Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = bovine coronavirus (BCoV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7204 KiB  
Article
Structural Features and In Vitro Antiviral Activities of Fungal Metabolites Sphaeropsidins A and B Against Bovine Coronavirus
by Luca Del Sorbo, Maria Michela Salvatore, Clementina Acconcia, Rosa Giugliano, Giovanna Fusco, Massimiliano Galdiero, Violetta Iris Vasinioti, Maria Stella Lucente, Paolo Capozza, Annamaria Pratelli, Luigi Russo, Rosa Iacovino, Anna Andolfi and Filomena Fiorito
Int. J. Mol. Sci. 2025, 26(15), 7045; https://doi.org/10.3390/ijms26157045 - 22 Jul 2025
Viewed by 223
Abstract
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member [...] Read more.
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member of the genus β-CoV, represents a valuable virus model to study human β-CoVs, bypassing the risks of handling highly pathogenic and contagious viruses. Pimarane diterpenes are a significant group of secondary metabolites produced by phytopathogenic fungi, including several Diplodia species. Among the members of this class of natural products, sphaeropsidin A (SphA) and its analog sphaeropsidin B (SphB) are well known for their bioactivities, such as antimicrobial, insecticidal, herbicidal, and anticancer. In this study, the antiviral effects of SphA and SphB were evaluated for the first time on bovine (MDBK) cells infected with BCoV. Our findings showed that both sphaeropsidins significantly increased cell viability in infected cells. These substances also caused substantial declines in the virus yield and in the levels of the viral spike S protein. Interestingly, during the treatment, a cellular defense mechanism was detected in the downregulation of the aryl hydrocarbon receptor (AhR) signaling, which is affected by BCoV infection. We also observed that the presence of SphA and SphB determined the deacidification of the lysosomal environment in infected cells, which may be related to their antiviral activities. In addition, in silico investigations have been performed to elucidate the molecular mechanism governing the recognition of bovine AhR (bAhR) by Sphs. Molecular docking studies revealed significant insights into the structural determinants driving the bAhR binding by the examined compounds. Hence, in vitro and in silico results demonstrated that SphA and SphB are promising drug candidates for the development of efficient therapies able to fight a β-CoV-like BCoV during infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 3rd Edition)
Show Figures

Figure 1

16 pages, 5856 KiB  
Article
Characterization of Gene Expression Suppression by Bovine Coronavirus Non-Structural Protein 1
by Takehiro Ohkami, Ichika Kitashin, Riko Kawashima, Aimi Yoshida, Taizo Saito, Yasuhiro Takashima, Wataru Kamitani and Keisuke Nakagawa
Viruses 2025, 17(7), 978; https://doi.org/10.3390/v17070978 - 13 Jul 2025
Viewed by 361
Abstract
Coronavirus non-structural protein 1 (nsp1) is a pathogenic determinant of Betacoronaviruses. Previous studies demonstrated that the nsp1 of various coronaviruses induces host shutoff through a variety of mechanisms; however, there is little information on the function of bovine coronavirus (BCoV) nsp1. We [...] Read more.
Coronavirus non-structural protein 1 (nsp1) is a pathogenic determinant of Betacoronaviruses. Previous studies demonstrated that the nsp1 of various coronaviruses induces host shutoff through a variety of mechanisms; however, there is little information on the function of bovine coronavirus (BCoV) nsp1. We aimed to characterize the host gene expression suppression function of BCoV nsp1. We first confirmed that the expression of BCoV nsp1 in MAC-T cells, a bovine mammary epithelial cell line, suppressed host and reporter gene expression. Subsequently, lysine and phenylalanine at amino acid positions 232 and 233, respectively, were identified as key residues required for this suppressive effect. Expression levels of housekeeping genes are comparable in cells expressing wild-type BCoV nsp1 and a mutant with alanine substitutions at positions 232 and 233 (BCoV nsp1-KF). Wild-type BCoV nsp1 localized to both the cytoplasm and nucleus; however, BCoV nsp1-KF exhibited prominent nuclear accumulation with dot-like structures. Using confocal microscopy and co-sedimentation analysis, we identified an association between wild-type BCoV nsp1, but not BCoV nsp1-KF, and ribosomes, suggesting that ribosome binding is required for BCoV nsp1-mediated suppression of host gene expression. This is the first study of the characterization of host gene expression suppression by BCoV nsp1. Full article
Show Figures

