Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,168)

Search Parameters:
Keywords = breeding values

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5599 KiB  
Article
Molecular Elucidation of Anthocyanin Accumulation Mechanisms in Hippeastrum hybridum Cultivars
by Pengyu Guo, Chuanji Xing, Jiacheng Ye, Jing Xue, Luis A. J. Mur, Bao Di, Zongli Hu, Guoping Chen, Xiuhai Zhang and Xuqing Chen
Agronomy 2025, 15(7), 1722; https://doi.org/10.3390/agronomy15071722 (registering DOI) - 17 Jul 2025
Abstract
Hippeastrum, a perennial herbaceous plant belonging to the Amaryllidaceae family, is widely cultivated for its large, vibrant flowers with diverse petal colors, which have significant ornamental and economic value. However, the mechanisms underlying anthocyanin accumulation in Hippeastrum petals remain poorly understood. To [...] Read more.
Hippeastrum, a perennial herbaceous plant belonging to the Amaryllidaceae family, is widely cultivated for its large, vibrant flowers with diverse petal colors, which have significant ornamental and economic value. However, the mechanisms underlying anthocyanin accumulation in Hippeastrum petals remain poorly understood. To fully explore the involved regulation mechanism was significant for the breeding of Hippeastrum and other Amaryllidaceae family plants. In this study, we selected six Hippeastrum cultivars with distinctly different petal colors. We used metabolomic profiling and high-throughput transcriptomic sequencing to assess varied anthocyanin profiles and associated expression of genes in their biosynthetic pathways. Four key anthocyanins were identified: cyanidin, cyanidin-3-O-rutinoside, delphinidin-3-glucoside, and delphinidin-3-rutinoside. Weighted gene co-expression network analysis (WGCNA) correlated the abundance of these four anthocyanins with transcriptomic data, to suggest three regulatory modules. Nine transcription factors families in these modules were identified and some of them were validated using qRT-PCR. Y2H assay isolated some transcription factors interacted with TTG1 (WD40 protein), including MYB3/39/44/306 and bHLH13/34/110, illustrating the possibility of forming MBW complexes. Our study provides a comprehensive characterization of anthocyanin composition. These findings laid a theoretical foundation for future research on the regulatory mechanisms of pigment accumulation and the breeding of Hippeastrum cultivars with novel petal colors. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

