Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = broadband antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 6279 KiB  
Communication
Low-Profile Broadband Filtering Antennas for Vehicle-to-Vehicle Applications
by Shengtao Chen and Wang Ren
Sensors 2025, 25(15), 4747; https://doi.org/10.3390/s25154747 - 1 Aug 2025
Viewed by 188
Abstract
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two [...] Read more.
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two radiation nulls in the primary radiation direction, effectively enhancing the filtering effect. The antenna achieves a wide operational bandwidth (S1110 dB) of 35.9% (4.3–6.4 GHz), making it highly suitable for Sub-6 GHz communication systems. Despite its compact size of 25 × 25 mm2, the antenna consistently maintains stable broadside radiation patterns, with a peak gain of 6.14 dBi and a minimal gain fluctuation of less than 1 dBi at 4.6–6.45 GHz. This design ensures reliable and robust communication performance for V2V systems operating in the designated frequency band. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 374
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

22 pages, 4331 KiB  
Article
Simulation-Based Design of a Low-Cost Broadband Wide-Beamwidth Crossed-Dipole Antenna for Multi-Global Navigational Satellite System Positioning
by Songyuan Xu, Jiwon Heo, Won Seok Choi, Seong-Gon Choi and Bierng-Chearl Ahn
Sensors 2025, 25(15), 4665; https://doi.org/10.3390/s25154665 - 28 Jul 2025
Viewed by 219
Abstract
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio [...] Read more.
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio beamwidth. The design is carried out using CST Studio Suite for a single dipole antenna followed by a crossed-dipole antenna, a feed network, and the entire antenna structure. The designed multi-GNSS antenna shows, at 1.16–1.61 GHz, a reflection coefficient of less than −17 dB, a zenith gain of 3.9–5.8 dBic, a horizontal gain of −3.3 to −0.2 dBic, a zenith axial ratio of 0.6–1.0 dB, and horizontal axial ratio of 0.4–5.9 dB. The proposed antenna has a dimension of 0.48 × 0.48 × 0.25 λ at the center frequency of 1.39 GHz. The proposed antenna can also operate as an LHCP antenna for L-band satellite phone communication at 1.525–1.661 GHz. Full article
Show Figures

Figure 1

14 pages, 3371 KiB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 193
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

19 pages, 5777 KiB  
Article
Considering a mm-Wave Front-End Receiver and Quadrature Down-Converter for 18–40 GHz with Low Noise Figure and High Gain for an ESM System
by Yuseok Jeon and Hyunkyu Kim
Electronics 2025, 14(14), 2803; https://doi.org/10.3390/electronics14142803 - 11 Jul 2025
Viewed by 237
Abstract
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four [...] Read more.
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four units in the system. Each FEM has four channels with the same path, while the quadrature millimeter down-converter (QMDC) needs to have a converting function that uses a broadband mixer. The FEM includes the ability to provide built-in test (BIT) path functionality to the antenna ports prior to system field installation. Each path of the QMDC requires the consideration of several factors, such as down-converting, broadband gain flatness, and high isolation. As this is an RF module requiring high frequency and wideband characteristics, it is necessary to identify risk factors in advance within a predictable range. Accordingly, the blind-mate A (BMA) connector connection method, the phase-alignment test method in the down-conversion structure, and the LO signal, IF path inflow-blocking method were analyzed and designed. Full article
Show Figures

