is to explore state-of-the-art CFD models and methods documented in the existing literature, providing a fundamental foundation for researchers to incorporate CFD modelling into biotechnological process development, while making these concepts accessible to non-specialists and addressing the research gap of linking CFD outputs with sustainability metrics and life cycle assessment techniques. Impeller rotational models such as sliding mesh are an accurate and commonly used method of modelling the rotation of stirring. Multiple different turbulence models are applied for the purpose of stirred bioreactors, with the family of k-ε models being the most used. Multiphase models such as Euler-Euler models in combination with population balance models and gas dispersion models to model bubble size distribution and bubble characteristics are typically used. Full article
(This article belongs to the Special Issue Bioreactor Design and Optimization Process)
Show Figures

Graphical abstract

20 pages, 11628 KB  
Article
Optimized Mix Proportion and Microstructural Mechanism of Foamed Concrete for Internal Molds in Hollow Concrete Components
by Bing Luo, Xu Dong, Rong Li, Dunlei Su, Yuanhui Qiao, Lingqiang Meng and Chenhao Zhang
Coatings 2025, 15(8), 976; https://doi.org/10.3390/coatings15080976 - 21 Aug 2025
Cited by 1 | Viewed by 995
Abstract
To address the issues of numerous influencing factors on material quality, difficulty in determining the optimal mix proportion, and the need to clarify the formation mechanism when foam concrete is used as an internal mold for prefabricated components, this study conducted orthogonal tests [...] Read more.
To address the issues of numerous influencing factors on material quality, difficulty in determining the optimal mix proportion, and the need to clarify the formation mechanism when foam concrete is used as an internal mold for prefabricated components, this study conducted orthogonal tests to investigate the influence laws of fly ash content, foam content, foaming agent dilution ratio, and water–binder ratio on the dry density and compressive strength of foam concrete, and determined the optimal mix proportion via analysis of variance (ANOVA). Additionally, scanning electron microscopy (SEM) tests were performed to analyze the effects of these four factors on the microscopic pore morphology of foam concrete from a microscopic perspective, thereby revealing its formation mechanism, and engineering applications were carried out. The results show that the primary-to-secondary order of factors affecting the dry density and compressive strength of foam concrete is as follows: foam content (B) > water–binder ratio (D) > foaming agent dilution ratio (C) > fly ash content (A). The optimal mix proportion is 5% fly ash content, 18% foam content, a 30-fold foaming agent dilution ratio, and a water–binder ratio of 0.55. Under this mix proportion, the pore size of foam concrete ranges from 200 μm to 500 μm with uniform distribution, and the pore spacing is between 20 μm and 30 μm, with almost no connected pores. When the foam concrete slurry sets and hardens, hydration products such as calcium silicate hydrate (C-S-H) gel, calcium hydroxide, ettringite (AFt), and monosulfate aluminate (AFm) are generated around the bubbles. The mechanical properties of foam concrete are afforded by the combined action of these hydration products and the pore structure. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

Back to TopTop