Figure 1

19 pages, 3179 KiB  
Article
Development of a Multiplex Real-Time PCR Assay for the Detection of Eight Pathogens Associated with Bovine Respiratory Disease Complex from Clinical Samples
by Fuxing Hao, Chunhao Tao, Ruilong Xiao, Ying Huang, Weifeng Yuan, Zhen Wang and Hong Jia
Microorganisms 2025, 13(7), 1629; https://doi.org/10.3390/microorganisms13071629 - 10 Jul 2025
Viewed by 365
Abstract
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based [...] Read more.
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based quantitative polymerase chain reaction (qPCR) assay was developed for the simultaneous detection of eight major pathogens associated with BRDC. The targeted pathogens included the following: bovine viral diarrhea virus (BVDV), bovine parainfluenza virus type 3 (BPIV3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BcoV), Mycoplasma bovis (M.bovis), Pasteurella multocida (PM), Mannheimia haemolytica (MH), and infectious bovine rhinotracheitis virus (IBRV). The assay was rigorously optimized to ensure high specificity with no cross-reactivity among targets. The limit of detection (LOD) was determined to be as low as 5 copies per reaction for all target pathogens. The coefficient of variation (CVs) for both intra-assay and inter-assay measurements were consistently below 2%, demonstrating excellent reproducibility. To validate the clinical utility of the assay, a total of 1012 field samples were tested, including 504 nasal swabs from Farm A and 508 from Farm B in Jiangsu Province. BVDV, BcoV, PM, and MH were detected from Farm A, with a BVDV-positive rate of 21.63% (109/504), BcoV-positive rate of 26.79% (135/504), PM-positive rate of 28.77% (145/504), and MH-positive rate of 15.08% (76/504). Also, BcoV, PM, MH, and IBRV were detected from Farm B, with a BcoV-positive rate of 2.36% (12/508), PM-positive rate of 1.38% (7/508), MH-positive rate of 14.76% (75/508), and IBRV-positive rate of 5.51% (28/508). Notably, a significant proportion of samples showed evidence of mixed infections, underscoring the complexity of BRDC etiology and the importance of a multiplex diagnostic approach. In conclusion, the developed multiplex qPCR assay provides a reliable, rapid, and cost-effective tool for simultaneous detection of multiple BRDC-associated pathogens, which will hold great promise for enhancing disease surveillance, early diagnosis, and targeted intervention strategies, ultimately contributing to improved BRDC management and cattle health outcomes. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