17 pages, 5077 KiB  
Article
Genomic Features and Tissue Expression Profiles of the Tyrosinase Gene Family in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis)
by Yanchao Liu, Pan Liu, Tong Ren, Yang Gao, Ziman Wang, Junxian Zhu, Chen Chen, Liqin Ji, Xiaoyou Hong, Xiaoli Liu, Chengqing Wei, Xinping Zhu, Zhangjie Chu and Wei Li
Genes 2025, 16(7), 834; https://doi.org/10.3390/genes16070834 - 17 Jul 2025
Abstract
In farmed animals, body color is not only an ecological trait but also an important trait that influences the commercial value of the animals. Melanin plays an important role in the formation of body color in animals, while the tyrosinase (TYR) gene family is [...] Read more.
In farmed animals, body color is not only an ecological trait but also an important trait that influences the commercial value of the animals. Melanin plays an important role in the formation of body color in animals, while the tyrosinase (TYR) gene family is a group of key enzymes that regulate melanogenesis. The Chinese soft-shelled turtle (Pelodiscus sinensis) is one of the most important reptiles in freshwater aquaculture. However, the potential role of the TYR gene family in the body color formation of P. sinensis remains unclear. This study aimed to investigate the expression and conservation of the TYR gene family in relation to body color variation in P. sinensis. Three core members of this gene family were identified from the P. sinensis genome. Following identification, the genomic features were analyzed. They shared similar physicochemical properties and conserved domains. Chromosome mapping showed that the three genes of P. sinensis were all located on the autosomes, while phylogenetic and collinearity analysis suggested that the protein functions of the three genes in the studied species were highly conserved. Amino acid sequence alignment indicated high conservation among the three TYR gene family proteins (TYR, TYRP1, and DCT) in multiple critical regions, particularly in their hydrophobic N-/C-terminal regions and cysteine/histidine-rich conserved domains. The qRT-PCR revealed that the TYR and DCT genes were highly expressed in the eyes of individuals with different body colors. The expression levels of TYR and TYRP1 genes in the skin were significantly higher in dark-colored individuals than in light-colored ones (p < 0.05). These results will lay the groundwork for functional studies and breeding programs targeting color traits in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1759 KiB  
Article
Integrated Analysis of Phenotypic, Physiological, and Biochemical Traits in Betula platyphylla Sukaczev Under Cold Stress Conditions
by Faujiah Nurhasanah Ritonga, Syamsudin Ahmad Slamet, Laswi Irmayanti, Nelly Anna, Pebriandi and Su Chen
Forests 2025, 16(7), 1176; https://doi.org/10.3390/f16071176 - 16 Jul 2025
Abstract
Betula platyphylla Sukaczev (white birch) is a cold-tolerant tree species native to northeastern Asia, valued for its ecological adaptability and economic utility. While its responses to various abiotic stresses have been studied, the physiological and biochemical mechanisms underlying its cold stress tolerance remain [...] Read more.
Betula platyphylla Sukaczev (white birch) is a cold-tolerant tree species native to northeastern Asia, valued for its ecological adaptability and economic utility. While its responses to various abiotic stresses have been studied, the physiological and biochemical mechanisms underlying its cold stress tolerance remain insufficiently explored. In this study, we investigated the effects of prolonged cold exposure (6 °C for up to 27 days) on key physiological and biochemical traits of B. platyphylla seedlings, including plant height, chlorophyll content, electrolyte leakage (EL), malondialdehyde (MDA), proline levels, and antioxidant enzyme activities (SOD, CAT, POD). Cold stress resulted in visible phenotypic changes, reduced growth, and significant declines in chlorophyll content, suggesting inhibited photosynthesis. EL and MDA levels increased with exposure duration, indicating progressive membrane damage and oxidative stress. In response, antioxidant enzyme activities and proline accumulation were significantly enhanced, reflecting a coordinated defense strategy. Correlation analyses further revealed strong associations among antioxidant enzymes, MDA, proline, and EL under cold stress. These findings advance our understanding of the adaptive responses of B. platyphylla to low-temperature stress and provide a physiological and biochemical basis for future breeding programs aimed at improving cold tolerance. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

