The Emerging Role of Oncolytic Virotherapy in Glioblastoma Management
Simple Summary
Abstract
1. Introduction
2. Types of Oncolytic Viruses, Mechanisms of Action, and Recent Clinical Advancements
2.1. Adenovirus
2.2. Herpes Simplex Virus
2.3. Measles Virus
2.4. Poliovirus
2.5. Reovirus
2.6. Vaccinia Virus
2.7. Vesicular Stomatitis Virus
3. Combination Therapies of Oncolytic Virotherapy
3.1. Combination with Immune Checkpoint Inhibitors
3.2. Combination with Radiotherapy
3.3. Combination with Targeted Therapy
3.4. Combination with Chemotherapy
3.5. Combination with TTFields
3.6. Combination with Other Immunotherapies
4. Challenges and Limitations of Oncolytic Virotherapy
4.1. Viral Delivery and Distribution
4.2. Host Immunity and Resistance
4.3. Side Effects
4.4. Efficacy and Cost
5. Discussion
5.1. Types of Viruses
5.2. Specificity of Viruses
5.3. Monotherapy Versus Combination Approaches
5.4. Integration with Chemotherapy, Radiotherapy, and Immunotherapy
5.5. Current Therapies Challenges, and Rationale for Virotherapy
5.6. Comparative Analysis of Viral Platforms
5.7. Delivery Challenges and the Blood–Brain Barrier
5.8. Safety, Cost, and Regulatory Perspectives
5.9. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2021, 23, iii1–iii105. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Klockow, J.L.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021, 171, 105780. [Google Scholar] [CrossRef]
- Tan, A.C.; Ashley, D.M.; Lopez, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Obrador, E.; Moreno-Murciano, P.; Oriol-Caballo, M.; Lopez-Blanch, R.; Pineda, B.; Gutierrez-Arroyo, J.L.; Loras, A.; Gonzalez-Bonet, L.G.; Martinez-Cadenas, C.; Estrela, J.M.; et al. Glioblastoma Therapy: Past, Present and Future. Int. J. Mol. Sci. 2024, 25, 2529. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; van den Bent, M.; Youssef, G.; Cloughesy, T.F.; Ellingson, B.M.; Weller, M.; Galanis, E.; Barboriak, D.P.; de Groot, J.; Gilbert, M.R.; et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults. J. Clin. Oncol. 2023, 41, 5187–5199. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. Lancet 2018, 392, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1460–1469. [Google Scholar] [CrossRef]
- Jezierzanski, M.; Nafalska, N.; Stopyra, M.; Furgol, T.; Miciak, M.; Kabut, J.; Gisterek-Grocholska, I. Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme—A Literature Review and Clinical Outcomes. Curr. Oncol. 2024, 31, 3994–4002. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Yasinjan, F.; Xing, Y.; Geng, H.; Guo, R.; Yang, L.; Liu, Z.; Wang, H. Immunotherapy: A promising approach for glioma treatment. Front. Immunol. 2023, 14, 1255611. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, X.; Li, Y.; Zhang, J.; Zong, Z.; Zhang, H. Current Immunotherapies for Glioblastoma Multiforme. Front. Immunol. 2020, 11, 603911. [Google Scholar] [CrossRef] [PubMed]
- Czarnywojtek, A.; Borowska, M.; Dyrka, K.; Van Gool, S.; Sawicka-Gutaj, N.; Moskal, J.; Koscinski, J.; Graczyk, P.; Halas, T.; Lewandowska, A.M.; et al. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023, 108, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Hey, S.P.; Kesselheim, A.S. Assessment of the Clinical Benefit of Cancer Drugs Receiving Accelerated Approval. JAMA Intern. Med. 2019, 179, 906–913. [Google Scholar] [CrossRef]
- Agosti, E.; Zeppieri, M.; De Maria, L.; Tedeschi, C.; Fontanella, M.M.; Panciani, P.P.; Ius, T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int. J. Mol. Sci. 2023, 24, 15037. [Google Scholar] [CrossRef]
- Pouyan, A.; Ghorbanlo, M.; Eslami, M.; Jahanshahi, M.; Ziaei, E.; Salami, A.; Mokhtari, K.; Shahpasand, K.; Farahani, N.; Meybodi, T.E.; et al. Glioblastoma multiforme: Insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol. Cancer 2025, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Asija, S.; Chatterjee, A.; Yadav, S.; Chekuri, G.; Karulkar, A.; Jaiswal, A.K.; Goda, J.S.; Purwar, R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int. Rev. Immunol. 2022, 41, 582–605. [Google Scholar] [CrossRef]
- Rong, L.; Li, N.; Zhang, Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Reardon, D.A. Neuro-oncology in 2015: Progress in glioma diagnosis, classification and treatment. Nat. Rev. Neurol. 2016, 12, 69–70. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Fong, Y.; Warner, S.G. Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers 2020, 12, 1699. [Google Scholar] [CrossRef] [PubMed]
