Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = bovine endometritis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1165 KiB  
Brief Report
Serum Amyloid A3 Expression Is Enhanced by Gram-Negative Bacterial Stimuli in Bovine Endometrial Epithelial Cells
by Kazuha Aoyagi, Keishi Owaki, Hiroki Sakai, Ayaka Okada and Yasuo Inoshima
Pathogens 2025, 14(8), 729; https://doi.org/10.3390/pathogens14080729 - 23 Jul 2025
Viewed by 231
Abstract
Bovine endometritis is a common postpartum disease that significantly impairs reproductive performance and reduces economic sustainability in dairy and beef cattle. It is primarily caused by gram-negative and -positive bacteria, triggering strong inflammatory responses in the endometrium. Serum amyloid A (SAA) is an [...] Read more.
Bovine endometritis is a common postpartum disease that significantly impairs reproductive performance and reduces economic sustainability in dairy and beef cattle. It is primarily caused by gram-negative and -positive bacteria, triggering strong inflammatory responses in the endometrium. Serum amyloid A (SAA) is an acute-phase protein and precursor of amyloid A (AA) in AA amyloidosis. In cattle, multiple SAA isoforms have been identified; however, the biological functions of SAA3 remain unclear. Hence, this study investigated the role of SAA3 in bovine endometrial epithelial cells (BEnEpCs) following stimulation with gram-negative or -positive bacterial antigens. BEnEpCs were treated with lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and, subsequently, the expression levels of SAA3 and SAA1 mRNA were compared by real-time PCR. To further investigate protein-level changes, immunocytochemistry (ICC) was performed to assess the expressions of SAA3 and SAA1. These analyses revealed that SAA3 mRNA expression was significantly enhanced by LPS and LTA, whereas SAA1 mRNA remained undetectable or showed only minimal responsiveness. Notably, only SAA3 protein expression increased in response to stimulation. These results indicate that SAA3 plays a crucial role in the innate immune response of BEnEpCs against gram-negative bacteria. Our in vitro findings may facilitate understanding of the innate immune activity in bovine uterus. Full article
Show Figures