14 pages, 694 KiB  
Article
In Vitro Antiviral Activity of the Fungal Metabolite 6-Pentyl-α-Pyrone Against Bovine Coronavirus: A Translational Study to SARS-CoV-2
by Violetta Iris Vasinioti, Amienwanlen Eugene Odigie, Maria Stella Lucente, Luca Del Sorbo, Cristiana Catella, Elisabetta Casalino, Maria Michela Salvatore, Alessia Staropoli, Francesco Vinale, Maria Tempesta, Filomena Fiorito, Anna Andolfi, Alessio Buonavoglia, Annamaria Pratelli and Paolo Capozza
Vet. Sci. 2025, 12(7), 634; https://doi.org/10.3390/vetsci12070634 - 2 Jul 2025
Viewed by 740
Abstract
The recent COVID-19 pandemic has prompted the scientific community to prioritize the discovery of preventive methods and new therapeutics, including the investigation of natural compounds with antiviral potential. Fungal secondary metabolites (SMs) represent a promising source of antiviral drugs due to their structural [...] Read more.
The recent COVID-19 pandemic has prompted the scientific community to prioritize the discovery of preventive methods and new therapeutics, including the investigation of natural compounds with antiviral potential. Fungal secondary metabolites (SMs) represent a promising source of antiviral drugs due to their structural diversity and intrinsic biocompatibility. Herein, the antiviral activity of 6-pentyl-α-pyrone (6PP) against bovine coronavirus (BCoV) has been evaluated in vitro. Considering that BCoV and SARS-CoV-2 are both members of the Betacoronavirus genus and share several key features, BCoV represents a valuable reference model for human coronavirus research. A non-cytotoxic dose of 6PP was used on MDBK cells to evaluate its antiviral activity against BCoV. Different experimental conditions were employed to examine cell monolayer protection both pre- and post-infection, as well as the potential inhibition of viral internalization. Overall, post-infection 6PP treatment reduced viral load and decreased viral internalization. Results were analyzed using viral titration and quantitative PCR, while data interpretation was performed by statistical software tools. This study presents a novel fluorescence quantification approach with high confidence demonstrated by its significant concordance with RT-qPCR results. These data suggest that 6PP could be an effective antiviral agent for BCoV, warranting further investigation of its role in coronavirus inhibition. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Graphical abstract

35 pages, 10583 KiB  
Article
Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Reda Nacif ElAlaoui, Mohammed Cherkaoui and Maged Gomaa Hemida
Int. J. Mol. Sci. 2025, 26(3), 1328; https://doi.org/10.3390/ijms26031328 - 4 Feb 2025
Cited by 1 | Viewed by 1290
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. [...] Read more.
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/−) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication. Full article
(This article belongs to the Special Issue Molecular Design of Artificial Receptors Using Virtual Approaches)
Show Figures

Figure 1

17 pages, 6227 KiB  
Article
A Novel Vaccine for Bovine Diarrhea Complex Utilizing Recombinant Enterotoxigenic Escherichia coli and Salmonella Expressing Surface-Displayed Chimeric Antigens from Enterohemorrhagic Escherichia coli O157:H7
by Hernán Ramírez, Daniel A. Vilte, Daniela Hozbor, Eugenia Zurita, Daniela Bottero, María C. Casabonne, Ángel A. Cataldi, Andrés Wigdorovitz and Mariano Larzábal
Vaccines 2025, 13(2), 124; https://doi.org/10.3390/vaccines13020124 - 25 Jan 2025
Viewed by 1486
Abstract
Background/Objectives: Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a zoonotic pathogen primarily found in cattle, causes Hemolytic Uremic Syndrome (HUS) in humans, often through contaminated food. Its Type Three Secretion System (T3SS) facilitates gut colonization. In contrast, neonatal calf diarrhea (NCD) is mainly caused by [...] Read more.
Background/Objectives: Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a zoonotic pathogen primarily found in cattle, causes Hemolytic Uremic Syndrome (HUS) in humans, often through contaminated food. Its Type Three Secretion System (T3SS) facilitates gut colonization. In contrast, neonatal calf diarrhea (NCD) is mainly caused by pathogens like enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Bovine Coronavirus (BCoV), and Bovine Rotavirus type A (BRoVA). This study engineered a chimeric protein combining EspB and Int280γ, two T3SS components, expressed in the membranes of Salmonella Dublin and ETEC. Methods: Immune responses in vaccinated mice and guinea pigs were assessed through ELISA assays. Results: Successful membrane anchorage and stability of the chimera were confirmed. Immune evaluations showed no enhancement from combining recombinant bacteria, indicating either bacterium suffices in a single formulation. Chimeric expression yielded immunogenicity equivalent to 10 µg of recombinant protein, with similar antibody titers. IgG1/IgG2a levels and Th1, Th2, and Th17 markers indicated a mixed immune response, providing broad humoral and cellular protection. Responses to BCoV, BRoVA, ETEC, and Salmonella antigens remained strong and did not interfere with chimera-specific responses, potentially boosting NCD vaccine efficacy. Conclusions: The chimera demonstrated robust immunogenicity, supporting its potential as a viable vaccine candidate against EHEC O157:H7. This approach could enhance NCD vaccine valency by offering broader protection against calf diarrhea while reducing HUS transmission risks to humans. Full article
(This article belongs to the Special Issue Vaccines and Passive Immune Strategies in Veterinary Medicine)
Show Figures