Figure 1

21 pages, 4628 KiB  
Article
Design and Performance Evaluation of a Sub-6 GHz Multi-Port Coupled Antenna for 5G NR Mobile Applications
by Cheol Yoon, Yunsub Lee, Wonmo Seong and Woosu Kim
Appl. Sci. 2025, 15(14), 7804; https://doi.org/10.3390/app15147804 - 11 Jul 2025
Viewed by 299
Abstract
This paper describes a compact multi-port sub-6 GHz multiple-input multiple-output (MIMO) antenna system tailored for 5G NR mobile terminals operating in the n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz) frequency bands. The proposed design leverages a shared coupling approach that [...] Read more.
This paper describes a compact multi-port sub-6 GHz multiple-input multiple-output (MIMO) antenna system tailored for 5G NR mobile terminals operating in the n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz) frequency bands. The proposed design leverages a shared coupling approach that exploits the smartphone metal frame as the radiating element, facilitating efficient integration within the spatial constraints of modern mobile devices. A two-stage method is used to mitigate the mutual coupling and correlation issues typically encountered when designing compact MIMO configurations. Initially, a four-port structure is used to evaluate broadband impedance and spatial feasibility. Based on the observed limitations in terms of isolation and the envelope correlation coefficient (ECC), the final configuration was reconfigured as an optimized two-port layout with a refined coupling geometry and effective current path control. The fabricated two-port prototype exhibited a measured voltage standing wave ratio below 3:1 across the n78 band on both ports, with the isolation levels attaining –12.4 dB and ECCs below 0.12. The radiation efficiency exceeded −6 dB across the operational band, and the radiation patterns were stable at 3.3, 3.5, and 3.8 GHz, confirming that the system was appropriate for MIMO deployment. The antenna supports asymmetric per-port efficiency targets ranging from −4.5 to −10 dB. These are the realistic layout constraints of commercial smartphones. In summary, this study shows that a metal frame integrated two-port MIMO antenna enables wideband sub-6 GHz operation by meeting the key impedance and system-level performance requirements. Our method can be used to develop a scalable platform assisting future multi-band antenna integration in mass-market 5G smartphones. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

16 pages, 5068 KiB  
Technical Note
VGOS Dual Linear Polarization Data Processing Techniques Applied to Differential Observation of Satellites
by Jiangying Gan, Fengchun Shu, Xuan He, Yidan Huang, Fengxian Tong and Yan Sun
Remote Sens. 2025, 17(13), 2319; https://doi.org/10.3390/rs17132319 - 7 Jul 2025
Viewed by 278
Abstract
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio [...] Read more.
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio source observation regularly. However, these VGOS stations have not yet been used to observe Earth satellites or deep-space probes. In addition, suitable systems for processing VGOS satellite data are unavailable. In this study, we explored a data processing pipeline and method suitable for VGOS data observed in the dual linear polarization mode and applied to the differential observation of satellites. We present the VGOS observations of the Chang’e 5 lunar orbiter as a pilot experiment for VGOS observations of Earth satellites to verify our processing pipeline. The interferometric fringes were obtained by the cross-correlation of Chang’e 5 lunar orbiter signals. The data analysis yielded a median delay precision of 0.16 ns with 30 s single-channel integration and a baseline closure delay standard deviation of 0.14 ns. The developed data processing pipeline can serve as a foundation for future Earth-orbiting satellite observations, potentially supporting space-tie satellite missions aimed at constructing the terrestrial reference frame (TRF). Full article
(This article belongs to the Special Issue Space Geodesy and Time Transfer: From Satellite to Science)
Show Figures