- Stavrakaki, E.; van den Bossche, W.B.L.; Vogelezang, L.B.; Teodosio, C.; Mustafa, D.M.; van Dongen, J.J.M.; Dirven, C.M.F.; Balvers, R.K.; Lamfers, M.L. An autologous ex vivo model for exploring patient-specific responses to viro-immunotherapy in glioblastoma. Cell Rep. Methods 2024, 4, 100716. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, O.; Dos Santos, J.M.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, M.; Essand, M. Virus-Based Immunotherapy of Glioblastoma. Cancers 2019, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991, 252, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.; Armstrong, E.J.L.; Jennings, V.; Foo, S.; Crespo-Rodriguez, E.; Bozhanova, G.; Patin, E.C.; McLaughlin, M.; Mansfield, D.; Baker, G.; et al. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert. Opin. Biol. Ther. 2020, 20, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med. 2022, 28, 1630–1639. [Google Scholar] [CrossRef]
- Stavrakaki, E.; Dirven, C.M.F.; Lamfers, M.L.M. Personalizing Oncolytic Virotherapy for Glioblastoma: In Search of Biomarkers for Response. Cancers 2021, 13, 614. [Google Scholar] [CrossRef]
- Goradel, N.H.; Baker, A.T.; Arashkia, A.; Ebrahimi, N.; Ghorghanlu, S.; Negahdari, B. Oncolytic virotherapy: Challenges and solutions. Curr. Probl. Cancer 2021, 45, 100639. [Google Scholar] [CrossRef]
- Hu, M.; Liao, X.; Tao, Y.; Chen, Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma. Front. Immunol. 2023, 14, 1285113. [Google Scholar] [CrossRef] [PubMed]
- Alomari, O.; Eyvazova, H.; Guney, B.; Al Juhmani, R.; Odabasi, H.; Al-Rawabdeh, L.; Mokresh, M.E.; Erginoglu, U.; Keles, A.; Baskaya, M.K. Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives. Cancers 2025, 17, 2550. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.T.; Aguirre-Hernandez, C.; Hallden, G.; Parker, A.L. Designer Oncolytic Adenovirus: Coming of Age. Cancers 2018, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front. Immunol. 2023, 14, 1308890. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.J.; Sener, U.; Vile, R.G. Current Status and Challenges of Oncolytic Virotherapy for the Treatment of Glioblastoma. Pharmaceuticals 2023, 16, 793. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.L.; Wu, S.; Wu, J.S. [Advances in oncolytic virotherapy for glioma]. Zhonghua Wai Ke Za Zhi 2023, 62, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, Y.; Liang, T. Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct. Target. Ther. 2023, 8, 156. [Google Scholar] [CrossRef]
- Fatima, M.; Amraiz, D.; Navid, M.T. Oncolytic Virotherapy. Cancer Treat. Res. 2023, 185, 105–126. [Google Scholar] [CrossRef]
- Gujar, S.; Pol, J.G.; Kim, Y.; Lee, P.W.; Kroemer, G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol. 2018, 39, 209–221. [Google Scholar] [CrossRef]
- Lawler, S.E.; Speranza, M.C.; Cho, C.F.; Chiocca, E.A. Oncolytic Viruses in Cancer Treatment: A Review. JAMA Oncol. 2017, 3, 841–849. [Google Scholar] [CrossRef]
- Raja, J.; Ludwig, J.M.; Gettinger, S.N.; Schalper, K.A.; Kim, H.S. Oncolytic virus immunotherapy: Future prospects for oncology. J. Immunother. Cancer 2018, 6, 140. [Google Scholar] [CrossRef]
- Alwithenani, A.; Hengswat, P.; Chiocca, E.A. Oncolytic viruses as cancer therapeutics: From mechanistic insights to clinical translation. Mol. Ther. 2025, 33, 2217–2228. [Google Scholar] [CrossRef]
- Markert, J.M.; Liechty, P.G.; Wang, W.; Gaston, S.; Braz, E.; Karrasch, M.; Nabors, L.B.; Markiewicz, M.; Lakeman, A.D.; Palmer, C.A.; et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol. Ther. 2009, 17, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Rui, Y.; Green, J.J. Overcoming delivery barriers in immunotherapy for glioblastoma. Drug Deliv. Transl. Res. 2021, 11, 2302–2316. [Google Scholar] [CrossRef]
- Dobrikova, E.Y.; Broadt, T.; Poiley-Nelson, J.; Yang, X.; Soman, G.; Giardina, S.; Harris, R.; Gromeier, M. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther. 2008, 16, 1865–1872. [Google Scholar] [CrossRef]
- Goradel, N.H.; Mohajel, N.; Malekshahi, Z.V.; Jahangiri, S.; Najafi, M.; Farhood, B.; Mortezaee, K.; Negahdari, B.; Arashkia, A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J. Cell Physiol. 2019, 234, 8636–8646. [Google Scholar] [CrossRef]
- Lang, F.F.; Conrad, C.; Gomez-Manzano, C.; Yung, W.K.A.; Sawaya, R.; Weinberg, J.S.; Prabhu, S.S.; Rao, G.; Fuller, G.N.; Aldape, K.D.; et al. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J. Clin. Oncol. 2018, 36, 1419–1427. [Google Scholar] [CrossRef]
- Nassiri, F.; Patil, V.; Yefet, L.S.; Singh, O.; Liu, J.; Dang, R.M.A.; Yamaguchi, T.N.; Daras, M.; Cloughesy, T.F.; Colman, H.; et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: A phase 1/2 trial. Nat. Med. 2023, 29, 1370–1378. [Google Scholar] [CrossRef]