Figure 1

13 pages, 255 KiB  
Communication
Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis
by Ionica Iancu, Sebastian Alexandru Popa, Janos Degi, Alexandru Gligor, Ionela Popa, Vlad Iorgoni, Paula Nistor, Kálmán Imre, Ileana Nichita and Viorel Herman
Antibiotics 2025, 14(7), 650; https://doi.org/10.3390/antibiotics14070650 - 26 Jun 2025
Viewed by 600
Abstract
Bovine uterine infections remain a widespread challenge in dairy production systems, contributing to reduced fertility and overall herd performance. Background/Objectives: Postpartum uterine infections significantly affect dairy cattle fertility and productivity. This study aimed to identify aerobic bacterial pathogens associated with clinical endometritis [...] Read more.
Bovine uterine infections remain a widespread challenge in dairy production systems, contributing to reduced fertility and overall herd performance. Background/Objectives: Postpartum uterine infections significantly affect dairy cattle fertility and productivity. This study aimed to identify aerobic bacterial pathogens associated with clinical endometritis in Romanian dairy cows and evaluate their antimicrobial resistance profiles. Methods: Uterine swab samples (n = 348) were collected from clinically affected cows across multiple farms. Bacteria were isolated and identified using conventional culture methods and MALDI-TOF MS. Antimicrobial susceptibility testing was performed using the VITEK® 2 system with GN 96 and GP 79 cards. Statistical analysis was conducted using the chi-square (χ2) test. Results: A total of 387 bacterial isolates were recovered, with over half of the samples showing mixed bacterial contamination. Escherichia coli was the most frequently identified pathogen (44.9%), followed by Staphylococcus spp. (17.3%) and Klebsiella spp. (14.5%). Gram-negative isolates showed high resistance to tetracycline and ampicillin, while retaining susceptibility to imipenem and polymyxin B. Among Gram-positive isolates, Streptococcus spp. were highly susceptible to β-lactams, while Staphylococcus spp. showed moderate resistance to penicillin and macrolides. Conclusions: This study highlights the prevalence of key aerobic pathogens and their resistance profiles in Romanian dairy herds. These findings support the need for targeted diagnostics and rational antimicrobial use to improve uterine health and therapeutic outcomes in dairy cattle. Full article
(This article belongs to the Special Issue Detection of Bacteria and Antibiotics Surveillance in Livestock)
18 pages, 5903 KiB  
Article
Oxidative Stress Mediates the Dual Regulatory Effects of Bovine Uterine ECM Remodeling Through the TGF-β1/Smad3 Pathway: Molecular Mechanisms of MMPs and COL-IV Imbalances
by Jiamei Tan, Zongjie Wang, Mingmao Yang, Ruihang Zhang, Zhongqiang Xue, Dong Zhou, Aihua Wang, Pengfei Lin and Yaping Jin
Animals 2025, 15(13), 1847; https://doi.org/10.3390/ani15131847 - 23 Jun 2025
Viewed by 543
Abstract
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative [...] Read more.
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative stress may contribute to the pathological progression of endometritis by regulating ECM remodeling, but the specific molecular mechanisms remain unclear. ECM homeostasis relies on the coordinated action of matrix metalloproteinases (e.g., MMP2, MMP9) and collagen (e.g., type IV collagen, COL-IV), while the TGFβ1/Smad3 signaling pathway is implicated in ECM metabolic regulation. Therefore, elucidating the regulatory mechanisms of oxidative-stress-mediated TGFβ1/Smad3 signaling on ECM remodeling is crucial for understanding the pathogenesis of endometritis. This study investigates postpartum bovine uterine tissues, comparing inflammatory cytokines (IL-1β, IL-6, TNF-α) and oxidative-stress-related factors (GPx, SOD, CAT) between healthy and endometritis groups. Additionally, the differences in ECM-remodeling-associated proteins (MMP2, MMP9, COL-IV) and TGFβ1/Smad3 pathway activity are analyzed. To further validate the mechanisms, an oxidative stress model is established in vitro by treating bovine endometrial epithelial cells (bEECs) with 200 μM H2O2 for 4 h, followed by the valuation of the same indicators. Furthermore, gene silencing to downregulate Smad3 expression or inhibitor-mediated suppression of TGFβ1/Smad3 pathway activity is performed to observe their regulatory effects on MMP2, MMP9, and COL-IV. The results demonstrate that oxidative-stress-mediated endometritis significantly upregulates MMP2, MMP9, and the TGFβ1/Smad3 pathway activity, while suppressing COL-IV expression. Functional genetic experiments further reveal the dual regulatory role of the TGFβ1/Smad3 pathway in ECM remodeling: (1) pathway activation promotes MMP2/MMP9 expression, accelerating COL-IV degradation; (2) Smad3 positively regulates COL-IV synthesis. These findings provide a theoretical basis for targeting the TGFβ1/Smad3 pathway to mitigate the pathological progression of endometritis. Full article
(This article belongs to the Special Issue Physiology and Pathology of Bovine Reproduction)
Show Figures

Figure 1

20 pages, 17952 KiB  
Article
Morinda officinalis Oligosaccharides Protect Against LPS-Induced Uterine Damage and Endometrial Inflammation in Mice and Bovine Endometrial Epithelial Cells
by Shiwen He, Beibei Yu, Tingting Yu, Tingting Jiang, Diqi Yang and Hui Peng
Animals 2025, 15(9), 1286; https://doi.org/10.3390/ani15091286 - 30 Apr 2025
Viewed by 603
Abstract
Endometritis poses a significant challenge to the dairy industry, impairing bovine reproductive performance and causing substantial economic losses. Although Morinda officinalis oligosaccharides (MOO) exhibit anti-inflammatory properties, their therapeutic potential against endometritis remains unclear. This study investigated MOO’s protective effects against LPS-induced uterine injury [...] Read more.
Endometritis poses a significant challenge to the dairy industry, impairing bovine reproductive performance and causing substantial economic losses. Although Morinda officinalis oligosaccharides (MOO) exhibit anti-inflammatory properties, their therapeutic potential against endometritis remains unclear. This study investigated MOO’s protective effects against LPS-induced uterine injury in mice and inflammation in bovine endometrial epithelial cells (BENDs), and explored the underlying mechanisms. In mice, MOO attenuated uterine inflammation by improving histopathology, reducing pro-inflammatory cytokines and decreasing oxidative stress. In BEND cells, MOO alleviated LPS-induced inflammation, oxidative stress, and apoptosis via downregulating pro-inflammatory mediators (IL-1β, IL-6, TNF-α, IL-8, TLR4, RELA), restoring antioxidant enzymes (HMOX1, NQO1, Nrf2, NOX4), and modulating apoptosis markers (BAX, cleaved CASP3, CASP9, BCL2). MOO reduced ROS accumulation, preserved mitochondrial membrane potential, and inhibited calcium influx. Critically, the calcium channel agonist Bay K 8644 reversed MOO’s protective effects, confirming calcium signaling modulation as a key mechanism. This study provides the first evidence that MOO mitigates LPS-induced uterine damage and BENDs inflammation through calcium signaling regulation, suggesting its potential for treating inflammation-related reproductive disorders in livestock. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