18 pages, 10798 KiB  
Article
Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance
by Xiaoxue Zhang, Liming Zhao, Huibin Tian, Zongwu Ma, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaobin Yang, Xiaolong Li, Weiwei Wu, Fadi Li and Weimin Wang
Foods 2025, 14(14), 2477; https://doi.org/10.3390/foods14142477 - 15 Jul 2025
Viewed by 65
Abstract
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the [...] Read more.
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the molecular mechanisms underlying meat quality differences in Hu sheep with high (HHS, n = 10) and low (LHS, n = 10) carcass performance. Phenotypic analysis revealed that the HHS group exhibited superior meat quality traits, including higher intramuscular fat (IMF) content (reflected in elevated marbling scores), along with lower shear force, drip loss, and cooking loss, compared to the LHS group. Transcriptomic analysis identified 376 differentially expressed genes (DEGs) enriched in pathways linked to lipid metabolism, such as the PPAR signaling pathway and long-chain fatty acid metabolic process. Weighted gene co-expression network analysis (WGCNA) revealed important modules and key genes (e.g., ELOVL6, PLIN1, and ARHGEF2) associated with meat quality traits. Metabolomic profiling identified 132 differentially accumulated metabolites (DAMs), with significant enrichment in amino acid metabolism pathways, including D-amino acid metabolism, arginine biosynthesis, and glycine, serine, and threonine metabolism. Integrative analysis of transcriptomic and metabolomic data highlighted six co-enriched pathways, such as the mTOR signaling pathway and amino acid metabolism, underscoring their role in regulating meat quality. These findings provide valuable insights into the genetic and metabolic networks driving meat quality variation and offer potential biomarkers for genetic selection and nutritional strategies to enhance both carcass yield and eating quality in Hu sheep. This research enhances knowledge of the molecular basis of meat quality and supports precision breeding in livestock production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 941 KiB  
Article
Residents’ Perceptions of Informal Green Spaces in High-Density Cities: Urban Land Governance Implications from Taipei
by Chen-Yi Sun, Tzu-Pei Chiang and Ya-Wen Wu
Land 2025, 14(7), 1466; https://doi.org/10.3390/land14071466 - 15 Jul 2025
Viewed by 116
Abstract
In high-density and land-scarce urban environments such as Taipei—a typical example of compact development in East Asia—informal green spaces (IGSs)—defined as unmanaged or unplanned vegetated urban areas such as vacant lots, street verges, and railway margins—play a growing role in urban environmental and [...] Read more.
In high-density and land-scarce urban environments such as Taipei—a typical example of compact development in East Asia—informal green spaces (IGSs)—defined as unmanaged or unplanned vegetated urban areas such as vacant lots, street verges, and railway margins—play a growing role in urban environmental and social dynamics. This study explores residents’ perceptions of IGSs and examines how these spaces contribute to urban sustainability and land governance. Using a mixed-methods approach that combines the literature review, field observations, and a structured public opinion survey in Taipei’s Wenshan District, the study identifies key perceived benefits and drawbacks of IGSs. Findings show that residents highly value IGSs for enhancing urban greenery, offering recreational opportunities, and promoting physical and mental health. However, concerns persist regarding safety, sanitation, and maintenance—particularly fears of waste accumulation, mosquito breeding, and risks to children. The results highlight the dual nature of IGSs as both vital ecological assets and potential sources of urban disorder. These insights underscore the need for inclusive, community-based governance models that can transform IGSs into legitimate components of green infrastructure. The study contributes to emerging discussions on adaptive urban land governance by proposing that informal spaces be strategically integrated into urban planning frameworks to enhance environmental equity, resilience, and citizen well-being. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

21 pages, 3563 KiB  
Article
Research on the Hormonomics of Three Lilium Species and Their Flavonoid Diversification and Specificity
by Xuanyu He, Jie Fang, Biwei Hong, Xueying Zhang, Linying Li, Yuqing He, Chaomin Chen, Shuang Liang, Zelong Xu, Chunlan Peng, Jirong Huang, Gaojie Hong and Qundan Lv
Antioxidants 2025, 14(7), 862; https://doi.org/10.3390/antiox14070862 - 14 Jul 2025
Viewed by 128
Abstract
Hormonomics represents an innovative approach to plant physiology and biochemistry. We utilized hormonomics to analyze the hormone profiles of three lily bulbs. The hormones specifically enriched in BiFeng7 lily show a strong response to secondary metabolism pathways, while the Diwanghuang lily profile was [...] Read more.
Hormonomics represents an innovative approach to plant physiology and biochemistry. We utilized hormonomics to analyze the hormone profiles of three lily bulbs. The hormones specifically enriched in BiFeng7 lily show a strong response to secondary metabolism pathways, while the Diwanghuang lily profile was predominantly focused on growth. Physiological experiments demonstrated that Diwanghuang exhibited higher levels of primary nutrients, whereas BiFeng7 displayed a greater concentration of secondary metabolites and enhanced antioxidant capacity. Through untargeted metabolomic analysis, it was revealed that BiFeng7 highly enriched four flavonoid glycosides, two flavones, one flavan, one pyranoflavonoid, two isoflavonoid O-glycosides and one rotenoid. These findings provide valuable information for developing breeding strategies and cultivation practices aimed at achieving ornamental quality, nutritional value, or stress resilience outcomes. This research demonstrates the practical application of hormone profiling in plant evaluation and offers insights into the mechanisms underlying flavonoid synthesis in lilies, serving as a reference for breeding stress-resistant lily varieties. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