Figure 1

18 pages, 2792 KiB  
Article
Genome-Wide Genomic Analysis and Evolutionary Insights into Bovine Coronavirus Strains in Southwest China
by Qingqing Li, Huili Bai, Yan Pan, Yuying Liao, Zhe Pei, Cuilan Wu, Chunxia Ma, Zhongwei Chen, Changting Li, Yu Gong, Jing Liu, Yangyan Yin, Ling Teng, Leping Wang, Ezhen Zhang, Tianchao Wei and Hao Peng
Vet. Sci. 2025, 12(1), 9; https://doi.org/10.3390/vetsci12010009 - 29 Dec 2024
Viewed by 1300
Abstract
The global epidemic of bovine coronavirus (BCoV) has caused enormous economic losses. The characterisation and genetic composition of endemic strains in Southwest China remain elusive. This study aimed to fill this gap by isolating three BCoV strains from this region and sequencing their [...] Read more.
The global epidemic of bovine coronavirus (BCoV) has caused enormous economic losses. The characterisation and genetic composition of endemic strains in Southwest China remain elusive. This study aimed to fill this gap by isolating three BCoV strains from this region and sequencing their whole genomes. To elucidate the genetic evolution and characterisation of the prevalent strains, the results of BCoV sequences were compared in GenBank, with a focus on genetic evolution, mutation, and recombination patterns. The results showed close homology between strains NN190313 and NN230328, while strain NN221214 showed less similarity to these two strains but clustered with the French strain of the European branch. Intriguingly, NN190313 and NN230328 were grouped with goat-derived BCoV strains from Jiangsu Province in Eastern China in the Asian–American branch. In addition, recombination analyses revealed significant signals between NN230328 and either a Chinese goat-derived strain (XJCJ2301G) or a Shandong strain (ShX310). This study highlights the importance of monitoring cross-species transmission between cattle and goats, especially in the mountainous areas of Southwest China where mixed farming occurs, and thus, the monitoring of cross-species transmission between cattle and goats is important for preventing new public health challenges, providing important insights for research on cross-species transmission, early prevention, and control measures, with potential applications in vaccine development. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

15 pages, 4709 KiB  
Review
Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus
by Vjekoslava Kostanić, Valentina Kunić, Marina Prišlin Šimac, Marica Lolić, Tomislav Sukalić and Dragan Brnić
Vet. Sci. 2024, 11(12), 671; https://doi.org/10.3390/vetsci11120671 - 21 Dec 2024
Cited by 2 | Viewed by 3115
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are [...] Read more.
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