- Cloughesy, T.F.; Mochizuki, A.Y.; Orpilla, J.R.; Hugo, W.; Lee, A.H.; Davidson, T.B.; Wang, A.C.; Ellingson, B.M.; Rytlewski, J.A.; Sanders, C.M.; et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019, 25, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Sahu, U.; Mullarkey, M.P.; Kaur, B. Replication and Spread of Oncolytic Herpes Simplex Virus in Solid Tumors. Viruses 2022, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Glorioso, J.C.; Cohen, J.B.; Goins, W.F.; Hall, B.; Jackson, J.W.; Kohanbash, G.; Amankulor, N.; Kaur, B.; Caligiuri, M.A.; Chiocca, E.A.; et al. Oncolytic HSV Vectors and Anti-Tumor Immunity. Curr. Issues Mol. Biol. 2021, 41, 381–468. [Google Scholar] [CrossRef] [PubMed]
- Markert, J.M.; Razdan, S.N.; Kuo, H.C.; Cantor, A.; Knoll, A.; Karrasch, M.; Nabors, L.B.; Markiewicz, M.; Agee, B.S.; Coleman, J.M.; et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol. Ther. 2014, 22, 1048–1055. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Wakimoto, H.; Martuza, R.L.; Kaufman, H.L.; Rabkin, S.D.; Saha, D. Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J. Immunother. Cancer 2024, 12, e008880. [Google Scholar] [CrossRef] [PubMed]
- Badani, A.; Ozair, A.; Khasraw, M.; Woodworth, G.F.; Tiwari, P.; Ahluwalia, M.S.; Mansouri, A. Immune checkpoint inhibitors for glioblastoma: Emerging science, clinical advances, and future directions. J. Neurooncol 2025, 171, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Arreguin, K.; Rivera-Caraballo, K.A.; Ventarapragada, D.; Chiocca, E.A.; Kaur, B. Oncolytic HSV and cancer drug interactions: Current clinical status and future directions. Mol. Ther. 2025, 33, 4748–4765. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.R.; Bentley, R.T.; Crossman, D.K.; Foote, J.B.; Koehler, J.W.; Markert, J.M.; Omar, N.B.; Platt, S.R.; Self, D.M.; Shores, A.; et al. The One Health Consortium: Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Combination With a Checkpoint Inhibitor in Canine Patients With Sporadic High Grade Gliomas. Front. Surg. 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Engeland, C.E.; Ungerechts, G. Measles Virus as an Oncolytic Immunotherapy. Cancers 2021, 13, 544. [Google Scholar] [CrossRef] [PubMed]
- Pidelaserra-Marti, G.; Engeland, C.E. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor. Rev. 2020, 56, 28–38. [Google Scholar] [CrossRef]
- Zhao, X.; Chester, C.; Rajasekaran, N.; He, Z.; Kohrt, H.E. Strategic Combinations: The Future of Oncolytic Virotherapy with Reovirus. Mol. Cancer Ther. 2016, 15, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.; Harvey, M.; Kaufmann, T.J.; Greiner, S.M.; Krempski, J.W.; Raffel, C.; Shelton, S.E.; Soeffker, D.; Zollman, P.; Federspiel, M.J.; et al. Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum. Gene Ther. 2008, 19, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Dighe, O.R.; Korde, P.; Bisen, Y.T.; Iratwar, S.; Kesharwani, A.; Vardhan, S.; Singh, A. Emerging Recombinant Oncolytic Poliovirus Therapies Against Malignant Glioma: A Review. Cureus 2023, 15, e34028. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.; Gromeier, M.; Herndon, J.E., 2nd; Beaubier, N.; Bolognesi, D.P.; Friedman, A.H.; Friedman, H.S.; McSherry, F.; Muscat, A.M.; Nair, S.; et al. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N. Engl. J. Med. 2018, 379, 150–161. [Google Scholar] [CrossRef]
- Goetz, C.; Gromeier, M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor. Rev. 2010, 21, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Garant, K.A.; Shmulevitz, M.; Pan, L.; Daigle, R.M.; Ahn, D.G.; Gujar, S.A.; Lee, P.W. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016, 35, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sun, H.; Lemoine, N.R.; Xuan, Y.; Wang, P. Oncolytic vaccinia virus and cancer immunotherapy. Front. Immunol. 2023, 14, 1324744. [Google Scholar] [CrossRef]
- Truong, C.S.; Yoo, S.Y. Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines 2022, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, C.J.; Bell, J.C.; Hwang, T.H.; Kirn, D.H.; Burke, J. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virother 2015, 4, 25–31. [Google Scholar] [CrossRef]
- Moehler, M.; Heo, J.; Lee, H.C.; Tak, W.Y.; Chao, Y.; Paik, S.W.; Yim, H.J.; Byun, K.S.; Baron, A.; Ungerechts, G.; et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019, 8, 1615817. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Okesanya, O.J.; Ukoaka, B.M.; Ibrahim, A.M.; Lucero-Prisno, D.E., 3rd. Vesicular Stomatitis Virus: Insights into Pathogenesis, Immune Evasion, and Technological Innovations in Oncolytic and Vaccine Development. Viruses 2024, 16, 1933. [Google Scholar] [CrossRef] [PubMed]
- Abdelmageed, A.A.; Dewhurst, S.; Ferran, M.C. Employing the Oncolytic Vesicular Stomatitis Virus in Cancer Virotherapy: Resistance and Clinical Considerations. Viruses 2024, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Muik, A.; Stubbert, L.J.; Jahedi, R.Z.; Geibeta, Y.; Kimpel, J.; Dold, C.; Tober, R.; Volk, A.; Klein, S.; Dietrich, U.; et al. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res. 2014, 74, 3567–3578. [Google Scholar] [CrossRef] [PubMed]