14 pages, 1100 KiB  
Article
Estimation of Genetic Parameters for Carcass and Meat Quality Traits Using Genomic Information in Yorkshire Pigs
by Yangxun Zheng, Fuping Ma, Xitong Zhao, Yanling Liu, Quan Zou, Huatao Liu, Shujuan Li, Zipeng Zhang, Sen Yang, Kai Xing, Chuduan Wang and Xiangdong Ding
Animals 2025, 15(14), 2075; https://doi.org/10.3390/ani15142075 - 14 Jul 2025
Viewed by 119
Abstract
Carcass and meat quality traits are critical in pig breeding and production. Estimating genetic parameters for these traits is a vital aspect of breeding engineering, as accurate genetic parameters are essential for estimating breeding values, predicting genetic progress, and optimizing breeding programs. This [...] Read more.
Carcass and meat quality traits are critical in pig breeding and production. Estimating genetic parameters for these traits is a vital aspect of breeding engineering, as accurate genetic parameters are essential for estimating breeding values, predicting genetic progress, and optimizing breeding programs. This study was conducted on a population of 461 Yorkshire pigs from the same breeding farm, which were slaughtered to assess nine carcass traits and seven meat quality traits, followed by descriptive statistical analysis. Additionally, we estimated the genetic parameters of these traits using genomic information based on 50K chip data. The results indicated that sex significantly affected most carcass and meat quality traits. Carcass traits including carcass length indicators (h2 = mean 0.35), backfat thickness indicators (h2 = mean 0.36), eye muscle area (h2 = 0.28), and the number of rib pairs (h2 = 0.28) exhibited medium to high heritability. Carcass length indicators showed high genetic correlations with backfat thickness indicators (r = mean −0.49) and the number of rib pairs (r = mean 0.63), while high negative genetic correlation (r = −0.72) was noted between eye muscle area and the number of rib pairs. Meat quality traits also displayed medium to high heritability, expect for pH value measured within one hour post-slaughter (h2 = 0.12). Drip loss indicators had higher genetic correlations with pH (r = mean −0.73) than with meat color indicators (r = mean 0.22). These findings may provide a theoretical reference for genetic evaluation and breeding in the Yorkshire pig population. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
Comprehensive Analysis of the Complete Mitochondrial Genome of Paeonia ludlowii Reveals a Dual-Circular Structure and Extensive Inter-Organellar Gene Transfer
by Zhefei Zeng, Zhengyan Zhang, Ngawang Norbu, Ngawang Bonjor, Xin Tan, Shutong Zhang, Norzin Tso, Junwei Wang and La Qiong
Biology 2025, 14(7), 854; https://doi.org/10.3390/biology14070854 - 14 Jul 2025
Viewed by 109
Abstract
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first [...] Read more.
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first complete assembly and comprehensive analysis of the P. ludlowii mitochondrial genome. Most remarkably, we discovered that the P. ludlowii mitogenome exhibits an atypical dual-circular structure, representing the first documented occurrence of this architectural feature within the genus Paeonia. The assembled genome spans 314,371 bp and encodes 42 tRNA genes, 3 rRNA genes, and 31 protein-coding genes, with a pronounced adenine–thymine bias. This multipartite genome structure is characterized by abundant repetitive elements (112 functionally annotated SSRs, 33 tandem repeats, and 945 dispersed repeats), which potentially drive genome rearrangements and facilitate adaptive evolution. Analyses of codon usage bias and nucleotide diversity revealed highly conserved gene expression regulation with limited variability. Phylogenetic reconstruction confirms that P. ludlowii, P. suffruticosa, and P. lactiflora form a monophyletic clade, reflecting close evolutionary relationships, while extensive syntenic collinearity with other Paeonia species underscores mitochondrial genome conservation at the genus level. Extensive inter-organellar gene transfer events, particularly from chloroplast to mitochondrion, suggest that such DNA exchanges enhance genetic diversity and promote environmental adaptation. The discovery of the dual-circular architecture provides novel insights into plant mitochondrial genome evolution and structural plasticity. This study elucidates the unique structural characteristics of the P. ludlowii mitochondrial genome and establishes a crucial genetic foundation for developing targeted conservation strategies and facilitating molecular-assisted breeding programs for this endangered species. Full article
Show Figures