12 pages, 228 KiB  
Article
Determination of Minimum Inhibitory Concentrations of Selected Antibiotics Against Trueperella pyogenes Originated from Bovine Clinical Endometritis
by Ottó Szenci, Ákos Jerzsele, Zoltán Somogyi, Ádám Kerek, Attila Répási, Lea Lénárt and László Makrai
Pathogens 2025, 14(5), 405; https://doi.org/10.3390/pathogens14050405 - 24 Apr 2025
Viewed by 593
Abstract
Bacteriological examination of uterine secretions provides essential information for the prevalence of bovine uterine pathogens and their influence on fertility. The objective of the present study was to determine the uterine pathogens in cases of clinical endometritis in two Holstein-Friesian dairy farms between [...] Read more.
Bacteriological examination of uterine secretions provides essential information for the prevalence of bovine uterine pathogens and their influence on fertility. The objective of the present study was to determine the uterine pathogens in cases of clinical endometritis in two Holstein-Friesian dairy farms between 21 and 27 days after calving and the minimum inhibitory concentration (MIC) of 14 antimicrobials for Trueperella pyogenes (T. pyogenes). Overall, the prevalence of T. pyogenes (Farms A and B) was 46.3% and 22% (p < 0.01), respectively. In contrast, Farm B had significantly more cases (p < 0.001) of Escherichia coli, but the distribution of uterine pathogens was similar. Regarding the prevalence of any bacteria, Farm B also had significantly more bacteria (p < 0.001) than Farm A. T. pyogenes isolates were highly susceptible to amoxicillin, amoxicillin/clavulanic acid, tylosin, and cephalosporins, such as ceftiofur, cefquinome, and cephalexin with MIC90 of ≤2 μg/mL. At the same time, MIC90 of tulathromycin, lincomycin, and florfenicol were between 4 and 8 μg/mL and of doxycycline, enrofloxacin, oxytetracycline, and gentamicin, were between 16 and 32 μg/mL, respectively. Meanwhile, sulfamethoxazole/trimethoprim showed the highest MIC90 (>32 μg/mL). In summary, T. pyogenes with high MIC90 against oxytetracycline, gentamicin, and sulfamethoxazole/trimethoprim were found, which calls attention to the prudent use of antibiotics. Full article
(This article belongs to the Special Issue Current Progress on Bacterial Antimicrobial Resistance)
22 pages, 6509 KiB  
Article
Development of Ofloxacin-Loaded CS/PVA Hydrogel for the Treatment of Metritis in Bovine
by Priyanka Kumari, Manish Kumar Shukla, Ashutosh Tripathi, Janmejay Pandey and Amit K. Goyal
Drugs Drug Candidates 2025, 4(2), 17; https://doi.org/10.3390/ddc4020017 - 16 Apr 2025
Viewed by 1077
Abstract
Background: Metritis, a common postpartum uterine infection in bovines, poses substantial challenges in livestock management, including compromised fertility and economic losses. Poor uterine drug penetration and systemic side effects, necessitating innovative localised delivery systems and limiting current systemic antibiotic treatments. Aim: [...] Read more.
Background: Metritis, a common postpartum uterine infection in bovines, poses substantial challenges in livestock management, including compromised fertility and economic losses. Poor uterine drug penetration and systemic side effects, necessitating innovative localised delivery systems and limiting current systemic antibiotic treatments. Aim: This study aimed to develop and evaluate the potential effect of the ofloxacin-loaded hydrogel as a localised drug delivery system to treat metritis in bovine. The focus was on achieving sustained drug release, enhanced antibacterial efficacy and reduced inflammation in the endometrium. Materials and Methods: The CS/PVA hydrogel was synthesised using a freeze–thaw method and further optimised for drug encapsulation efficiency (96.7 ± 2.1%), stability and biocompatibility. Physicochemical characterisation included swelling behaviour, mechanical properties and rheological analysis. In vitro drug release profiles in the simulated uterine fluid were assessed over 72 h and antibacterial activity was tested against common uterine pathogens such as Escherichia coli and S. aureus. In vivo studies were conducted on bovines diagnosed with endometritis to evaluate clinical recovery. Results: The SEM image of the ofloxacin-loaded CS/PVA hydrogel resulted in a smooth and porous structure demonstrating larger pore size than the blank. The rheological study suggested higher stability and elastic behaviour. Antibacterial assays on E. coli and S. aureus revealed significant inhibition zones, respectively, indicating potent efficacy. In vivo, evaluated on treated bovine, reduced bacterial loads were exhibited (2.86 × 105A CFU/mL → 6.37 × 102B CFU/mL), clinical improvement was marked and uterine inflammation was resolved. Conclusions: Ofloxacin-loaded hydrogels represent a promising localised treatment for bovine metritis, offering sustained antibacterial action and improved clinical outcomes. This approach addresses the limitations of systemic antibiotic therapies and provides a practical solution for enhanced veterinary care. Further studies are recommended to validate these findings in more extensive field trials and explore commercialisation potential. Full article
(This article belongs to the Special Issue Microbes and Medicine—Papers from the 2025 OBASM Meeting)
Show Figures