- Hastie, E.; Grdzelishvili, V.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol. 2012, 93, 2529–2545. [Google Scholar] [CrossRef]
- Hamad, A.; Yusubalieva, G.M.; Baklaushev, V.P.; Chumakov, P.M.; Lipatova, A.V. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023, 15, 547. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, H.; Tang, Q.; Shi, Z.; Zhou, L. Clinical advances in oncolytic virus therapy for malignant glioma: A systematic review. Discov. Oncol. 2023, 14, 183. [Google Scholar] [CrossRef]
- Ylosmaki, E.; Cerullo, V. Design and application of oncolytic viruses for cancer immunotherapy. Curr. Opin. Biotechnol. 2020, 65, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Parker, N.R.; Khong, P.; Parkinson, J.F.; Howell, V.M.; Wheeler, H.R. Molecular heterogeneity in glioblastoma: Potential clinical implications. Front. Oncol. 2015, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Fulci, G.; Breymann, L.; Gianni, D.; Kurozomi, K.; Rhee, S.S.; Yu, J.; Kaur, B.; Louis, D.N.; Weissleder, R.; Caligiuri, M.A.; et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12873–12878. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Fountzilas, C.; Moseley, J.; Noronha, N.; Tran, H.; Chakrabarty, R.; Selvaggi, G.; Coffey, M.; Thompson, B.; Sarantopoulos, J. A phase II study of REOLYSIN((R)) (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother. Pharmacol. 2017, 79, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Quintanilla, J.; Seah, I.; Chua, M.; Shah, K. Oncolytic viruses: Overcoming translational challenges. J. Clin. Investig. 2019, 129, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wang, G.; Tang, X.; Tong, A.; Zhou, L. Immunotherapy of glioblastoma: Recent advances and future prospects. Hum. Vaccin. Immunother. 2022, 18, 2055417. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, G.; Huang, D.; Sui, M.; Xu, Y. Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Front. Immunol. 2019, 10, 1205. [Google Scholar] [CrossRef] [PubMed]
- Chiocca, E.A.; Rabkin, S.D. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res. 2014, 2, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.; Suryadevara, C.M.; Batich, K.A.; Farber, S.H.; Sanchez-Perez, L.; Sampson, J.H. Emerging immunotherapies for glioblastoma. Expert. Opin. Emerg. Drugs 2016, 21, 133–145. [Google Scholar] [CrossRef]
- Verdugo, E.; Puerto, I.; Medina, M.A. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun. 2022, 42, 1083–1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.N.; Huang, J.H.; Qi, X.; Pan, Y.; Wu, E.; Nizamutdinov, D. Tumor Treating Fields and Combination Therapy in Management of Brain Oncology. Cancers 2025, 17, 1211. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Le, S.B.; Hutchinson, T.E.; Calinescu, A.A.; Sebastian, M.; Jin, D.; Liu, T.; Ghiaseddin, A.; Rahman, M.; Tran, D.D. Tumor Treating Fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma. J. Clin. Investig. 2022, 132, e149258. [Google Scholar] [CrossRef] [PubMed]
- Voloshin, T.; Kaynan, N.; Davidi, S.; Porat, Y.; Shteingauz, A.; Schneiderman, R.S.; Zeevi, E.; Munster, M.; Blat, R.; Tempel Brami, C.; et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy. Cancer Immunol. Immunother. 2020, 69, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J.; et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med. 2022, 14, eabn2231. [Google Scholar] [CrossRef]
- Beder, N.; Mirbahari, S.N.; Belkhelfa, M.; Mahdizadeh, H.; Totonchi, M. Unmasking the potential: Mechanisms of neuroinflammatory modulation by oncolytic viruses in glioblastoma. Explor. Target. Antitumor Ther. 2025, 6, 1002294. [Google Scholar] [CrossRef] [PubMed]
- Parvar, S.J.; Wong, C.I.; Lewis, A.; Szychot, E.; Morris, C.J.; Shorthouse, D.; Dziemidowicz, K. Convection-enhanced delivery for brain malignancies: Technical parameters, formulation strategies and clinical perspectives. Adv. Drug Deliv. Rev. 2025, 224, 115657. [Google Scholar] [CrossRef] [PubMed]
- Dhanawat, M.; Garima; Wilson, K.; Gupta, S.; Chalotra, R.; Gupta, N. Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB. Curr. Drug Deliv. 2024, 21, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Uribe Cardenas, R.; Laramee, M.; Ray, I.; Dahmane, N.; Souweidane, M.; Martin, B. Influence of focused ultrasound on locoregional drug delivery to the brain: Potential implications for brain tumor therapy. J. Control Release 2023, 362, 755–763. [Google Scholar] [CrossRef]
