Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,890)

Search Parameters:
Keywords = brain delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3202 KB  
Review
Cyclodextrin Complexes for Clinical Translatability: Applications for Cladribine and Retrometabolically Designed Estredox
by Nicholas Bodor and Peter Buchwald
Int. J. Mol. Sci. 2025, 26(22), 10976; https://doi.org/10.3390/ijms262210976 (registering DOI) - 13 Nov 2025
Abstract
In this study, we review the use of cyclodextrin-based formulations to develop oral tablets of cladribine by enhancing its bioavailability and to improve the solubility and stability of retrometabolic chemical delivery systems (CDSs) in general and estredox, a brain-targeting estradiol-CDS, in particular. Cyclodextrins [...] Read more.
In this study, we review the use of cyclodextrin-based formulations to develop oral tablets of cladribine by enhancing its bioavailability and to improve the solubility and stability of retrometabolic chemical delivery systems (CDSs) in general and estredox, a brain-targeting estradiol-CDS, in particular. Cyclodextrins (CDs), cyclic oligosaccharides that can form host–guest inclusion complexes with a variety of molecules, are widely utilized in pharmaceuticals to increase drug solubility, stability, bioavailability, etc. The stability of the complex depends on how well the guest fits within the cavity of the CD host; a model connecting this to the size of the guest molecules is briefly discussed. Modified CDs, and particularly 2-hydroxypropyl-β-cyclodextrin (HPβCD), provided dramatically increased water solubility and oxidative stability for estredox (estradiol-CDS, E2-CDS), making its clinical development possible and highlighting the potential of our brain-targeted CDS approach for CNS-targeted delivery with minimal peripheral exposure. A unique HPβCD-based formulation also provided an innovative solution for the development of orally administrable cladribine. The corresponding complex dual CD-complex formed by an amorphous admixture of inclusion- and non-inclusion cladribine–HPβCD complexes led to the development of tablets that provide adequate oral bioavailability for cladribine, as demonstrated in both preclinical and clinical studies. Cladribine–HPβCD tablets (Mavenclad) offer a convenient, effective, and well-tolerated oral therapy for multiple sclerosis, achieving worldwide approval and significant clinical success. Overall, the developments summarized here underscore the importance of tailored cyclodextrin-based approaches for overcoming barriers in drug formulation for compounds with challenging physicochemical properties, and demonstrate the versatility and clinical impact of CD inclusion complexes in modern pharmaceutical development. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Figure 1

19 pages, 2716 KB  
Article
Analysis of a Hybrid Intrabody Communications Scheme for Wireless Cortical Implants
by Assefa K. Teshome and Daniel T. H. Lai
Electronics 2025, 14(22), 4410; https://doi.org/10.3390/electronics14224410 (registering DOI) - 12 Nov 2025
Abstract
Implantable technologies targeting the cerebral cortex and deeper brain structures are increasingly utilised in human–machine interfacing, advanced neuroprosthetics, and clinical interventions for neurological conditions. These systems require highly efficient and low-power methods for exchanging information between the implant and external electronics. Traditional approaches [...] Read more.
Implantable technologies targeting the cerebral cortex and deeper brain structures are increasingly utilised in human–machine interfacing, advanced neuroprosthetics, and clinical interventions for neurological conditions. These systems require highly efficient and low-power methods for exchanging information between the implant and external electronics. Traditional approaches often rely on inductively coupled data transfer (ic-DT), where the same coils used for wireless power are modulated for communication. Other designs use high-frequency antenna-based radio systems, typically operating in the 401–406 MHz MedRadio band or the 2.4 GHz ISM band. A promising alternative is intrabody communication (IBC), which leverages the bioelectrical characteristics of body tissue to enable signal propagation. This work presents a theoretical investigation into two schemes—inductive coupling and galvanically coupled IBC (gc-IBC)—as applied to cortical data links, considering frequencies from 1 to 10 MHz and implant depths of up to 7 cm. We propose a hybrid solution where gc-IBC supports data transmission and inductive coupling facilitates wireless power delivery. Our findings indicate that gc-IBC can accommodate wider bandwidths than ic-DT and offers significantly reduced path loss, approximately 20 dB lower than those of conventional RF-based antenna systems. Full article
(This article belongs to the Special Issue Applications of Sensor Networks and Wireless Communications)
Show Figures