10 pages, 1122 KiB  
Article
Establishment of a Real-Time Reverse Transcription Recombinase-Aided Isothermal Amplification (qRT-RAA) Assay for the Rapid Detection of Bovine Respiratory Syncytial Virus
by Guanxin Hou, Siping Zhu, Hong Li, Chihuan Li, Xiaochen Liu, Chao Ren, Xintong Zhu, Qiumei Shi and Zhiqiang Zhang
Vet. Sci. 2024, 11(12), 589; https://doi.org/10.3390/vetsci11120589 - 24 Nov 2024
Viewed by 1126
Abstract
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the F gene of BRSV was developed [...] Read more.
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the F gene of BRSV was developed in this study. Results: The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C. And this assay displayed a high specificity for BRSV, without cross-reactions with Infectious Bovine Rhinotracheitis Virus (IBRV), Bovine Parainfluenza Virus Type 3 (BPIV3), Bovine Viral Diarrhea Virus (BVDV), and Bovine Coronavirus (BCoV). With the standard RNA of BRSV serving as a template, the limit of detection for qRT-RAA was 102 copies/μL. We examined ninety-seven clinical samples from cattle with respiratory disease using this method and determined a positive rate of 7.2% (7/97), consistent with results using the classical PCR method reported previously. Conclusions: A qRT-RAA assay for BRSV detection was established in this study. The method is specific and sensitive and can be completed within 20 min at 39 °C. These works demonstrate that the generated qRT-RAA assay is an effective diagnostic tool for rapidly detecting BRSV in resource-limited settings, which may be applied for the clinical detection of BRSV. Full article
Show Figures

Figure 1

15 pages, 2356 KiB  
Article
Bovine Coronavirus Prevalence and Risk Factors in Calves on Dairy Farms in Europe
by Anna Catharina Berge and Geert Vertenten
Animals 2024, 14(18), 2744; https://doi.org/10.3390/ani14182744 - 23 Sep 2024
Cited by 3 | Viewed by 2022
Abstract
This study evaluated prevalence and risk factors in health, management, and biosecurity of bovine coronavirus (BCoV) in neonatal and weaned dairy calves on 125 dairy farms in Europe. Nasal and fecal swabs from neonatal calves, weaned calves, and fresh cows were analyzed for [...] Read more.
This study evaluated prevalence and risk factors in health, management, and biosecurity of bovine coronavirus (BCoV) in neonatal and weaned dairy calves on 125 dairy farms in Europe. Nasal and fecal swabs from neonatal calves, weaned calves, and fresh cows were analyzed for BCoV using RT-PCR, and blood and bulk milk samples were collected for BCoV antibody levels using ELISA. Multiple logistic regression models with random effects of herds were used to evaluate the herd health status, husbandry, management, and biosecurity associated with BCoV shedding (nasal and/or fecal PCR positive samples) in neonatal and weaned calves. BCoV was detected in 80% of herds and in 24% of neonatal calves, 23% of weaned calves, and 5% of fresh cows. The biosecurity scored on 109 dairies with Biocheck.Ugent was, on average, 60% (external score 71%, internal score 47%), and there was no clear association between various biosecurity measures on BCoV shedding in calves. Dry cow vaccination against BCoV reduced shedding in neonatal calves, whereas it was linked to increased shedding in weaned calves in these farms. Several husbandry factors, including nutrition (transition milk feeding and milk feeding levels) and management (group housing and weaning age), were associated with BCoV shedding in calves. Full article
(This article belongs to the Special Issue Biosecuring Animal Populations)
Show Figures

Figure 1

26 pages, 1057 KiB  
Review
Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle
by Shaun van den Hurk, Girija Regmi, Hemant K. Naikare and Binu T. Velayudhan
Pathogens 2024, 13(7), 524; https://doi.org/10.3390/pathogens13070524 - 21 Jun 2024
Cited by 4 | Viewed by 2703
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the [...] Read more.
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry. Full article
(This article belongs to the Special Issue Diagnostics of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