- Piper, K.; Kumar, J.I.; Domino, J.; Tuchek, C.; Vogelbaum, M.A. Consensus review on strategies to improve delivery across the blood-brain barrier including focused ultrasound. Neuro Oncol. 2024, 26, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shi, F.; Zhu, J.; Yuan, Y. An update on the clinical trial research of immunotherapy for glioblastoma. Front. Immunol. 2025, 16, 1582296. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, J.; Zhang, Q.; Liu, F. Mesenchymal stem cells loaded with Ad5-Ki67/IL-15 enhance oncolytic adenovirotherapy in experimental glioblastoma. Biomed. Pharmacother. 2023, 157, 114035. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.B.; Ajina, R.; Aref, S.; Darwish, M.; Alsayb, M.; Taher, M.; AlSharif, S.A.; Hashem, A.M.; Alkayyal, A.A. Advances in immunotherapy for glioblastoma multiforme. Front. Immunol. 2022, 13, 944452. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.; Berkeley, R.; Barr, T.; Ilett, E.; Errington-Mais, F. Past, Present and Future of Oncolytic Reovirus. Cancers 2020, 12, 3219. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Li, Z.; Chiocca, E.A.; Caligiuri, M.A.; Yu, J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023, 9, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Kanai, R.; Zaupa, C.; Sgubin, D.; Antoszczyk, S.J.; Martuza, R.L.; Wakimoto, H.; Rabkin, S.D. Effect of gamma34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J. Virol. 2012, 86, 4420–4431. [Google Scholar] [CrossRef]
- Mostafa, H.H.; Thompson, T.W.; Konen, A.J.; Haenchen, S.D.; Hilliard, J.G.; Macdonald, S.J.; Morrison, L.A.; Davido, D.J. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. J. Virol. 2018, 92, e01654-17. [Google Scholar] [CrossRef]
- Wollmann, G.; Paglino, J.C.; Maloney, P.R.; Ahmadi, S.A.; van den Pol, A.N. Attenuation of vesicular stomatitis virus infection of brain using antiviral drugs and an adeno-associated virus-interferon vector. Virology 2015, 475, 1–14. [Google Scholar] [CrossRef]
- Miljkovic, M.D.; Tuia, J.; Olivier, T.; Haslam, A.; Prasad, V. Cancer Drug Price and Novelty in Mechanism of Action. JAMA Netw. Open 2023, 6, e2347006. [Google Scholar] [CrossRef]
- Rana, M.; Liou, K.C.; Thakur, A.; Nepali, K.; Liou, J.P. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett. 2025, 617, 217601. [Google Scholar] [CrossRef]
- Kubli, S.P.; Berger, T.; Araujo, D.V.; Siu, L.L.; Mak, T.W. Beyond immune checkpoint blockade: Emerging immunological strategies. Nat. Rev. Drug Discov. 2021, 20, 899–919. [Google Scholar] [CrossRef]
- Wada, S.; Kobayashi, S.; Tsunoda, T. Future prospects for cancer immunotherapy—Strategies for ineffective cancers. Hum. Vaccin. Immunother. 2022, 18, 2031699. [Google Scholar] [CrossRef] [PubMed]
- Habashy, K.J.; Mansour, R.; Moussalem, C.; Sawaya, R.; Massaad, M.J. Challenges in glioblastoma immunotherapy: Mechanisms of resistance and therapeutic approaches to overcome them. Br. J. Cancer 2022, 127, 976–987. [Google Scholar] [CrossRef]
- Bates, E.A.; Lovatt, C.; Plein, A.R.; Davies, J.A.; Siebzehnrubl, F.A.; Parker, A.L. Engineering Adenoviral Vectors with Improved GBM Selectivity. Viruses 2023, 15, 1086. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Chai, H.H.; Fang, X.L.; Xu, H.S.; Li, T.W.; Tang, Q.S.; Gu, J.F.; Zhang, K.J.; Liu, X.Y.; Shi, Z.F.; et al. Double-modified oncolytic adenovirus armed with a recombinant interferon-like gene enhanced abscopal effects against malignant glioma. Neurooncol Adv. 2023, 5, vdad117. [Google Scholar] [CrossRef] [PubMed]
- Philbrick, B.; Adamson, D.C. DNX-2401: An investigational drug for the treatment of recurrent glioblastoma. Expert. Opin. Investig. Drugs 2019, 28, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Friedman, G.K.; Johnston, J.M.; Bag, A.K.; Bernstock, J.D.; Li, R.; Aban, I.; Kachurak, K.; Nan, L.; Kang, K.D.; Totsch, S.; et al. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N. Engl. J. Med. 2021, 384, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Wong, R.J.; Kooby, D.A.; Carew, J.F.; Adusumilli, P.S.; Patel, S.G.; Shah, J.P.; Fong, Y. Combination of mutated herpes simplex virus type 1 (G207 virus) with radiation for the treatment of squamous cell carcinoma of the head and neck. Eur. J. Cancer 2005, 41, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Rabkin, S.D.; Martuza, R.L. Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J. Immunother. Cancer 2020, 8, e000345. [Google Scholar] [CrossRef]
- Gujar, S.A.; Clements, D.; Dielschneider, R.; Helson, E.; Marcato, P.; Lee, P.W. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br. J. Cancer 2014, 110, 83–93. [Google Scholar] [CrossRef] [PubMed]
- El-Ayoubi, A.; Klawitter, M.; Ruttinger, J.; Wellhausser, G.; Holm, P.S.; Danielyan, L.; Naumann, U. Intranasal Delivery of Oncolytic Adenovirus XVir-N-31 via Optimized Shuttle Cells Significantly Extends Survival of Glioblastoma-Bearing Mice. Cancers 2023, 15, 4912. [Google Scholar] [CrossRef]