Figure 1

19 pages, 3440 KB  
Article
Synergistic Effect Evaluation and Mechanism Investigation of Vitamin B6 and B12 in Models of Neuroinflammation
by Xixi Dou, Shiru Cai, Yingbo Liu, Junyan Wang, Huiying Li and Duo Gao
Int. J. Mol. Sci. 2025, 26(22), 10956; https://doi.org/10.3390/ijms262210956 - 12 Nov 2025
Abstract
Neurological damage, a debilitating condition closely associated with chronic neuroinflammation, currently lacks disease-modifying treatments, with management limited to symptomatic relief. Vitamins B6 (VB6), B12 (VB12), and proteolipid protein 1 (PLP-1) exhibit multimodal neuroprotective and anti-inflammatory effects; however, their therapeutic potential is limited by [...] Read more.
Neurological damage, a debilitating condition closely associated with chronic neuroinflammation, currently lacks disease-modifying treatments, with management limited to symptomatic relief. Vitamins B6 (VB6), B12 (VB12), and proteolipid protein 1 (PLP-1) exhibit multimodal neuroprotective and anti-inflammatory effects; however, their therapeutic potential is limited by low bioavailability and inadequate ability to cross the blood–brain barrier (BBB). To address these limitations, we developed an ursolic acid-based nanoparticle system for the intranasal co-delivery of VB6, VB12, and recombinant PLP-1. The PLP-1 model predicted by AlphaFold3 was used for molecular docking. The docking results confirmed high-affinity binding interactions with VB6 and VB12, elucidating the mechanistic basis of their synergy. In vitro studies using a glucose-deprived PC12 cell injury model identified an optimal synergistic molar ratio of 10:1:2 (VB6: VB12: PLP-1). This combination significantly upregulated neuroprotective markers (PLP-1 and PGC-1α) and downregulated the pro-inflammatory cytokine TNF-α. In a mouse model of neural damage, the nano-encapsulated combination therapy demonstrated improved pharmacokinetics and significantly attenuated neuroinflammation and oxidative stress in brain tissue. This was evidenced by lower TNF-α and IL-1β levels and elevated GSH and SOD concentrations compared to free drug controls. The treatment regimen showed no detectable hepatorenal toxicity. Our findings demonstrate that this nanoformulation represents a safe, effective, and promising disease-modifying strategy to treat vestibular dysfunction by synergistically targeting its underlying neuroimmunological mechanisms. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

21 pages, 847 KB  
Review
Glia Between Resistance and Radiotoxicity in Glioblastoma: Mechanisms and Translational Perspectives—A Narrative Review
by Flavio Donnini, Giuseppe Minniti, Giovanni Rubino, Giuseppe Battaglia, Pierpaolo Pastina, Tommaso Carfagno, Marta Vannini, Maria Antonietta Mazzei and Paolo Tini
Neuroglia 2025, 6(4), 44; https://doi.org/10.3390/neuroglia6040044 - 11 Nov 2025
Abstract
Background: Glioblastoma (GBM) remains refractory to chemoradiotherapy. Glial populations—microglia/monocyte-derived macrophages, reactive astrocytes, and the oligodendrocyte lineage—shape both treatment resistance and radiation-related brain injury. Scope: We synthesize how myeloid ontogeny and plasticity, astrocytic hubs (IL-6/STAT3, TGF-β, connexin-43/gap junctions), and oligodendrocyte precursor cells (OPCs)–linked programs [...] Read more.
Background: Glioblastoma (GBM) remains refractory to chemoradiotherapy. Glial populations—microglia/monocyte-derived macrophages, reactive astrocytes, and the oligodendrocyte lineage—shape both treatment resistance and radiation-related brain injury. Scope: We synthesize how myeloid ontogeny and plasticity, astrocytic hubs (IL-6/STAT3, TGF-β, connexin-43/gap junctions), and oligodendrocyte precursor cells (OPCs)–linked programs intersect with DNA-damage responses, hypoxia-driven metabolism, and extracellular vesicle signaling to support tumor fitness while predisposing normal brain to radiotoxicity. Translational implications: Convergent, targetable pathways (IL-6/JAK–STAT3, TGF-β, chemokine trafficking, DDR/senescence) enable co-design of radiosensitization and neuroprotection. Pragmatic levers include myeloid reprogramming (CSF-1R, CCR2), astrocyte-axis modulation (STAT3, TGF-β, Cx43), and brain-penetrant DDR inhibition (e.g., ATM inhibitors), paired with delivery strategies that raise intratumoral exposure while sparing healthy tissue (focused-ultrasound blood–brain barrier opening, myeloid-targeted dendrimers; Tumor Treating Fields as an approved adjunct therapy). Biomarker frameworks (TSPO-PET, macrophage-oriented MRI radiomics, extracellular vesicle liquid biopsy) can support selection and pharmacodynamic readouts alongside neurocognitive endpoints. Outlook: Timing-aware combinations around radiotherapy and hippocampal/white-matter sparing offer a near-term roadmap for “glia-informed” precision radiotherapy. Full article
Show Figures