Figure 1

20 pages, 9434 KiB  
Article
Bta-Let-7d Modulation of Oxidative Stress Induced by Potassium Permanganate in Bovine Endometrial Cells via IGF1R/PI3K/AKT Signaling Pathway
by Wenjing Liu, Talha Umar, Wen Feng, Bohan Zhang, Jinxin Zhang, Han Zhou, Nuoer Chen, Ganzhen Deng and Siyu Xiao
Antioxidants 2025, 14(4), 444; https://doi.org/10.3390/antiox14040444 - 8 Apr 2025
Viewed by 668
Abstract
Oxidative stress is a significant factor affecting reproductive efficiency in dairy cows, contributing to conditions such as endometritis that impair fertility and milk production. This study investigates the molecular mechanisms by which bta-let-7d modulates the oxidative stress responses induced by potassium permanganate (KMnO [...] Read more.
Oxidative stress is a significant factor affecting reproductive efficiency in dairy cows, contributing to conditions such as endometritis that impair fertility and milk production. This study investigates the molecular mechanisms by which bta-let-7d modulates the oxidative stress responses induced by potassium permanganate (KMnO4) in bovine endometrial epithelial cells (BEECs). Using KMnO4 to induce oxidative stress, we observed significant increases in reactive oxygen species (ROS) and malondialdehyde (MDA) levels, accompanied by decreased activities of the antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). Quantitative PCR and Western blot analyses indicated a negative correlation between IGF1R and bta-let-7d expression in oxidative-stress-affected tissues, suggesting opposing roles in managing stress responses. Following KMnO4 treatment, there was marked downregulation of anti-apoptotic genes and an upregulation of pro-apoptotic markers, alongside diminished antioxidant capacity. Mechanistically, bta-let-7d targets IGF1R, leading to the suppression of the PI3K/AKT signaling pathway and exacerbating oxidative damage. In vivo experiments further confirmed the impact of KMnO4 exposure on IGF1R expression. These findings provide novel insights into the mechanisms by which KMnO4 induces oxidative stress and apoptosis in bovine uterus. They highlight the potential for therapeutic strategies targeting the bta-let-7d/IGF1R axis to enhance reproductive health management in dairy cows, offering a promising avenue for mitigating oxidative-stress-related reproductive disorders. Full article
Show Figures