- Storozynsky, Q.T.; Agopsowicz, K.C.; Noyce, R.S.; Bukhari, A.B.; Han, X.; Snyder, N.; Umer, B.A.; Gamper, A.M.; Godbout, R.; Evans, D.H.; et al. Radiation combined with oncolytic vaccinia virus provides pronounced antitumor efficacy and induces immune protection in an aggressive glioblastoma model. Cancer Lett. 2023, 562, 216169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, S.; Wang, P.; Zhang, J.; Liu, F. Olaparib Enhances the Efficacy of Third-Generation Oncolytic Adenoviruses Against Glioblastoma by Modulating DNA Damage Response and p66shc-Induced Apoptosis. CNS Neurosci. Ther. 2024, 30, e70124. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z.; Zhang, C.; Zhang, N.; Wang, P.; Chu, Y.; Chard Dunmall, L.S.; Lemoine, N.R.; Wang, Y. An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition. Mol. Ther. Oncolytics 2022, 26, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, Y. Unraveling the immunosuppressive microenvironment of glioblastoma and advancements in treatment. Front. Immunol. 2025, 16, 1590781. [Google Scholar] [CrossRef] [PubMed]
- Stepanenko, A.A.; Sosnovtseva, A.O.; Valikhov, M.P.; Chernysheva, A.A.; Abramova, O.V.; Naumenko, V.A.; Chekhonin, V.P. The need for paradigm shift: Prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front. Immunol. 2024, 15, 1326757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, J.; Lin, K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur. J. Pharmacol. 2024, 981, 176913. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.M.; Lawler, S.E.; Jackson, T.L. Modeling Oncolytic Viral Therapy, Immune Checkpoint Inhibition, and the Complex Dynamics of Innate and Adaptive Immunity in Glioblastoma Treatment. Front. Physiol. 2020, 11, 151. [Google Scholar] [CrossRef]
- Leoni, V.; Vannini, A.; Gatta, V.; Rambaldi, J.; Sanapo, M.; Barboni, C.; Zaghini, A.; Nanni, P.; Lollini, P.L.; Casiraghi, C.; et al. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog. 2018, 14, e1007209. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, F.; Menotti, L.; Avitabile, E.; Appolloni, I.; Ceresa, D.; Marubbi, D.; Campadelli-Fiume, G.; Malatesta, P. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019, 38, 4467–4479. [Google Scholar] [CrossRef] [PubMed]
- Grimes, J.M.; Ghosh, S.; Manzoor, S.; Li, L.X.; Moran, M.M.; Clements, J.C.; Alexander, S.D.; Markert, J.M.; Leavenworth, J.W. Oncolytic reprogramming of tumor microenvironment shapes CD4 T-cell memory via the IL6ra-Bcl6 axis for targeted control of glioblastoma. Nat. Commun. 2025, 16, 1095. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Montana, V.; Tong, X.; Parpura, V. Status and Prospects of Glioblastoma Multiforme Treatments. J. Neurochem. 2025, 169, e70158. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, Y.R.; Schulze, A.J. Oncolytic Viruses for Malignant Glioma: On the Verge of Success? Viruses 2021, 13, 1294. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.J.; Chen, J.S.; Jain, S.; Morshed, R.A.; Haddad, A.F.; Gill, S.; Beniwal, A.S.; Aghi, M.K. Immunotherapy Resistance in Glioblastoma. Front. Genet. 2021, 12, 750675. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.M.; Lang, F.F.; Kan, P. Intraarterial delivery of virotherapy for glioblastoma. Neurosurg. Focus. 2021, 50, E7. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.M.; Gumin, J.; Camstra, K.M.; Collins, D.E.; Chen, M.M.; Shpall, E.J.; Parker Kerrigan, B.C.; Johnson, J.N.; Chen, S.R.; Fueyo, J.; et al. Endovascular Selective Intra-Arterial Infusion of Mesenchymal Stem Cells Loaded with Delta-24 in a Canine Model. Neurosurgery 2020, 88, E102–E113. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Petrecca, K.; Walbert, T.; Butowski, N.; Salacz, M.; Perry, J.; Damek, D.; Bota, D.; Bettegowda, C.; Zhu, J.J.; et al. Effect of Vocimagene Amiretrorepvec in Combination with Flucytosine vs Standard of Care on Survival Following Tumor Resection in Patients with Recurrent High-Grade Glioma: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Accomando, W.P.; Rao, A.R.; Hogan, D.J.; Newman, A.M.; Nakao, A.; Alizadeh, A.A.; Diehn, M.; Diago, O.R.; Gammon, D.; Haghighi, A.; et al. Molecular and Immunologic Signatures are Related to Clinical Benefit from Treatment with Vocimagene Amiretrorepvec (Toca 511) and 5-Fluorocytosine (Toca FC) in Patients with Glioma. Clin. Cancer Res. 2020, 26, 6176–6186. [Google Scholar] [CrossRef]
- Basu, R.; Moles, C.M. Rational selection of an ideal oncolytic virus to address current limitations in clinical translation. Int. Rev. Cell Mol. Biol. 2023, 379, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.B.; Carpenter, A.M.; Aiken, R.; Hanft, S. Oncolytic virus in gliomas: A review of human clinical investigations. Ann. Oncol. 2021, 32, 968–982. [Google Scholar] [CrossRef] [PubMed]