Figure 1

27 pages, 1465 KB  
Review
Dietary Modulation of the Enteric Nervous System: From Molecular Mechanisms to Therapeutic Applications
by Xintong Wang, Wen Zhang, Huihui Wang, Yuzhen Zhao, Pengjie Wang, Ran Wang, Yanan Sun, Fazheng Ren and Yixuan Li
Nutrients 2025, 17(22), 3519; https://doi.org/10.3390/nu17223519 - 11 Nov 2025
Abstract
The enteric nervous system (ENS), frequently referred to as the “second brain,” is integral to maintaining gastrointestinal and systemic homeostasis. The structural and functional homeostasis of the ENS is crucial for both local intestinal processes (digestion, immunity) and systemic physiological equilibrium via the [...] Read more.
The enteric nervous system (ENS), frequently referred to as the “second brain,” is integral to maintaining gastrointestinal and systemic homeostasis. The structural and functional homeostasis of the ENS is crucial for both local intestinal processes (digestion, immunity) and systemic physiological equilibrium via the gut–brain axis, directly influencing overall health and disease. In recent years, dietary substances have attracted increasing scholarly attention for their potential to modulate the ENS, attributed to their safety and accessibility. This review commences with a systematic exploration of the anatomical structure of the ENS, including the myenteric and submucosal plexuses, its cellular constituents such as enteric neurons and enteric glial cells, and its core physiological functions, encompassing the regulation of gastrointestinal motility, the secretion–absorption balance, and the maintenance of immune homeostasis. Subsequently, it delineates the classification, distribution, and properties of essential dietary components, encompassing polyphenols, short-chain fatty acids, amino acids and their derivatives, as well as prebiotics and probiotics. Additionally, it examines the mechanisms through which these substances modulate the physiological functions of the ENS, including the regulation of intestinal motility, support for neuronal survival and network integrity, and the maintenance of neuro-immune homeostasis. The review concludes by highlighting current limitations—including reliance on rodent models, unclear human ENS mechanisms, and imprecise interventions—and proposes future directions focused on precision medicine, clinical translation, and advanced tools like single-cell sequencing and targeted delivery systems. Full article
Show Figures