Figure 1

11 pages, 224 KiB  
Article
The Analysis of Paratuberculosis Prevalence and Associated Performance Parameters in Dairy Cows from Xi’an City
by Xuejian Zhao, Qiang Liang, Haipeng Feng, Caixia Ru, Lei Wang, Kang Zhang and Jianxi Li
Vet. Sci. 2025, 12(3), 243; https://doi.org/10.3390/vetsci12030243 - 3 Mar 2025
Viewed by 1143
Abstract
The aim of this study was to understand the status of Mycobacterium paratuberculosis infection in a large-scale dairy farm in Xi’an city and evaluate the impact via a “quarantine + elimination” model of bovine paratuberculosis on the production performance, reproductive performance, and economic [...] Read more.
The aim of this study was to understand the status of Mycobacterium paratuberculosis infection in a large-scale dairy farm in Xi’an city and evaluate the impact via a “quarantine + elimination” model of bovine paratuberculosis on the production performance, reproductive performance, and economic benefits in said dairy farm. The paratuberculosis antibodies from 4488 dairy cow sera were detected by an ELISA kit, complemented by a comprehensive analysis of milk production parameters, health metrics, reproductive indices, and pharmaceutical expenditures (2021–2024). The results indicated that the paratuberculosis prevalence in the dairy farm gradually reduced from 6.76% (2021) to 3.58% (2024). It was also found that the paratuberculosis prevalence among dairy cows increased progressively with the increase in parity until the fifth calving, after which a significant decline was observed. The reduction in infection rates in the herd was correlated with measurable improvements in milk quality metrics, including elevated milk fat and protein content, extended shelf stability, and decreased somatic cell counts in milk. In addition, the reproductive performance of the dairy cows relatively improved with the decrease in paratuberculosis prevalence; there was a relative improvement in the reproductive performance of the dairy cows, which mainly occurred by the time of pregnancy at the first service of the cows, while the number of monthly occurrences of endometritis, diarrhea, calving intervals, and inseminations decreased. Further data correlation analysis showed that daily milk volume was positively correlated with lactase persistence (95% CI: 0.247–0.753, p = 0.001) and peaked at the day of milk production (95% CI: 0.135–0.698, p = 0.008) but was negatively correlated with parity (95% CI: −0.783–−0.315). In addition, lactation time was positively correlated with 305-day milk volume (95% CI: 0.173–0.718, p < 0.004) and peaked at the day of milk production (95% CI: 0.265–0.761) but showed the opposite trend with the milk fat rate (95% CI: −0.633–−0.018, p = 0.040) and milk protein rate (95% CI: −0.738–−0.215, p = 0.002). Furthermore, milk loss was negatively correlated with peak milk production (95% CI: −0.758–−0.258, p = 0.001). Intriguingly, the cost of medications for diarrhea exhibited a downward trend over the past three years. Taken together, these findings confirmed the necessity to reduce the incidence of Mycobacterium avium subsp. paratuberculosis in dairy cows and serve as a guide for the future successful and gradual eradication of paratuberculosis in Chinese dairy cow farms. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
25 pages, 35835 KiB  
Article
From Genes to Healing: The Protective Mechanisms of Poria cocos Polysaccharide in Endometrial Health
by Yongxi Huang, Pupu Yan, Jun Zhu, Yinuo Gong, Man Liu, Haishan Cheng, Tilin Yi, Fuxian Zhang, Xiaolin Yang, Yingbing Su and Liwei Guo
Curr. Issues Mol. Biol. 2025, 47(3), 139; https://doi.org/10.3390/cimb47030139 - 21 Feb 2025
Cited by 1 | Viewed by 1277
Abstract
The aim of this study is to investigate the therapeutic effect of Poria cocos polysaccharide (PCP) on bovine endometritis. Initially, an inflammation model was induced using LPS-treated bovine endometrial epithelial cells (BEND) to identify the differentially expressed genes (DEGs) between the control and [...] Read more.
The aim of this study is to investigate the therapeutic effect of Poria cocos polysaccharide (PCP) on bovine endometritis. Initially, an inflammation model was induced using LPS-treated bovine endometrial epithelial cells (BEND) to identify the differentially expressed genes (DEGs) between the control and LPS groups by transcriptome sequencing, and GO functional annotation and KEGG enrichment analysis were performed. Subsequently, the mechanism of PCP treatment for endometritis was further evaluated using protein immunoblotting and real-time fluorescence quantitative analysis. Finally, the efficacy of PCP in treating endometritis was evaluated using a rat model of endometritis established with a mixed bacterial infection. The results show that transcriptome sequencing identified 4367 DEGs, with enrichment analysis highlighting the primary influences on the cell cycle and apoptosis signaling pathways. Following treatment of BEND with LPS resulted in cell apoptosis and inflammatory response. However, the introduction of PCP intervention significantly inhibited the progression of apoptosis and inflammation. Animal test results indicate that PCP significantly decreases the levels of serum inflammatory in rats suffering from endometritis and enhances antioxidant capacity. Furthermore, it effectively improved uterine swelling and tissue vacuolization caused by bacterial infection. These findings suggest that PCP could alleviate endometritis by modulating the inflammatory response and suppressing cell apoptosis. Poria cocos polysaccharides demonstrate significant potential for applications in immune modulation, anti-inflammatory responses, and antioxidant activities. Their high safety profile makes them suitable candidates as alternative therapeutic agents for the treatment of endometritis in the veterinary field. Full article
(This article belongs to the Special Issue The Role of Bioactives in Inflammation)
Show Figures