13 pages, 1607 KiB  
Article
Humoral Immune Response in Immunized Sheep with Bovine Coronavirus Glycoproteins Delivered via an Adenoviral Vector
by Annamaria Pratelli, Paolo Capozza, Sergio Minesso, Maria Stella Lucente, Francesco Pellegrini, Maria Tempesta, Valentina Franceschi, Canio Buonavoglia and Gaetano Donofrio
Pathogens 2024, 13(7), 523; https://doi.org/10.3390/pathogens13070523 - 21 Jun 2024
Cited by 5 | Viewed by 1465
Abstract
Bovine coronavirus (BCoV) is distributed globally and mainly causes different clinical manifestations: enteric diarrhea in calves, winter dysentery in adults, and respiratory symptoms in cattle of all ages. Low mortality and high morbidity are the hallmarks of BCoV infection, usually associated with substantial [...] Read more.
Bovine coronavirus (BCoV) is distributed globally and mainly causes different clinical manifestations: enteric diarrhea in calves, winter dysentery in adults, and respiratory symptoms in cattle of all ages. Low mortality and high morbidity are the hallmarks of BCoV infection, usually associated with substantial economic losses for the livestock industry. Vaccination, combined with the implementation of biosecurity measures, is the key strategy for the prevention of infections. This pilot study evaluates the immunogenicity of a recombinant vaccine containing two BCoV antigens (S and M) in sheep, compared to vaccines containing only the M or S protein. Three groups of sheep were inoculated intramuscularly at day 0 and day 21 with recombinant adenoviruses expressing BCoV S protein (AdV-BCoV-S), BCoV M protein (AdV-BCoV-M), or both proteins (AdV-BCoV-S + M). Serum antibodies were evaluated using immunofluorescence (IF) and serum neutralization (SN) tests. Moderate seroconversion was observed by day 21, but serum antibodies detected via SN increased from 1:27.5 (day 21) to 1:90 (day 28) in sheep inoculated with the recombinant AdV expressing both the S- and M-BCoV proteins. Based on the SN results, a repeated-measures ANOVA test indicated a more significant difference in immune response between the three groups (F = 20.47; p < 0.001). The experimental investigation produced satisfactory results, highlighting that the S + M recombinant vaccine was immunogenic, stimulating a valid immune response. Despite some inherent limitations, including a small sample size and the absence of challenge tests, the study demonstrated the efficacy of the immune response induced via the recombinant vaccine containing both S and M proteins compared to that induced via the individual proteins S or M. Full article
(This article belongs to the Section Vaccines and Therapeutic Developments)
Show Figures

Figure 1

17 pages, 6449 KiB  
Article
Isolation and Characterization of Contemporary Bovine Coronavirus Strains
by Yu Li, Roberto A. Palomares, Mingde Liu, Jiayu Xu, Chohee Koo, Francesca Granberry, Samantha R. Locke, Greg Habing, Linda J. Saif, Leyi Wang and Qiuhong Wang
Viruses 2024, 16(6), 965; https://doi.org/10.3390/v16060965 - 16 Jun 2024
Cited by 1 | Viewed by 2249
Abstract
Bovine coronavirus (BCoV) poses a threat to cattle health worldwide, contributing to both respiratory and enteric diseases. However, few contemporary strains have been isolated. In this study, 71 samples (10 nasal and 61 fecal) were collected from one farm in Ohio in 2021 [...] Read more.
Bovine coronavirus (BCoV) poses a threat to cattle health worldwide, contributing to both respiratory and enteric diseases. However, few contemporary strains have been isolated. In this study, 71 samples (10 nasal and 61 fecal) were collected from one farm in Ohio in 2021 and three farms in Georgia in 2023. They were screened by BCoV-specific real-time reverse transcription-PCR, and 15 BCoV-positive samples were identified. Among them, five BCoV strains from fecal samples were isolated using human rectal tumor-18 (HRT-18) cells. The genomic sequences of five strains were obtained. The phylogenetic analysis illustrated that these new strains clustered with US BCoVs that have been detected since the 1990s. Sequence analyses of the spike proteins of four pairs of BCoVs, with each pair originally collected from the respiratory and enteric sites of one animal, revealed the potential amino acid residue patterns, such as D1180 for all four enteric BCoVs and G1180 for three of four respiratory BCoVs. This project provides new BCoV isolates and sequences and underscores the genetic diversity of BcoVs, the unknown mechanisms of disease types, and the necessity of sustained surveillance and research for BCoVs. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