Figure 1

42 pages, 3446 KB  
Review
Nanoparticle-Mediated Nose-to-Brain Delivery for Ischemic Stroke Therapy: Preclinical Insights
by Joonhyuck Park and Tae-Ryong Riew
Pharmaceutics 2025, 17(11), 1447; https://doi.org/10.3390/pharmaceutics17111447 - 9 Nov 2025
Viewed by 144
Abstract
Ischemic stroke remains a major cause of mortality and long-term disability, yet current therapeutic strategies are largely limited to reperfusion approaches such as intravenous thrombolysis and thrombectomy, which are constrained by narrow treatment windows and the risk of complications. Moreover, the blood–brain barrier [...] Read more.
Ischemic stroke remains a major cause of mortality and long-term disability, yet current therapeutic strategies are largely limited to reperfusion approaches such as intravenous thrombolysis and thrombectomy, which are constrained by narrow treatment windows and the risk of complications. Moreover, the blood–brain barrier (BBB) severely restricts drug penetration into the injured brain, limiting the translation of promising neuroprotective agents into clinical success. Intranasal (IN) delivery has emerged as a compelling alternative route that bypasses the BBB and enables rapid access to the central nervous system through olfactory, trigeminal, and perivascular pathways. This narrative review highlights recent advances in preclinical research on IN therapeutics for ischemic stroke, ranging from small molecules and biologics to nucleic acids and cell-based therapies. Particular emphasis is placed on the application of nanotechnology, including extracellular vesicles, liposomes, and inorganic nanoparticles, which enhance drug stability, targeting, and bioavailability. Studies demonstrate that IN delivery of growth factors, cytokines, and engineered stem cells can promote neurogenesis, angiogenesis, white matter repair, and functional recovery, while nanocarriers further expand the therapeutic potential. Overall, intranasal delivery represents a promising and non-invasive strategy to overcome the limitations of conventional stroke therapies, offering new avenues for neuroprotection and regeneration that warrant further investigation toward clinical translation. Full article
Show Figures

Figure 1

22 pages, 3025 KB  
Article
Osmotic Fragility in Leukodepleted Stored Red Blood Cells: Implications for Neurocritical Care Transfusion Strategies
by Marta Peris, Maria A. Poca, Ana Ortuño, Verónica Pons, Nuria Rodríguez-Borrero, Desiree Jurado, Rafael Parra-López, Marina Rierola and Juan Sahuquillo
Cells 2025, 14(21), 1726; https://doi.org/10.3390/cells14211726 - 3 Nov 2025
Viewed by 401
Abstract
Background: Anemia is frequent in critically ill patients with traumatic brain injury (TBI) and worsens neurological outcomes. Red blood cell (RBC) transfusion is a cornerstone of management, but storage-related biochemical and structural changes may impair oxygen delivery. This study examined the effect [...] Read more.
Background: Anemia is frequent in critically ill patients with traumatic brain injury (TBI) and worsens neurological outcomes. Red blood cell (RBC) transfusion is a cornerstone of management, but storage-related biochemical and structural changes may impair oxygen delivery. This study examined the effect of storage duration on osmotic fragility (OF) and free hemoglobin (fHb) in leukodepleted packed RBCs (pRBCs) as indicators of membrane stability and hemolysis. Methods: Twenty-four leukodepleted pRBC units in SAGM (saline, adenine, glucose, and mannitol) solution were analyzed from Day 3 to Day 42. OF was assessed by Beutler’s method with H50 values derived from logistic models, and fHb was quantified spectrophotometrically. Flow cytometry with phosphate-buffered saline (PBS)-induced osmotic stress provided complementary OF data. Results: OF increased significantly beyond 28 days, with Week 6 H50 values exceeding those at Weeks 2 and 4 (p < 0.0001). fHb rose progressively with storage: 7.3 ± 4.3 µmol/L (Week 2), 14.6 ± 7.9 (Week 4), and 25.7 ± 12.1 (Week 6) (p < 0.0001). Hemolysis remained below the 0.8% threshold but increased from 0.09% to 0.29% (p < 0.0001). Conclusions: pRBC storage beyond 28 days leads to greater OF and fHb release, reflecting reduced membrane stability. These changes may compromise transfusion efficacy and oxygen delivery in neurocritical care. Full article
(This article belongs to the Special Issue Highlights in Red Blood Cell Research)
Show Figures