Figure 1

23 pages, 50146 KiB  
Article
Isorhamnetin Ameliorates Non-Esterified Fatty Acid-Induced Apoptosis, Lipid Accumulation, and Oxidative Stress in Bovine Endometrial Epithelial Cells via Inhibiting the MAPK Signaling Pathway
by Haimiao Lv, Lijuan Liu, Wenna Zou, Ying Yang, Yuan Li, Shengji Yang, Aixin Liang and Liguo Yang
Antioxidants 2025, 14(2), 156; https://doi.org/10.3390/antiox14020156 - 28 Jan 2025
Cited by 1 | Viewed by 1180
Abstract
High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically [...] Read more.
High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically assessed NEFA-induced damage in bovine endometrial epithelial cells (bEECs) and investigated whether ISO alleviates NEFA-induced cell damage and its underlying molecular mechanisms. Our observations revealed that excessive NEFA inhibited proliferation and induced apoptosis in bEECs, accompanied by an increase in the expression of BAX and cleaved caspase-3. We further observed that NEFA could induce lipid accumulation, reactive oxygen species (ROS) generation, and the release of pro-inflammatory factors IL-1β, IL-6, and TNF-α in bEECs. RNA sequencing and Western blot analysis revealed that NEFA induced damage in bEECs by activating MAPK signaling pathway. Notably, ISO treatment ameliorated these effects induced by NEFA, as evidenced by decreased protein levels of BAX, cleaved caspase-3, and PPAR-γ, along with reductions in triglyceride content, ROS generation, and levels of IL-1β, IL-6, and TNF-α. Mechanistically, our experimental results demonstrated that ISO inhibited NEFA-induced activation of MAPK signaling. Overall, ISO shows promise for therapeutic development to address NEFA-related endometritis in dairy cows. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

12 pages, 6412 KiB  
Article
Selenium Enhances the Growth of Bovine Endometrial Stromal Cells by PI3K/AKT/GSK-3β and Wnt/β-Catenin Pathways
by Junsheng Dong, Zi Wang, Fan Fei, Yeqi Jiang, Yongshuai Jiang, Long Guo, Kangjun Liu, Luying Cui, Xia Meng, Jianji Li and Heng Wang
Vet. Sci. 2024, 11(12), 674; https://doi.org/10.3390/vetsci11120674 - 21 Dec 2024
Cited by 3 | Viewed by 2080
Abstract
The bovine uterus is susceptible to bacterial infections after calving, particularly from Escherichia coli (E. coli), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby [...] Read more.
The bovine uterus is susceptible to bacterial infections after calving, particularly from Escherichia coli (E. coli), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects. The aim of this study was to investigate the regulatory role of Se in the growth of bovine endometrial stromal cells (BESCs) under the conditions of LPS-induced inflammatory damage at high cortisol levels. BESCs were treated with 1, 2, 4 μM Se in combination with co-treatment of LPS and cortisol. The results indicated that LPS inhibited the cell viability and reduced the mRNA expression of CTGF, TGF-β1, and TGF-β3. Additionally, LPS increased apoptosis, hindered the cell cycle progression by blocking it in the G0/G1 phase, and suppressed the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. Furthermore, increased concentrations of cortisol can exacerbate the impacts of LPS on cell proliferation and apoptosis. Conversely, the supplementation of Se promoted cell viability, increased the mRNA expression of TGF-β1 and TGF-β3, and enhanced cell cycle progression, while simultaneously repressing cell apoptosis as well as activating the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. The above findings demonstrated that Se can promote cell proliferation, reduce cell apoptosis, and aid in the growth of BESCs damaged by LPS under high levels of cortisol. The potential mechanisms may be associated with the regulation of the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. Full article
(This article belongs to the Special Issue Advances in Bovine Uterine Infection)
Show Figures