- Salvador, E.; Kessler, A.F.; Domrose, D.; Hormann, J.; Schaeffer, C.; Giniunaite, A.; Burek, M.; Tempel-Brami, C.; Voloshin, T.; Volodin, A.; et al. Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood-Brain Barrier In Vitro and In Vivo. Biomolecules 2022, 12, 1348. [Google Scholar] [CrossRef] [PubMed]
- Eckert, T.; Suresh, R.; Zobaer, M.S.; Rowland, N.C. Invasive and non-invasive tumor-treating electric field (TTF) therapy: An exciting advance in oncologic neuromodulation. Brain Stimul. 2025, 18, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.S.; Ortiz, K.J.; Patel, A.; Blocher, W.A., 3rd; Richardson, A.M. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr. Oncol. Rep. 2024, 26, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Chu, C.; Gulisashvili, D.; Sharma, S.; Kalkowski, L.; Fadon-Padilla, L.; Ostovitz, J.; Lesniak, W.G.; Deredge, D.; Walczak, M.; et al. A Safe MRI- and PET-guided Method for Increasing Osmotic Blood-Brain Barrier Permeability. Radiology 2025, 316, e243396. [Google Scholar] [CrossRef] [PubMed]
- Kangas, C.; Krawczyk, E.; He, B. Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses 2021, 13, 1408. [Google Scholar] [CrossRef] [PubMed]
- Shoaf, M.L.; Desjardins, A. Oncolytic Viral Therapy for Malignant Glioma and Their Application in Clinical Practice. Neurotherapeutics 2022, 19, 1818–1831. [Google Scholar] [CrossRef] [PubMed]
- Piranlioglu, R.; Chiocca, E.A. Oncolytic virus-mediated immunomodulation in glioblastoma: Insights from clinical trials and challenges. Semin. Immunol. 2025, 79, 101975. [Google Scholar] [CrossRef] [PubMed]
| Therapy | Mechanism | Benefits | Limitations | Efficacy | Examples | Combination |
|---|---|---|---|---|---|---|
| Surgery | Gross resection of the tumor | Quicker, no systemic side effects, potential for complete resection | Inability to remove microscopic tumor growth leads to recurrence | Up to 61% increased 1-year survival with gross total resection [7] | Gross total resection, Subtotal resection | Can be used with chemotherapy and radiotherapy |
| Chemo therapy | Alkylation and damage of tumor cell DNA, sensitization of tumor cells to radiation | Directly cytotoxic, can be combined with radiation for increased efficacy | Cancer cell resistance through DNA repair genes and efflux pumps | Up to 2.5 months of increased survival when used with RT [8] | TMZ, Bevacizumab carmustine | Can be used after surgery, augments the efficacy of radiation |
| Radiation | Use radioactive particles to cause oxidative damage to tumor cells | Can spare healthy tissue, directly cytotoxic | A hypoxic tumor environment renders it less effective | Up to 2.5 months of increased survival when used with CT [8] | X-ray photons, gamma photons | Increased efficacy with chemotherapy |
| TTFields | Uses frequency and electric fields to interfere with tumor cell replication and growth | Noninvasive | Expensive | Up to 4 months increased overall survival when used with TMZ [9] | N/A | Can be used with TMZ |
| Immuno therapy | Therapies that can modulate/enhance host immune responses to tumors | Can modulate the tumor microenvironment and induce host immune response | Novel | Up to 6 months increased survival rate when combined with the Stupp regimen [10] | CAR-T cells, Immune checkpoint inhibitors, vaccines, and oncolytic viruses | Novel, but can be used with the Stupp regimen |
| Virus Type | Genetic Material | Mechanism of Action | Applications | Examples |
|---|---|---|---|---|
| Adenovirus | dsDNA | Engineered with E1B55K or E1A gene deletions that permit replication only in tumor cells lacking functional p53 and Rb pathways, thereby sparing normal cells | Solid tumors | DNX-2401 [17,40,41,42], ONYX-015 [30,43], CG0070 [31,43] |
| Herpes Simplex Virus | dsDNA | Attenuated by deletion of neurovirulence gene γ34.5 and ICP6 (ribonucleotide reductase) so replication occurs selectively in Rb-pathway-deficient tumor cells | Solid tumors | G207 [26,49], T-VEC (Talimogene laherparepvec) [50,51], HSV1716 [47,48], R7020 [47,48] |
| Measles Virus | (−) RNA | Naturally targets cells expressing CD46 and signaling lymphocyte activation molecule (SLAM/CD150), both highly expressed on many tumor cells; oncolysis occurs via syncytia formation and immune activation. | Hematologic and solid tumors | MV-CEA [56,57], MV-NIS [54,55,56], MV-GFP [54,55,56] |
| Poliovirus | (+) RNA | Exploits overexpression of CD155 (poliovirus receptor) in malignant cells; recombinant strains such as PVS-RIPO are engineered for safety with attenuated neurovirulence. | Solid tumors | PVS-RIPO [27,58,59,60], PVS-HPV-16 [58] |
| Reovirus | dsRNA | Naturally replicates in cells with activated Ras or EGFR signaling pathways that inhibit the antiviral protein kinase R (PKR), enabling selective oncolysis. | Solid tumors, multiple myeloma | Reolysin (Pelareorep) [62,63], Dearing Type 3 Reovirus [61] Reovirus T3D [61] |