Figure 1

25 pages, 4528 KB  
Article
Structural Engineering of Tyrosine-Based Neuroprotective Peptides: A New Strategy for Efficient Blood–Brain Barrier Penetration
by Zehui Li, Qiyue Zhu, Yashu Qiao, Junxi Fu, Li Tao and Weihong Min
Foods 2025, 14(21), 3744; https://doi.org/10.3390/foods14213744 - 31 Oct 2025
Viewed by 396
Abstract
The relationship between the structure of walnut-derived peptides and their activity of transport efficiency across the blood–brain barrier (BBB) remains unclear. In this study, a series of walnut-derived peptides were synthesized by substituting leucine (L) with tyrosine (Y), lysine (K), or arginine (R). [...] Read more.
The relationship between the structure of walnut-derived peptides and their activity of transport efficiency across the blood–brain barrier (BBB) remains unclear. In this study, a series of walnut-derived peptides were synthesized by substituting leucine (L) with tyrosine (Y), lysine (K), or arginine (R). Three outstanding peptides—EVSGPGYSPN, TWLPYPR, and YVPFPYP—were selected based on their antioxidant capacity and BBB transport efficiency, with EVSGPGYSPN exhibiting the highest activity. Reversed-phase high-performance liquid chromatography (RP-HPLC) and Transwell assay results demonstrated that EVSGPGYSPN can remain stable during gastrointestinal digestion and penetrate the BBB. Pharmacokinetic results revealed that the cumulative concentration of EVSGPGYSPN in the brain reached 1.25 ± 0.91 µg/g at 10 h, while its plasma half-life exceeded 12 h. Furthermore, it significantly reduced reactive oxygen species (ROS) levels to 110.46 ± 15.16%. Nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) results indicated that EVSGPGYSPN is rich in aromatic hydrogen signals and exhibits low methyl signals, which may enhance its antioxidant activity. Circular dichroism (CD) spectroscopy showed that EVSGPGYSPN has the highest random coil content, which facilitates its binding to transporters on the BBB and promotes BBB permeability. This study provides valuable insights into the design of brain-targeted peptide delivery systems. Full article
(This article belongs to the Special Issue Bioactive Peptides and Probiotic Bacteria: Modulators of Human Health)
Show Figures

Figure 1

22 pages, 1138 KB  
Review
Research Progress on Nasal Delivery of siRNA Nanocarrier Systems for the Treatment of Neurodegenerative Diseases
by Qingqing Huang, Wei Wu, Yinghai Liu, Weiqing Li, Xin Chen, Sixun Yu, Gu Gong and Haifeng Shu
Pharmaceutics 2025, 17(11), 1407; https://doi.org/10.3390/pharmaceutics17111407 - 30 Oct 2025
Viewed by 584
Abstract
The treatment of central nervous system (CNS) diseases faces huge challenges, mainly due to the blood–brain barrier (BBB) restricting drug delivery, which leads to many potential treatment methods being unable to effectively reach the target area. In recent years, nasal administration has received [...] Read more.
The treatment of central nervous system (CNS) diseases faces huge challenges, mainly due to the blood–brain barrier (BBB) restricting drug delivery, which leads to many potential treatment methods being unable to effectively reach the target area. In recent years, nasal administration has received extensive attention as a non-invasive drug delivery route because of its anatomical connection with the brain, enabling direct delivery to brain tissue. In particular, the siRNA delivery system based on nanocarriers has shown great promise in the treatment of CNS diseases due to its unique advantages in targeting gene silencing. This article reviews the latest research progress on nasal administration of siRNA nanocarriers, with a focus on the design strategies, administration mechanisms, in vivo and in vitro effects, and safety evaluations of different nanocarriers. The aim is to provide a systematic theoretical basis and future research directions for the application of siRNA nasal administration in the treatment of CNS diseases (see the abstract of the picture). Full article
(This article belongs to the Special Issue Development of Vectors for Drug and Gene Delivery via the Nasal Route)
Show Figures