Figure 1

15 pages, 7410 KiB  
Article
In Vitro Analysis of LPS-Induced miRNA Differences in Bovine Endometrial Cells and Study of Related Pathways
by Xinmiao Li, Zhihao Zhang, Xiangnan Wang, Ligang Lu, Zijing Zhang, Geyang Zhang, Jia Min, Qiaoting Shi, Shijie Lyu, Qiuxia Chu, Xingshan Qi, Huimin Li, Yongzhen Huang and Eryao Wang
Animals 2024, 14(23), 3367; https://doi.org/10.3390/ani14233367 - 22 Nov 2024
Cited by 1 | Viewed by 924
Abstract
Lipopolysaccharide (LPS) is one of the main factors inducing endometritis in dairy cows. However, the specific pathogenesis of LPS-induced endometritis in dairy cows is not fully understood. The objective of this study was to establish an in vitro endometritis model using LPS-induced bovine [...] Read more.
Lipopolysaccharide (LPS) is one of the main factors inducing endometritis in dairy cows. However, the specific pathogenesis of LPS-induced endometritis in dairy cows is not fully understood. The objective of this study was to establish an in vitro endometritis model using LPS-induced bovine endometrial epithelial (BEND) cells. BEND cells were treated with LPS of different concentrations and times. The cell-counting kit-8 (CCK-8) was used to detect the cell survival rate after LPS treatment, and quantitative real-time PCR (RT-qPCR) was used to detect the expression of control group and LPS-treated group of inflammatory factors interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α). The results showed that the survival rate of endometrial epithelial cells stimulated by 5 μg/mL LPS for 6 h was 75.13%, and the expression of inflammatory factors was significantly increased. Therefore, 5 μg/mL LPS for 6 h could be selected as a suitable model for the study of inflammation. In addition, miRNA sequencing and target gene prediction was performed on normal and LPS-treated BEND cells. Among twenty-one differentially expressed miRNAs, six miRNAs were selected and their expression levels were detected by RT-qPCR, which were consistent with the sequencing results. Twenty-one differentially expressed miRNAs collectively predicted 17,050 target genes. This study provides a theoretical basis for further investigation of the pathogenesis of endometritis. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

12 pages, 4450 KiB  
Article
A20 Alleviates the Inflammatory Response in Bovine Endometrial Epithelial Cells by Promoting Autophagy
by Junsheng Dong, Bowen Ji, Yeqi Jiang, Fan Fei, Long Guo, Kangjun Liu, Luying Cui, Xia Meng, Jianji Li and Heng Wang
Animals 2024, 14(19), 2876; https://doi.org/10.3390/ani14192876 - 6 Oct 2024
Cited by 4 | Viewed by 1363
Abstract
Endometritis represents a prevalent condition in perinatal dairy cows. Bovine endometrial epithelial cells (BEECs), as the primary interface between cavity and the external environment, are particularly vulnerable to infection by pathogenic bacteria following parturition. A20 is essential for regulating inflammation and modulating immune [...] Read more.
Endometritis represents a prevalent condition in perinatal dairy cows. Bovine endometrial epithelial cells (BEECs), as the primary interface between cavity and the external environment, are particularly vulnerable to infection by pathogenic bacteria following parturition. A20 is essential for regulating inflammation and modulating immune responses. Nevertheless, the exact role of A20 in the BEECs in response to inflammatory response is not fully understood. An endometritis model infected by Escherichia coli (E. coli) in vivo and a BEECs inflammation model induced with lipopolysaccharide (LPS) in vitro were built to investigate the function and governing mechanisms of A20 in endometritis. The results showed that infection with E. coli resulted in endometrial damage, inflammatory cell infiltration, and upregulation of inflammatory factors in dairy cows. Furthermore, A20 expression was upregulated in the endometrium of cows with endometritis and in BEECs following LPS stimulation. A20 overexpression attenuated the level of proinflammatory cytokines in LPS-stimulated BEECs; conversely, A20 knockdown lead to an exacerbated response to LPS stimulation. The overexpression of A20 was shown to activate autophagy and suppress the NF-κB signaling pathway in LPS-stimulated BEECs. However, blocking autophagy with chloroquine notably attenuated the anti-inflammatory effect of A20, leading to the activation of the NF-κB signaling pathway. In summary, the study demonstrated that A20’s suppression of inflammation in LPS-stimulated BEECs is associated with the activation of autophagy. Therefore, the A20 protein showed potential as a novel treatment focus for managing endometritis in dairy cows. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