Figure 1

20 pages, 1633 KiB  
Article
A Digital Simulation Model of Broadband Phased Array RF System and Its Application
by Jia Ding, Huaizong Shao, Jianxing Lv and Fake Ding
Sensors 2025, 25(13), 4133; https://doi.org/10.3390/s25134133 - 2 Jul 2025
Viewed by 312
Abstract
The design and application of broadband phased array RF links is a complex and highly precise endeavor. To achieve optimal performance, it is essential to compare and validate multiple schemes during the system design phase. Utilizing simulation models to simulate system structures and [...] Read more.
The design and application of broadband phased array RF links is a complex and highly precise endeavor. To achieve optimal performance, it is essential to compare and validate multiple schemes during the system design phase. Utilizing simulation models to simulate system structures and validate parameters can effectively reduce research and development time and costs. This article takes the broadband phased array RF system (RFS04) currently being developed by Nanhu Laboratory as a reference and constructs a behavioral-level signal simulation model. Through this model, the antenna pattern of RFS04 was generated, and the relationship between beam pointing accuracy and delay quantization bit number was analyzed. The 3 dB beam coverage range of the 18 GHz antenna array was calculated, and the synthesis scheme of multi-phased arrays was explored. Additionally, the correspondence between the angle measurement accuracy and signal-to-noise ratio of the RFS04 system was analyzed. This article also measured the delay module parameters of the RF system and developed a correction strategy for the delay control scheme. Through simulation calculations and laboratory testing, it has been proven that this strategy can effectively improve delay accuracy. After applying the modified delay control scheme to the RFS04 simulation model, the beam pointing accuracy during phased array antenna scanning was significantly enhanced. The model research and integrated simulation software construction of the broadband phased array RF system provide an efficient and accurate simulation tool for system design and optimization. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 25204 KiB  
Article
An Improved NSGA-II Algorithm for Multi-Objective Optimization of Irregular Polygon Patch Antennas
by Zhenyang Ma and Jiahao Liu
Micromachines 2025, 16(7), 786; https://doi.org/10.3390/mi16070786 - 30 Jun 2025
Viewed by 441
Abstract
This paper presents an improved NSGA-II algorithm for the multi-objective optimization of irregular polygon patch antennas (IPPAs), improving convergence efficiency and Pareto front quality. The algorithm integrates adaptive mechanisms that dynamically adjust crossover and mutation rates based on generational progression, accelerating convergence while [...] Read more.
This paper presents an improved NSGA-II algorithm for the multi-objective optimization of irregular polygon patch antennas (IPPAs), improving convergence efficiency and Pareto front quality. The algorithm integrates adaptive mechanisms that dynamically adjust crossover and mutation rates based on generational progression, accelerating convergence while preserving solution diversity. Furthermore, a simulated annealing-inspired acceptance criterion is embedded during offspring generation to mitigate local optima trapping and enhance evolutionary robustness. A dual-objective formulation simultaneously minimizes antenna volume and maximizes operational bandwidth within the X-band. Optimization is executed via HFSS co-simulation, with detailed electromagnetic models ensuring physical realizability and design fidelity. The optimized antenna achieves a compact volume of 2807.6 mm3 and an operational bandwidth of 2.7 GHz. Experimental validation of fabricated prototypes demonstrates agreement with simulations, confirming the accuracy and reliability of the proposed method. These results demonstrate the effectiveness of the improved NSGA-II algorithm in addressing complex multi-objective design challenges and underscore its potential in advanced broadband antenna applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 4379 KiB  
Article
A Broadband Millimeter-Wave Circularly Polarized Folded Reflectarray Antenna Based on Transmissive Linear-to-Circular Polarization Converter
by Yue Cao, Zhuwei Wang, Qing Wang, Mingzhu Du and Miaojuan Zhang
Micromachines 2025, 16(6), 711; https://doi.org/10.3390/mi16060711 - 14 Jun 2025
Viewed by 479
Abstract
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface [...] Read more.
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface and a transmissive linear-to-circular polarization converter on the sub-reflector surface are applied. Moreover, the transmissive linear-to-circular polarization converter on the sub-reflector surface helps convert linear polarization to circular polarization. To verify the proposed CPFRA, a prototype is designed, fabricated, and tested. The measured results exhibit that the proposed CPFRA presents a 3 dB gain bandwidth of 27.4% and a 3 dB axial ratio bandwidth of 23%. The CPFRA achieves a peak gain of 21.2 dBi with an aperture efficiency of 27.2%. The proposed CPFRA is a promising candidate for millimeter-wave (mm-W) satellite communication applications because of its advantages of high gain, low cost, low profile, and broad bandwidth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