14 pages, 4753 KiB  
Article
Prevalence and Evolutionary Characteristics of Bovine Coronavirus in China
by Siyuan Li, Jin Huang, Xuhang Cai, Li Mao, Lingling Xie, Fu Wang, Hua Zhou, Xuesong Yuan, Xinru Sun, Xincheng Fu, Baochao Fan, Xingang Xu, Jizong Li and Bin Li
Vet. Sci. 2024, 11(6), 230; https://doi.org/10.3390/vetsci11060230 - 21 May 2024
Cited by 4 | Viewed by 2355
Abstract
Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a [...] Read more.
Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle’s age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics. Full article
Show Figures

Figure 1

22 pages, 7259 KiB  
Article
The Potential Roles of Host Cell miRNAs in Fine-Tuning Bovine Coronavirus (BCoV) Molecular Pathogenesis, Tissue Tropism, and Immune Regulation
by Abid Ullah Shah and Maged Gomaa Hemida
Microorganisms 2024, 12(5), 897; https://doi.org/10.3390/microorganisms12050897 - 30 Apr 2024
Cited by 2 | Viewed by 2081
Abstract
Bovine coronavirus (BCoV) infection causes significant economic loss to the dairy and beef industries worldwide. BCoV exhibits dual tropism, infecting the respiratory and enteric tracts of cattle. The enteric BCoV isolates could also induce respiratory manifestations under certain circumstances. However, the mechanism of [...] Read more.
Bovine coronavirus (BCoV) infection causes significant economic loss to the dairy and beef industries worldwide. BCoV exhibits dual tropism, infecting the respiratory and enteric tracts of cattle. The enteric BCoV isolates could also induce respiratory manifestations under certain circumstances. However, the mechanism of this dual tropism of BCoV infection has not yet been studied well. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a dual role in virus infection, mediating virus or modulating host immune regulatory genes through complex virus–host cell interactions. However, their role in BCoV infection remains unclear. This study aims to identify bovine miRNAs crucial for regulating virus–host interaction, influencing tissue tropism, and explore their potential as biomarkers and therapeutic agents against BCoV. We downloaded 18 full-length BCoV genomes (10 enteric and eight respiratory) from GenBank. We applied several bioinformatic tools to study the host miRNAs targeting various regions in the viral genome. We used the criteria of differential targeting between the enteric/respiratory isolates to identify some critical miRNAs as biological markers for BCoV infection. Using various online bioinformatic tools, we also searched for host miRNA target genes involved in BCoV infection, immune evasion, and regulation. Our results show that four bovine miRNAs (miR-2375, miR-193a-3p, miR-12059, and miR-494) potentially target the BCoV spike protein at multiple sites. These miRNAs also regulate the host immune suppressor pathways, which negatively impacts BCoV replication. Furthermore, we found that bta-(miR-2338, miR-6535, miR-2392, and miR-12054) also target the BCoV genome at certain regions but are involved in regulating host immune signal transduction pathways, i.e., type I interferon (IFN) and retinoic acid-inducible gene I (RIG-I) pathways. Moreover, both miR-2338 and miR-2392 also target host transcriptional factors RORA, YY1, and HLF, which are potential diagnostic markers for BCoV infection. Therefore, miR-2338, miR-6535, miR-2392, and miR-12054 have the potential to fine-tune BCoV tropism and immune evasion and enhance viral pathogenesis. Our results indicate that host miRNAs play essential roles in the BCoV tissue tropism, pathogenesis, and immune regulation. Four bovine miRNAs (miR-2375, bta-miR-193a-3p, bta-miR-12059, and bta-miR-494) target BCoV-S glycoprotein and are potentially involved in several immune suppression pathways during the viral infection. These miRNA candidates could serve as good genetic markers for BCoV infection. However, further studies are urgently needed to validate these identified miRNAs and their target genes in the context of BCoV infection and dual tropism and as genetic markers. Full article
(This article belongs to the Special Issue Molecular Biology of Coronaviruses in Animals)
Show Figures

Figure 1

Back to TopTop