14 pages, 2917 KiB  
Article
Enrichment of Cis-Acting Regulatory Elements in Differentially Methylated Regions Following Lipopolysaccharide Treatment of Bovine Endometrial Epithelial Cells
by Naveed Jhamat, Yongzhi Guo, Jilong Han, Patrice Humblot, Erik Bongcam-Rudloff, Göran Andersson and Adnan Niazi
Int. J. Mol. Sci. 2024, 25(18), 9832; https://doi.org/10.3390/ijms25189832 - 11 Sep 2024
Viewed by 1597
Abstract
Endometritis is an inflammatory disease that negatively influences fertility and is common in milk-producing cows. An in vitro model for bovine endometrial inflammation was used to identify enrichment of cis-acting regulatory elements in differentially methylated regions (DMRs) in the genome of in [...] Read more.
Endometritis is an inflammatory disease that negatively influences fertility and is common in milk-producing cows. An in vitro model for bovine endometrial inflammation was used to identify enrichment of cis-acting regulatory elements in differentially methylated regions (DMRs) in the genome of in vitro-cultured primary bovine endometrial epithelial cells (bEECs) before and after treatment with lipopolysaccharide (LPS) from E. coli, a key player in the development of endometritis. The enriched regulatory elements contain binding sites for transcription factors with established roles in inflammation and hypoxia including NFKB and Hif-1α. We further showed co-localization of certain enriched cis-acting regulatory motifs including ARNT, Hif-1α, and NRF1. Our results show an intriguing interplay between increased mRNA levels in LPS-treated bEECs of the mRNAs encoding the key transcription factors such as AHR, EGR2, and STAT1, whose binding sites were enriched in the DMRs. Our results demonstrate an extraordinary cis-regulatory complexity in these DMRs having binding sites for both inflammatory and hypoxia-dependent transcription factors. Obtained data using this in vitro model for bacterial-induced endometrial inflammation have provided valuable information regarding key transcription factors relevant for clinical endometritis in both cattle and humans. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 5178 KiB  
Article
Investigation of Uterine Fluid Extracellular Vesicles’ Proteomic Profiles Provides Novel Diagnostic Biomarkers of Bovine Endometritis
by Johanna Piibor, Andres Waldmann, Madhusha Prasadani, Ants Kavak, Aneta Andronowska, Claudia Klein, Suranga Kodithuwakku and Alireza Fazeli
Biomolecules 2024, 14(6), 626; https://doi.org/10.3390/biom14060626 - 25 May 2024
Cited by 3 | Viewed by 2574
Abstract
Cow uterine infections pose a challenge in dairy farming, resulting in reproductive disorders. Uterine fluid extracellular vesicles (UF-EVs) play a key role in cell-to-cell communication in the uterus, potentially holding the signs of aetiology for endometritis. We used mass spectrometry-based quantitative shotgun proteomics [...] Read more.
Cow uterine infections pose a challenge in dairy farming, resulting in reproductive disorders. Uterine fluid extracellular vesicles (UF-EVs) play a key role in cell-to-cell communication in the uterus, potentially holding the signs of aetiology for endometritis. We used mass spectrometry-based quantitative shotgun proteomics to compare UF-EV proteomic profiles in healthy cows (H), cows with subclinical (SE) or clinical endometritis (CLE) sampled at 28–35 days postpartum. Functional analysis was performed on embryo cultures with the exposure to different EV types. A total of 248 UF-EV proteins exhibited differential enrichment between the groups. Interestingly, in SE, EV protein signature suggests a slight suppression of inflammatory response compared to CLE-UF-EVs, clustering closer with healthy cows’ profile. Furthermore, CLE-UF-EVs proteomic profile highlighted pathways associated with cell apoptosis and active inflammation aimed at pathogen elimination. In SE-UF-EVs, the regulation of normal physiological status was aberrant, showing cell damage and endometrial repair at the same time. Serine peptidase HtrA1 (HTRA1) emerged as a potential biomarker for SE. Supplementation of CLE- and SE-derived UF-EVs reduced the embryo developmental rates and quality. Therefore, further research is warranted to elucidate the precise aetiology of SE in cattle, and HTRA1 should be further explored as a potential diagnostic biomarker. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

Back to TopTop