Figure 1

17 pages, 3544 KiB  
Article
Assembly and Analysis of the Mitochondrial Genome of Hippophae rhamnoides subsp. sinensis, an Important Ecological and Economic Forest Tree Species in China
by Jie Li, Song-Song Lu, Yang Bi, Yu-Mei Jiang, Li-Dan Feng and Jing He
Plants 2025, 14(14), 2170; https://doi.org/10.3390/plants14142170 - 14 Jul 2025
Viewed by 177
Abstract
Hippophae rhamnoides subsp. sinensis is extensively found in China, where the annual precipitation ranges from 400 to 800 mm. It is the most dominant species in natural sea buckthorn forests and the primary cultivar for artificial ecological plantations. Additionally, it exhibits significant nutritional [...] Read more.
Hippophae rhamnoides subsp. sinensis is extensively found in China, where the annual precipitation ranges from 400 to 800 mm. It is the most dominant species in natural sea buckthorn forests and the primary cultivar for artificial ecological plantations. Additionally, it exhibits significant nutritional and medicinal value, making it a renowned eco-economic tree species. Despite extensive research into its ecological functions and health benefits, the mitochondrial genome of this widespread species has not yet been published, and knowledge of the mitochondrial genome is crucial for understanding plant environmental adaptation, evolution, and maternal inheritance. Therefore, the complete mitochondrial genome was successfully assembled by aligning third-generation sequencing data to the reference genome sequence using the Illumina NovaSeq 6000 platform and Nanopore Prometh ION technologies. Additionally, the gene structure, composition, repeat sequences, codon usage bias, homologous fragments, and phylogeny-related indicators were also analyzed. The results showed that the length of the mitochondrial genome is 454,489 bp, containing 30 tRNA genes, three rRNA genes, 40 PCGs, and two pseudogenes. A total of 411 C-to-U RNA editing sites were identified in 33 protein-coding genes (PCGs), with higher frequencies observed in ccmFn, ccmB, nad5, ccmC, nad2, and nad7 genes. Moreover, 31 chloroplast-derived fragments were detected, accounting for 11.86% of the mitochondrial genome length. The ccmB, nad4L, and nad7 genes related to energy metabolism exhibited positive selection pressure. The mitochondrial genome sequence similarity between H. rhamnoides subsp. sinensis and H. tibetana or H. salicifolia was 99.34% and 99.40%, respectively. Fifteen shared gene clusters were identified between H. rhamnoides subsp. sinensis and H. tibetana. Phylogenetically, the Rosales order showed close relationships with Fagales, Fabales, Malpighiales, and Celastrales. These findings provide fundamental data for exploring the widespread distribution of H. rhamnoides subsp. sinensis and offer theoretical support for understanding the evolutionary mechanisms within the Hippophae genus and the selection of molecular breeding targets. Full article
(This article belongs to the Special Issue Molecular Biology and Bioinformatics of Forest Trees—2nd Edition)
Show Figures