Graphical abstract

22 pages, 400 KB  
Review
The Emerging Role of Oncolytic Virotherapy in Glioblastoma Management
by Damir Nizamutdinov, Anna Sentmanat, Jing Tong, Xiaoming Qi, Yizhong Pan, Dan Qi, Erxi Wu and Jason H. Huang
Cancers 2025, 17(21), 3465; https://doi.org/10.3390/cancers17213465 - 28 Oct 2025
Viewed by 556
Abstract
Glioblastoma (GBM) is an aggressive and common form of central nervous system primary malignant tumor in adults. GBM accounts for about half of all gliomas. Despite maximal resection, radiotherapy, and temozolomide, median survival is still 12–15 months because of tumor heterogeneity, diffuse infiltration, [...] Read more.
Glioblastoma (GBM) is an aggressive and common form of central nervous system primary malignant tumor in adults. GBM accounts for about half of all gliomas. Despite maximal resection, radiotherapy, and temozolomide, median survival is still 12–15 months because of tumor heterogeneity, diffuse infiltration, and therapeutic resistance. Recurrence is nearly universal, underscoring the need for novel therapies. Oncolytic virotherapy demonstrates a promising strategy that combines direct tumor cell lysis with immune activation. Tumor-selective viruses replicate within malignant cells, induce cell death, and release tumor antigens, thereby reshaping the immunosuppressive microenvironment. Several viral backbones have advanced to clinical testing, including adenovirus (DNX-2401), herpes simplex virus (G47Δ, G207), poliovirus (PVS-RIPO), measles virus (MV-CEA), reovirus (pelareorep), vaccinia virus (Pexa-Vec), and vesicular stomatitis virus (VSV-GP). The approval of G47Δ in Japan for malignant glioma marks a milestone, with early trials demonstrating safety and signals of durable benefit, particularly in combination regimens. Current research emphasizes engineering viral genomes to enhance selectivity, immune stimulation, and resistance to clearance, while exploring synergistic combinations with radiotherapy, chemotherapy, immune checkpoint inhibitors, and tumor-treating fields. Advances in delivery, such as convection-enhanced infusion and blood–brain barrier modulation, are also under investigation. Despite obstacles, oncolytic virotherapy holds significant potential within multimodal GBM strategies. Full article
(This article belongs to the Special Issue Combination Therapies for Brain Tumors)
58 pages, 6052 KB  
Review
Cyclodextrin-Based Formulations as a Promising Strategy to Overcome the Blood–Brain Barrier: Historical Overview and Prospects in Glioblastoma Treatment
by Federica De Gaetano, Noemi Totaro and Cinzia Anna Ventura
Pharmaceuticals 2025, 18(11), 1626; https://doi.org/10.3390/ph18111626 - 28 Oct 2025
Viewed by 600
Abstract
Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers affecting the central nervous system (CNS), predominantly in adults. Despite significant advancements in this field, GB treatment still relies primarily on conventional approaches, including surgical resection, radiotherapy, and chemotherapy, which, due to [...] Read more.
Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers affecting the central nervous system (CNS), predominantly in adults. Despite significant advancements in this field, GB treatment still relies primarily on conventional approaches, including surgical resection, radiotherapy, and chemotherapy, which, due to its complex pathological characteristics, resistance mechanisms, and restrictive nature of the blood–brain barrier (BBB) and blood–brain tumor barrier (BBTB), remain of limited efficacy. In this context, the development of innovative therapeutic strategies able to overcome these barriers, induce cancer cell death, and improve patient prognosis is crucial. Recently, nanoparticle platforms and focused ultrasounds seem to be promising approaches for cancer treatment. Nanoparticles enable targeting and controlled release, whilst focused ultrasounds enhance tissue permeation, increasing drug accumulation in a specific organ. However, nanoparticles can suffer from synthesis complexity, long-term biocompatibility and accumulation in the body with consequent toxicity, whereas focused ultrasounds require specialized equipment and can potentially cause thermal damage, hemorrhage, or cavitation injury. Cyclodextrins (CYDs) possess good properties and represent a versatile and safer alternative able to improve drug stability, solubility, and bioavailability, and depending on the type, dose, and administration route, can reduce local and systemic toxicity. Thus, CYDs emerge as promising novel excipients in GB treatment. Despite these advantages, CYD complexes suffer from receptor specificity, reducing their potential in precision medicine. By combining CYD complexes with polymeric or lipidic platforms, the advantages of CYD safety and drug solubilization together with their specific targeting can be obtained, thus enhancing selectivity and maximizing efficacy while minimizing recurrence and systemic toxicity. This review provides a comprehensive overview of GB pathology, conventional treatments, and emerging CYD-based strategies aimed at enhancing drug delivery and therapeutic efficacy. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 2000 KB  
Article
Targeting Gliomas with Beta-Amyloid-Specific Dyes: A Novel Approach for In Vivo Staining and Potential Therapeutic Applications
by Lilia Kucheryavykh, Jescelica Ortiz Rivera, Boris Ermolinsky, Vassiliy Tsytsarev, Lynnette Cary, Janaina Alves, Adriana Reyes, Noelis de la Cruz-Rivera, Kevin Rosa Gonzalez, Felix Narvaez Irizarry, Tyrel R. Porter and Mikhail Inyushin
Int. J. Mol. Sci. 2025, 26(21), 10450; https://doi.org/10.3390/ijms262110450 - 28 Oct 2025
Viewed by 315
Abstract
Gliomas, the most common primary brain tumors, present significant diagnostic and treatment challenges due to their infiltrative nature and heterogeneity. Our previous research revealed that glioma tumors in both animals and humans accumulate beta-amyloid protein (Aβ), detectable through immunohistochemical methods or staining with [...] Read more.
Gliomas, the most common primary brain tumors, present significant diagnostic and treatment challenges due to their infiltrative nature and heterogeneity. Our previous research revealed that glioma tumors in both animals and humans accumulate beta-amyloid protein (Aβ), detectable through immunohistochemical methods or staining with amyloid-specific dyes. We hypothesize that beta-amyloid-specific dyes could serve as glioma markers, potentially enabling the delineation of glioma tumors or targeted therapeutics delivery. In this study, the specificity and blood-brain barrier permeability of two fluorescent beta-amyloid-specific dyes, Brilliant Blue G (BBG) and BODIPY-based Amyloid Probe-1 (BAP-1), were evaluated in C57Bl/6 mouse glioma implantation models using GL261 and KR158 glioma cells. The findings demonstrate that both BBG and BAP-1 selectively stain gliomas, providing a clear contrast from normal brain tissue. The study results open avenues for further development of glioma visualization methods and targeted therapeutic delivery strategies for clinical applications. Full article
(This article belongs to the Special Issue Advancements in Understanding Protein Misfolding Disorders and Cancer)
Show Figures