42 pages, 9998 KiB  
Review
Routing Challenges and Enabling Technologies for 6G–Satellite Network Integration: Toward Seamless Global Connectivity
by Fatma Aktas, Ibraheem Shayea, Mustafa Ergen, Laura Aldasheva, Bilal Saoud, Akhmet Tussupov, Didar Yedilkhan and Saule Amanzholova
Technologies 2025, 13(6), 245; https://doi.org/10.3390/technologies13060245 - 12 Jun 2025
Viewed by 2047
Abstract
The capabilities of 6G networks surpass those of existing networks, aiming to enable seamless connectivity between all entities and users at any given time. A critical aspect of achieving enhanced and ubiquitous mobile broadband, as promised by 6G networks, is merging satellite networks [...] Read more.
The capabilities of 6G networks surpass those of existing networks, aiming to enable seamless connectivity between all entities and users at any given time. A critical aspect of achieving enhanced and ubiquitous mobile broadband, as promised by 6G networks, is merging satellite networks with land-based networks, which offers significant potential in terms of coverage area. Advanced routing techniques in next-generation network technologies, particularly when incorporating terrestrial and non-terrestrial networks, are essential for optimizing network efficiency and delivering promised services. However, the dynamic nature of the network, the heterogeneity and complexity of next-generation networks, and the relative distance and mobility of satellite networks all present challenges that traditional routing protocols struggle to address. This paper provides an in-depth analysis of 6G networks, addressing key enablers, technologies, commitments, satellite networks, and routing techniques in the context of 6G and satellite network integration. To ensure 6G fulfills its promises, the paper emphasizes necessary scenarios and investigates potential bottlenecks in routing techniques. Additionally, it explores satellite networks and identifies routing challenges within these systems. The paper highlights routing issues that may arise in the integration of 6G and satellite networks and offers a comprehensive examination of essential approaches, technologies, and visions required for future advancements in this area. 6G and satellite networks are associated with technical terms such as AI/ML, quantum computing, THz communication, beamforming, MIMO technology, ultra-wide band and multi-band antennas, hybrid channel models, and quantum encryption methods. These technologies will be utilized to enhance the performance, security, and sustainability of future networks. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

17 pages, 9212 KiB  
Article
Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors
by Adam Rämer, Edoardo Negri, Eugen Dischke, Serguei Chevtchenko, Hossein Yazdani, Lars Schellhase, Viktor Krozer and Wolfgang Heinrich
Sensors 2025, 25(11), 3539; https://doi.org/10.3390/s25113539 - 4 Jun 2025
Viewed by 458
Abstract
We present THz direct detectors based on an AlGaN/GaN high electron mobility transistor (HEMT), featuring excellent optical sensitivity and low noise-equivalent power (NEP). These detectors are monolithically integrated with various antenna designs and exhibit state-of-the-art performance at room temperature. Their architecture enables straightforward [...] Read more.
We present THz direct detectors based on an AlGaN/GaN high electron mobility transistor (HEMT), featuring excellent optical sensitivity and low noise-equivalent power (NEP). These detectors are monolithically integrated with various antenna designs and exhibit state-of-the-art performance at room temperature. Their architecture enables straightforward scaling to two-dimensional formats, paving the way for terahertz focal plane arrays (FPAs). In particular, for one detector type, a fully realized THz FPA has been demonstrated in this paper. Theoretical and experimental characterizations are provided for both single-pixel detectors (0.1–1.5 THz) and the FPA (0.1–1.1 THz). The broadband single detectors achieve optical sensitivities exceeding 20 mA/W up to 1 THz and NEP values below 100 pW/Hz. The best optical NEP is below 10 pW/Hz at 175 GHz. The reported sensitivity and NEP values were achieved including antenna and optical coupling losses, underlining the excellent overall performance of the detectors. Full article
Show Figures

Figure 1

20 pages, 6649 KiB  
Article
Ultra-Broadband Wearable Antenna with Thermal Sensitivity Based on Surface-Modified TiO2-PTFE-PDMS Nanocomposites
by Baoli Mi, Qingya Meng, Junping Duan, Bowen Su, Ma Jian, Yangyi Shi and Binzhen Zhang
Micromachines 2025, 16(6), 629; https://doi.org/10.3390/mi16060629 - 27 May 2025
Viewed by 466
Abstract
In this study, a composite substrate with adjustable dielectric properties was prepared, and its promising application in wearable medical device antennas was demonstrated. 3-Methacryloxypropyltrimethoxysilane (KH570) was used to modify titanium dioxide (TiO2) nano-powder, and the modified powder was blended with a [...] Read more.
In this study, a composite substrate with adjustable dielectric properties was prepared, and its promising application in wearable medical device antennas was demonstrated. 3-Methacryloxypropyltrimethoxysilane (KH570) was used to modify titanium dioxide (TiO2) nano-powder, and the modified powder was blended with a mixture of polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE) under the action of anhydrous ethanol. The resulting polymer material had the advantages of hydrophobicity, softness, low loss, and a high dielectric constant. Meanwhile, the effects of the KH570 mass fraction on the microstructure and dielectric properties of TiO2-PTFE-PDMS composites were investigated, and the results showed that when the mass fraction was 5%, the composites exhibited better dielectric properties in the range of 2–12 GHz. Finally, an ultra-wideband antenna with an operating frequency band in the range of 2.37–11.66 GHz was prepared based on this composite substrate. The antenna demonstrated significant potential for future applications in detecting environmental thermal changes due to its special temperature-sensitive linear frequency shift characteristics, and its effect on the human body under bending conditions was studied. In addition, specific absorption rate (SAR) measurements were performed to assess the effects of antenna radiation on the human body in practical applications. Full article
(This article belongs to the Special Issue Flexible Intelligent Sensors: Design, Fabrication and Applications)
Show Figures