Figure 1

22 pages, 2129 KiB  
Review
Recent Advances in In Vitro Floral Induction in Tropical Orchids: Progress and Prospects in Vanilla Species
by Obdulia Baltazar-Bernal and José Luis Spinoso-Castillo
Horticulturae 2025, 11(7), 829; https://doi.org/10.3390/horticulturae11070829 - 12 Jul 2025
Viewed by 261
Abstract
Orchids and other flowering plants offer a wide range of floral traits. Within the Orchidaceae family, the Vanilla genus is one of the most valued plants in the commercial flavor industry. In vitro biotechnological approaches to Vanilla, such as germplasm conservation, massive [...] Read more.
Orchids and other flowering plants offer a wide range of floral traits. Within the Orchidaceae family, the Vanilla genus is one of the most valued plants in the commercial flavor industry. In vitro biotechnological approaches to Vanilla, such as germplasm conservation, massive propagation, and genetic engineering, have played a key role in breeding programs. There are, however, few studies that elucidate the physiological, molecular, and genetic aspects of vanilla orchid flowering and in vitro induction. This review’s main objective is to provide updated and complete data on in vitro floral induction and flowering of tropical and vanilla orchid species. A bibliographic search was carried out for scientific reports in academic databases (Scopus, Web of Science, PubMed, and ScienceDirect), and a total of 39 documents from 2014 and 2025 were analyzed. This review discusses the most important factors that affect in vitro flowering in Vanilla, including the monopodial genotypes, photoperiod, irradiance, temperature, nutrition, plant growth regulators, explant types, and culture methods. Consequently, this revision incorporates a number of studies on orchid in vitro flowering, with a focus on vanilla species. In conclusion, there still exists limited progress in Vanilla compared to other orchid species; however, the use of biotechnological techniques like in vitro flowering offers a fundamental framework for orchid breeding. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

18 pages, 3983 KiB  
Article
Prediction of Mature Body Weight of Indigenous Camel (Camelus dromedarius) Breeds of Pakistan Using Data Mining Methods
by Daniel Zaborski, Wilhelm Grzesiak, Abdul Fatih, Asim Faraz, Mohammad Masood Tariq, Irfan Shahzad Sheikh, Abdul Waheed, Asad Ullah, Illahi Bakhsh Marghazani, Muhammad Zahid Mustafa, Cem Tırınk, Senol Celik, Olha Stadnytska and Oleh Klym
Animals 2025, 15(14), 2051; https://doi.org/10.3390/ani15142051 - 11 Jul 2025
Viewed by 211
Abstract
The determination of the live body weight of camels (required for their successful breeding) is a rather difficult task due to the problems with handling and restraining these animals. Therefore, the main aim of this study was to predict the ABW of eight [...] Read more.
The determination of the live body weight of camels (required for their successful breeding) is a rather difficult task due to the problems with handling and restraining these animals. Therefore, the main aim of this study was to predict the ABW of eight indigenous camel (Camelus dromedarius) breeds of Pakistan (Bravhi, Kachi, Kharani, Kohi, Lassi, Makrani, Pishin, and Rodbari). Selected productive (hair production, milk yield per lactation, and lactation length) and reproductive (age of puberty, age at first breeding, gestation period, dry period, and calving interval) traits served as the predictors. Six data mining methods [classification and regression trees (CARTs), chi-square automatic interaction detector (CHAID), exhaustive CHAID (EXCHAID), multivariate adaptive regression splines (MARSs), MLP, and RBF] were applied for ABW prediction. Additionally, hierarchical cluster analysis with Euclidean distance was performed for the phenotypic characterization of the camel breeds. The highest Pearson correlation coefficient between the observed and predicted values (0.84, p < 0.05) was obtained for MLP, which was also characterized by the lowest root-mean-square error (RMSE) (20.86 kg), standard deviation ratio (SDratio) (0.54), mean absolute percentage error (MAPE) (2.44%), and mean absolute deviation (MAD) (16.45 kg). The most influential predictor for all the models was the camel breed. The applied methods allowed for the moderately accurate prediction of ABW (average R2 equal to 65.0%) and the identification of the most important productive and reproductive traits affecting its value. However, one important limitation of the present study is its relatively small dataset, especially for training the ANN (MLP and RBF). Hence, the obtained preliminary results should be validated on larger datasets in the future. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