Graphical abstract

28 pages, 3637 KB  
Article
Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice
by Mahitab Bayoumi, John Youshia, O. A. El-Kawy, Sara A. Abdel Gaber, Mona G. Arafa, Maha Nasr and Omaima A. Sammour
Pharmaceuticals 2025, 18(11), 1623; https://doi.org/10.3390/ph18111623 - 27 Oct 2025
Viewed by 467
Abstract
Background: Glioma remains an intractable and highly aggressive brain tumor, mainly due to the daunting obstacle presented by the blood–brain barrier (BBB). To overcome this challenge and enhance therapeutic efficacy, a dual-drug delivery system was engineered. This system co-encapsulated curcumin, a nutraceutical [...] Read more.
Background: Glioma remains an intractable and highly aggressive brain tumor, mainly due to the daunting obstacle presented by the blood–brain barrier (BBB). To overcome this challenge and enhance therapeutic efficacy, a dual-drug delivery system was engineered. This system co-encapsulated curcumin, a nutraceutical with multitargeted anticancer potential, with atorvastatin calcium, a repurposed anticancer agent, within lipidic nanocapsules (LNCs). Methods: LNCs were prepared via the phase inversion temperature method and optimized using a Box–Behnken design. The optimized LNCs were subsequently functionalized with folic acid (FA) to enable active targeting. FA-LNCs were characterized using XPS, TEM, in vitro release, and MTT cytotoxicity assays. Atorvastatin and curcumin were radiolabeled separately with iodine-131 to evaluate the in vivo pharmacokinetics in a glioma-bearing mouse model. Results: The optimized LNCs and FA-LNCs displayed a mean particle size of 97.98 ± 2.27 nm and 181.60 ± 2.83 nm, a polydispersity index of 0.32 ± 0.07 and 0.40 ± 0.02, and a zeta potential of −15.85 ± 1.35 mV and −11.90 ± 2.80, respectively. XPS and FTIR analyses verified FA conjugation. Both LNCs and FA-LNCs enhanced the in vitro cytotoxicity compared to free drugs; however, the most pronounced effect of FA functionalization was observed in vivo. Most significantly, FA-LNCs achieved markedly greater glioma accumulation than non-functionalized LNCs, with AUC values 2.0-fold higher for atorvastatin and 2.6-fold higher for curcumin. When compared to the free drug solutions, this efficiency was even more pronounced, with atorvastatin and curcumin showing enhancements of 8.2 and 12.4 times, respectively. Conclusions: FA-LNCs markedly improved glioma targeting efficiency and reduced systemic clearance, which underscores the therapeutic potential of integrating nutraceuticals with repurposed agents to achieve effective glioma therapy. Full article
(This article belongs to the Special Issue New Platforms for Cancer Treatment—Emerging Advances)
Show Figures