| Vaccinia Virus | dsDNA | Modified by deletion of thymidine kinase (TK) and vaccinia growth factor (VGF) genes; relies on high TK expression and EGF signaling found in cancer cells | Solid tumors | Pexa-Vec (JX-594) [63,66,67], GL-ONC1 [64,65], vvDD [64,65] |
| Vesicular Stomatitis Virus | (−) RNA | Naturally infects cells with impaired type I interferon (IFN) response; oncolytic variants (e.g., VSV-GP, VSV-IFNβ) show enhanced tumor selectivity and immune stimulation. | Hematologic and solid tumors | VSV-GP [70,71], VSV-IFNβ [68,69], VSV-hMCP3 [68,69] |
| OV Platform (Examples) | Key Entry/Selectivity | Engineering/Payload | Typical GBM Delivery | Clinical Status & Notable Combination Data | Strengths | Watch-Outs |
|---|---|---|---|---|---|---|
| Adenovirus (DNX-2401, DNX-2440-OX40L) | RGD-modified fiber targets αvβ3/αvβ5; E1A 24 bp deletion → Rb-defect selectivity | Moderate payload; OX40L and other immunomodulators possible | Intratumoral (stereotactic); peri-cavity dosing | DNX-2401 + pembrolizumab (KEYNOTE-192) inflames GBM; DNX-2440 (OX40L) early feasibility | Well-characterized; synergistic with PD-1 blockade | Pre-existing anti-Ad immunity; invasive delivery |
| HSV-1 (G207, G47Δ/teserpaturev, M032) | Nectin-1/HVEM via gD; selectivity via ICP34.5/ICP6 deletions | Large DNA genome; high transgene capacity (e.g., IL-12) | Intratumoral/peri-resection cavity; convection-enhanced delivery (CED) | G47Δ (Japan, approved 2021); G207 safe with RT synergy; M032 (IL-12) + pembrolizumab ongoing | Arming-friendly; regulatory precedent in GBM | Requires local delivery; theoretical latency issues mitigated by deletions |
| Poliovirus (PVS-RIPO) | Targets CD155 (Necl-5), highly expressed in GBM | RNA virus; HRV IRES replacement for attenuation | Intratumoral infusion (CED) | Phase I: safety with OS plateau; combinations with ICIs under study | Natural neurotropism to GBM; durable-response tail in subset | Pre-existing immunity; catheter-based delivery |
| Measles (MV-CEA) | CD46 (overexpressed on tumors); also CD150, nectin-4 | RNA virus; CEA reporter allows noninvasive monitoring | Intratumoral/peri-resection cavity | Phase I in recurrent GBM: safe with preliminary activity | Trackable via serum CEA; strong preclinical GBM data | Neutralized by measles immunity; RNA stability |
| Reovirus (Pelareorep/Reolysin) | Replicates in RAS-activated/PKR-impaired cells (often EGFR-driven) | RNA virus; small payload; IV delivery feasible | Intratumoral or systemic | Mixed GBM outcomes; synergy with chemo/RT preclinically | Systemic potential; well-studied biology | Neutralizing antibodies are common; inconsistent GBM efficacy |
| Vaccinia (Pexa-Vec/JX-594) | Broad tropism; TK-deletion confers tumor selectivity | Large DNA genome; payload capacity for cytokines, VEGF inhibitors | Intratumoral or systemic | GBM exploration limited; HCC phase III negative | High payload; strong innate immune activation | Program setbacks in HCC; GBM data sparse |
| VSV/VSV-GP | LDL receptor entry; tumor selectivity in IFN-deficient cells | RNA virus; attenuated forms (e.g., VSV-IFNβ, VSV-GP) | Intratumoral or systemic (early trials) | First-in-human VSV-GP: feasible; GBM data preliminary; ICI combos in testing | Potent oncolysis; ICI synergy rationale | Neurotoxicity risk (mitigated by pseudotyping/IFNβ insertion) |
| Advantages of Combination Therapy | Disadvantages of Combination Therapy |
|---|---|
| Change the activity of the TME (“Cold” to “Hot”) | Additive toxicity and immunosuppression risks |
| Multi-axis killing (Oncolysis + RT/Chemo + ICI) | Complex logistics and higher cost |
| Potential BBB/TME modulation (TTFields, FUS) | Interpretive challenges with imaging (pseudoprogression diagnosis with use of iRANO vs. RANO 2.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizamutdinov, D.; Sentmanat, A.; Tong, J.; Qi, X.; Pan, Y.; Qi, D.; Wu, E.; Huang, J.H. The Emerging Role of Oncolytic Virotherapy in Glioblastoma Management. Cancers 2025, 17, 3465. https://doi.org/10.3390/cancers17213465
Nizamutdinov D, Sentmanat A, Tong J, Qi X, Pan Y, Qi D, Wu E, Huang JH. The Emerging Role of Oncolytic Virotherapy in Glioblastoma Management. Cancers. 2025; 17(21):3465. https://doi.org/10.3390/cancers17213465
Chicago/Turabian StyleNizamutdinov, Damir, Anna Sentmanat, Jing Tong, Xiaoming Qi, Yizong Pan, Dan Qi, Erxi Wu, and Jason H. Huang. 2025. "The Emerging Role of Oncolytic Virotherapy in Glioblastoma Management" Cancers 17, no. 21: 3465. https://doi.org/10.3390/cancers17213465
APA StyleNizamutdinov, D., Sentmanat, A., Tong, J., Qi, X., Pan, Y., Qi, D., Wu, E., & Huang, J. H. (2025). The Emerging Role of Oncolytic Virotherapy in Glioblastoma Management. Cancers, 17(21), 3465. https://doi.org/10.3390/cancers17213465