12 pages, 260 KiB  
Article
Reference Intervals for Biochemical Analytes in Clinically Healthy Adult Lusitano Horses
by Maria João Pires, Mário Cotovio, Felisbina Queiroga, Carlos André Pires and Ana C. Silvestre-Ferreira
Vet. Sci. 2025, 12(7), 656; https://doi.org/10.3390/vetsci12070656 - 11 Jul 2025
Viewed by 185
Abstract
To date, serum biochemical analytes reference intervals (RIs) in Lusitano horses have not been studied. This study aimed to establish the RIs for biochemical analytes following the American Society of Veterinary Clinical Pathology guidelines and to compare them with the general equine population’s [...] Read more.
To date, serum biochemical analytes reference intervals (RIs) in Lusitano horses have not been studied. This study aimed to establish the RIs for biochemical analytes following the American Society of Veterinary Clinical Pathology guidelines and to compare them with the general equine population’s RIs. Blood samples were collected from 76 clinically healthy adult Lusitano horses, and RIs of 22 biochemical variables were determined using Reference Value Advisor software. Lusitano horse-specific RIs are proposed for the following variables: total protein (3.9–7.0 g/dL), albumin (2.5–3.8 g/dL), globulin (1.1–3.7 g/dL), total bilirubin (1.0–5.6 mg/dL), direct bilirubin (0.09–0.68 mg/dL), indirect bilirubin (0.7–5.2 mg/dL), urea (21.0–38.9 mg/dL), creatinine (0.9–2.0 mg/dL), aspartate aminotransferase (150.7–345.1 IU/L), alkaline phosphatase (60.7–227.4 IU/L), lactate dehydrogenase (247.6–959.0 IU/L), glucose (75.5–131.5 mg/dL), cholesterol (58.6–125.2 mg/dL), sodium (129.0–154.9 mmol/L), phosphorus (1.8–4.5 mmol/L), chloride (90.3–107.0 mmol/L), and calcium (8.9–12.6 mg/dL). Different RIs were identified for healthy adult Lusitano horses for 17/22 serum biochemical analytes tested, emphasizing the need for breed-specific RIs to prevent misinterpretation of laboratory results. Full article
(This article belongs to the Special Issue Biomarkers in Veterinary Medicine)
17 pages, 985 KiB  
Article
Analysis of Factors of Variation in Characteristics of Boar Ejaculates
by Stanisław Kondracki and Krzysztof Górski
Animals 2025, 15(14), 2043; https://doi.org/10.3390/ani15142043 - 11 Jul 2025
Viewed by 171
Abstract
This study aims to analyse the effect of selected variation factors on the ejaculate characteristics of boars and to characterise changes in ejaculate characteristics in Landrace, Large White, Duroc, and Pietrain boars during their use for artificial insemination. The original value of this [...] Read more.
This study aims to analyse the effect of selected variation factors on the ejaculate characteristics of boars and to characterise changes in ejaculate characteristics in Landrace, Large White, Duroc, and Pietrain boars during their use for artificial insemination. The original value of this work lies in the estimation of the percentage share of individual components of variability in shaping the traits of boar ejaculate. A total of 943 ejaculates collected from 77 boars used for artificial insemination were analysed. This study began when the boars were at 8–9 months old. Ejaculates were collected in nine consecutive months from the start of the boars’ use. Immediately after collection, they were analysed for ejaculate volume, sperm concentration, percentage of sperm with progressive motility, total number of spermatozoa, and number of insemination doses per ejaculate. The results were analysed according to three criteria: breed of boar (Landrace, Large White, Duroc, and Pietrain), age of boar (up to 10 months, 11–13 months, 14–17 months, and more than 17 months), and season (spring, summer, autumn, and winter). The analysis of the variation in ejaculate characteristics took into account the share of each factor (boar breed, boar age, and season) in the variation, as well as the interactions between factors. The effects of the three factors and interactions between them were calculated using an ANOVA (analysis of variance). The variation was shown to depend mainly on the breed and age. These two factors and the interaction between them determine about 80% of the variation in ejaculate characteristics. The season also has an effect, but its share in the influence of variation on ejaculate characteristics is relatively small. Ejaculates from Landrace boars are the most favourable for insemination, with a large volume, a relatively high sperm concentration, and the highest number of sperm. The highest number of insemination doses can be prepared from Landrace ejaculates—on average, 2.7–6.7 more doses than from the other breeds. Duroc boar ejaculates are most distinctive, with a very low volume but a very high sperm concentration and the highest sperm motility. The ejaculates of Pietrain boars showed the opposite pattern, with the largest volume but the lowest sperm concentration. The sexual development of young boars, expressed as an increase in ejaculation performance, progresses during their first year of insemination use. Full article
(This article belongs to the Special Issue Livestock Fertility and Artificial Insemination)
Show Figures