30 pages, 2932 KB  
Review
Chitosan (Nano)formulations as Therapeutic Tools for Neurodegenerative Diseases: A Comprehensive Review
by Adriana C. C. Gomes, Adelaide Almeida, Carmen S. R. Freire and Bárbara Leite Ferreira
Polymers 2025, 17(21), 2838; https://doi.org/10.3390/polym17212838 - 24 Oct 2025
Viewed by 384
Abstract
According to the World Health Organization, Alzheimer’s disease and other forms of dementia were the seventh leading cause of death in 2021. The prevalence of these disorders is predictable to increase with life expectancy, and their control is hampered by several factors, including [...] Read more.
According to the World Health Organization, Alzheimer’s disease and other forms of dementia were the seventh leading cause of death in 2021. The prevalence of these disorders is predictable to increase with life expectancy, and their control is hampered by several factors, including late diagnosis due to the lack of specific biomarkers and the absence of disease-modifying treatments, as currently available therapies can only lighten some of the symptoms. Nanotechnology could be the key to overcoming some of the limitations associated with neurodegenerative diseases, as nanomaterials have excellent properties compared to their bulk counterparts and can be used as drug delivery systems, diagnostic tools and platforms for tissue regeneration. Chitosan is a biopolymer with numerous properties that impart it with great potential for biomedical applications, in particular its ability to cross the blood–brain barrier and its versatility in nanoscale design. In this context, the aim of this review is to provide an in-depth analysis of the latest developments and future opportunities for chitosan (nano)formulations for the treatment and management of neurodegenerative diseases. Full article
(This article belongs to the Special Issue New Advances in Bio-Based Polymers)
Show Figures

Graphical abstract

25 pages, 4425 KB  
Review
Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon?
by Lorena Martínez-Zamora
Foods 2025, 14(21), 3624; https://doi.org/10.3390/foods14213624 - 24 Oct 2025
Viewed by 969
Abstract
Hydroxytyrosol (HXT), a phenolic compound from olive, shows great potential as a neuroprotective agent and a translational target for claim-ready nutrition and food products. Human studies increasingly report benefits for vascular function, inflammatory tone, and early cognitive/psychomotor outcomes, consistent with engagement of redox [...] Read more.
Hydroxytyrosol (HXT), a phenolic compound from olive, shows great potential as a neuroprotective agent and a translational target for claim-ready nutrition and food products. Human studies increasingly report benefits for vascular function, inflammatory tone, and early cognitive/psychomotor outcomes, consistent with engagement of redox and signalling pathways (Keap1–Nrf2–ARE, PI3K/Akt–ERK, and AMPK–SIRT1–PGC-1α). HXT is rapidly absorbed and likely reaches the brain, acting on endothelial and microglial targets. On the neurovascular axis, it reduces oxidative stress, preserves nitric-oxide bioavailability, lower inflammatory markers, and favourable intrinsic connectivity. For product development, bitterness from oleuropein-rich inputs can be mitigated by hydrolysis, followed by structure-guided delivery to balance sensory quality with exposure. Viable formats include cyclodextrin inclusion, microencapsulation, and (micro)emulsions in lipid matrices, plus stability engineering for aqueous systems (acidification, chelation, low-oxygen handling, or barrier packaging). Matrix effects are consequential; some proteins and fibers may decrease HXT bioaccessibility, whereas lipid phases and microstructured carriers often enhance it. Clinically, recommended doses are ~7–15 mg/day chronically and ~30–60 mg acutely. As conclusions of this review, future work should prioritize harmonized pharmacokinetics–pharmacodynamics readouts, cognition anchored to a compact neurovascular/blood–brain barrier biomarker core, and head-to-head comparisons of manufacturable delivery formats. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Graphical abstract

Back to TopTop