Figure 1

14 pages, 5299 KiB  
Article
Multi-Frequency Solar Rectenna Design for Hybrid Radio Frequency–Solar Energy Harvester
by Xue Luo, Ping Lu, Ce Wang and Kama Huang
Energies 2025, 18(9), 2372; https://doi.org/10.3390/en18092372 - 6 May 2025
Viewed by 431
Abstract
This paper put forward a hybrid energy harvester for collecting RF and solar energy in quad-band (GSM-900/1800, ISM-2400 and WiMAX-3500). By introducing diverse parasitic structures, good impedance matching with unidirectional radiation is achieved in the multi-band. Below the solar antenna, a low-power rectifier [...] Read more.
This paper put forward a hybrid energy harvester for collecting RF and solar energy in quad-band (GSM-900/1800, ISM-2400 and WiMAX-3500). By introducing diverse parasitic structures, good impedance matching with unidirectional radiation is achieved in the multi-band. Below the solar antenna, a low-power rectifier circuit is employed to achieve broadband rectification. Under the input power of 0 dBm, and maximum RF-DC conversion efficiency of 56.94% is realized. Accordingly, the hybrid energy harvester collects RF and solar energy individually or simultaneously, and then converts it into DC for power supply. With a light intensity of 1500 lux, the solar cell obtains 1.732 mW, and the rectenna can harvest additional 0.37–0.405 mW power. The proposed RF–Solar energy harvester has the advantages of multi-frequency operation, high gain, and high energy harvesting conversion efficiency. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

13 pages, 3748 KiB  
Article
Compact, Broadband, and High-Gain Four-Port MIMO Antenna for Future Millimeter Wave Applications
by Esraa Mousa Ali, Shine Let Gunamony, Mohamad A. Alawad and Turki Essa Alharbi
Micromachines 2025, 16(5), 558; https://doi.org/10.3390/mi16050558 - 3 May 2025
Viewed by 598
Abstract
A wideband antenna with a relatively compact size along with a multiple input and multiple output (MIMO) configuration for millimeter wave applications is proposed in this work. The antenna offers a low profile and simple structure. First of all, an antenna is designed [...] Read more.
A wideband antenna with a relatively compact size along with a multiple input and multiple output (MIMO) configuration for millimeter wave applications is proposed in this work. The antenna offers a low profile and simple structure. First of all, an antenna is designed using Rogers RT/duroid 6002 (Rogers Corporation, Chandler, AZ, USA) with a thickness of 0.79 mm, offering wideband ranges from 21 to 35 GHz. Subsequently, the unit element is converted into a four-port MIMO antenna to improve the capacity of the system, resulting in a high data rate, which is critical for 5G as well as for devices operating in the mm wave spectrum. The proposed work exhibits total dimensions of 24 × 24 mm2 and offers a peak gain of 8.5 dBi, with an efficiency of more than 80%. The MIMO performance parameters are also studied, and the antenna offers exceptional performance in terms of mutual coupling (Sij) without inserting a decoupling structure, envelop correlation coefficient (ECC), and diversity parameters. The proposed MIMO antenna offers a minimum isolation of −25 dBi and an ECC of less than 0.018. All the other MIMO parameter values lie below the acceptable range. The High Frequency Structure Simulator (HFSS) EM software (v.19) tool is used to analyze the antenna and study its performance. The simulated outcomes are verified by fabricating a prototype, where the result offers a good comparison among both results. Moreover, the contrast in terms of different performance parameters is carried out amongst recent research articles, highlighting the key contribution of the presented design. A compact size antenna with a wideband, simplified structure, and stable performance throughout the working band is achieved; thus, it is a solid contender for mm wave applications and 5G devices. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

Back to TopTop