Figure 1

22 pages, 2749 KiB  
Article
Genetic Diversity, Population Structure, and Historical Gene Flow Patterns of Nine Indigenous Greek Sheep Breeds
by Sofia Michailidou, Maria Kyritsi, Eleftherios Pavlou, Antiopi Tsoureki and Anagnostis Argiriou
Biology 2025, 14(7), 845; https://doi.org/10.3390/biology14070845 - 10 Jul 2025
Viewed by 242
Abstract
Ιn this study, we evaluated the genetic resources of nine Greek sheep breeds. The genotyping data of 292 animals were acquired from Illumina’s OvineSNP50 Genotyping BeadChip. The genetic diversity and inbreeding levels were evaluated using the observed and expected heterozygosity indices, the F [...] Read more.
Ιn this study, we evaluated the genetic resources of nine Greek sheep breeds. The genotyping data of 292 animals were acquired from Illumina’s OvineSNP50 Genotyping BeadChip. The genetic diversity and inbreeding levels were evaluated using the observed and expected heterozygosity indices, the FIS inbreeding coefficient, and runs of homozygosity (ROH). The genetic differentiation of breeds was assessed using the FST index, whereas their population structure was analyzed using admixture and principal components analysis (PCA). Historical recombination patterns and genetic drift were evaluated based on linkage disequilibrium, effective population sizes, and gene flow analysis to reveal migration patterns. PCA revealed distinct clusters mostly separating mountainous, insular, and lowland breeds. The FST value was the lowest between Serres and Karagouniko breeds (0.050). Admixture analysis revealed a genetic substructure for Serres and Kalarritiko breeds, while Chios, followed by Katsika, demonstrated the highest within-breed genetic uniformity. ROH analysis revealed low levels of inbreeding for all breeds. Genetic introgression from both Anatolia and Eastern Europe has been evidenced for Greek sheep breeds. The results also revealed that Greek sheep breeds maintain adequate levels of genetic diversity, without signs of excessive inbreeding, and can serve as valuable resources for the conservation of local biodiversity. Full article
(This article belongs to the Special Issue Genetic Variability within and between Populations)
Show Figures

Figure 1

61 pages, 5489 KiB  
Review
Unlocking the Sublime: A Review of Native Australian Citrus Species
by Joel B. Johnson, Natasha L. Hungerford, Yasmina Sultanbawa and Michael E. Netzel
Foods 2025, 14(14), 2425; https://doi.org/10.3390/foods14142425 - 9 Jul 2025
Viewed by 679
Abstract
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to [...] Read more.
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to Australia: C. australasica (Australian finger lime), C. australis (round lime), C. garrawayi (Mount White lime), C. glauca (desert lime), C. gracilis (Humpty Doo lime), and C. inodora (Russell River lime). Australian Citrus possess unique flavours, aromas, and phytochemical profiles, suggesting a potential use as novelty crops and/or ‘functional foods’. Furthermore, the native Australian Citrus germplasm is a valuable source of desirable traits in citrus breeding, including drought, cold, heat, salinity, and disease resistance. These may help solve some challenges facing citrus growers globally, including disease, a declining soil quality, changing climates, and narrowing profit margins. However, many Australian citrus species’ nutritional value, chemical composition, and bioactive properties remain unknown. This review focuses on these under-investigated native Citrus species, their distribution, production, physiology, disease tolerance, traditional use, taxonomy, flavour, nutritional composition, bioactivity, and commercial production. It concludes with a perspective on the future of these native species in the Australian and global citrus context. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

Back to TopTop