Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = boron-carbon compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2668 KiB  
Article
2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines
by Mona Connolly, Emmanuel Flahaut and José María Navas
J. Xenobiot. 2025, 15(4), 97; https://doi.org/10.3390/jox15040097 - 24 Jun 2025
Viewed by 540
Abstract
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. [...] Read more.
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. This study’s aim was to first identify if multi-walled nanotubes of BN could produce a hazard profile similar to that evidenced already for multi-walled carbon nanotubes (MWCNTs) and secondly if the material when present in a sheet-like structure increases or decreases the hazard profile. Fish are aquatic organisms sensitive to boron compounds; however, the potential hazard following exposure to BN and especially when present in such nanostructures has not yet been investigated. An in vitro testing platform consisting of multiple cell lines of the rainbow trout, Oncorhynchus mykiss (RTH-149, RTG-2, RTL-W1 and RTgill-W1), was used in a first-hazard screening approach for cytotoxicity and to gain information on material–cellular interaction. Clear differences were evidenced in material uptake, leading to plasma membrane disruption accompanied with a loss in metabolic activity for BNNTs at lower exposure concentrations compared to h-BN. As in the case of carbon nanotubes, close attention must be given to potential interferences with assays based on optical readouts. Full article
Show Figures

Graphical abstract

13 pages, 1647 KiB  
Article
Comparison of Chromatographic and Electrochemical Methods for Detecting and Quantifying Sunscreen Agents and Their Degradation Products in Water Matrices
by Laysa Renata Duarte Brito Sabino, Mayra Kerolly Sales Monteiro, Letícia Gracyelle Alexandre Costa, Elisama Vieira dos Santos, Carlos Alberto Martínez-Huitle and Sergio Ferro
Appl. Sci. 2025, 15(10), 5504; https://doi.org/10.3390/app15105504 - 14 May 2025
Viewed by 436
Abstract
Comparing electroanalysis and chromatography, this study highlights that electroanalysis, specifically using a glassy carbon sensor (GCS), is the most appropriate choice for quantifying recalcitrant organic compounds. Octocrylene (OC), an organic compound commonly found in sunscreens, is of particular concern in swimming pool water [...] Read more.
Comparing electroanalysis and chromatography, this study highlights that electroanalysis, specifically using a glassy carbon sensor (GCS), is the most appropriate choice for quantifying recalcitrant organic compounds. Octocrylene (OC), an organic compound commonly found in sunscreens, is of particular concern in swimming pool water monitoring, as its presence above legal limits poses health risks. OC quantification was performed using both high performance liquid chromatography (HPLC) and electroanalysis in sunscreen formulations and water matrices. The limits of detection (LODs) and quantification (LOQ) for OC were approximately 0.11 ± 0.01 mg L−1 and 0.86 ± 0.04 mg L−1 by electroanalysis, and 0.35 ± 0.02 mg L−1 and 2.86 ± 0.12 mg L−1 by HPLC. Electroanalysis successfully quantified OC in real sunscreen samples, and the results were comparable to those obtained by HPLC. The matrices tested—swimming pool water and distilled water (containing 0.002 M Cl) contaminated with 0.4 ± 0.2 g L−1 of sunscreen (based on a maximum concentration in sunscreen and cosmetic formulations of 10%)—showed OC concentrations below 10% in the formulation, with no significant differences observed between the two techniques. GCS was further utilized to monitor OC degradation via anodic oxidation at current densities of 5 and 10 mA cm−2, using a boron-doped diamond (BDD) anode. The combined approach demonstrated high efficacy in both detecting and eliminating OC from various water matrices, making it a reliable and efficient alternative for environmental and water quality monitoring. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

55 pages, 12018 KiB  
Review
Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues
by Silvana Alfei and Gian Carlo Schito
Nanomaterials 2025, 15(8), 633; https://doi.org/10.3390/nano15080633 - 21 Apr 2025
Cited by 5 | Viewed by 703
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of [...] Read more.
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included. Full article
Show Figures

Graphical abstract

15 pages, 6206 KiB  
Article
Surface-Modified Ceramic Boron Carbide as a Platform for Specific Targeting in Tumour Environments
by Dawid Kozień, Karolina Krygowska, Paulina Żeliszewska, Agnieszka Szczygieł, Anna Rudawska, Bożena Szermer-Olearnik, Piotr Rusiniak, Katarzyna Wątor, Katarzyna Węgierek-Ciura, Piotr Jeleń, Jakub Marchewka, Katarzyna Pasiut, Janusz Partyka, Elżbieta Pajtasz-Piasecka and Zbigniew Pędzich
Appl. Sci. 2025, 15(5), 2734; https://doi.org/10.3390/app15052734 - 4 Mar 2025
Cited by 1 | Viewed by 741
Abstract
Boron Neutron Capture Therapy (BNCT) is a therapeutic approach used to treat malignancies that are difficult to localise and typically inoperable. This therapy involves two stages: the administration of the boron (10B) isotope, which selectively enters cancer cells without affecting healthy [...] Read more.
Boron Neutron Capture Therapy (BNCT) is a therapeutic approach used to treat malignancies that are difficult to localise and typically inoperable. This therapy involves two stages: the administration of the boron (10B) isotope, which selectively enters cancer cells without affecting healthy tissue, followed by irradiation of the tumour with a neutron beam. In this study, boron carbide (B4C), a ceramic material with exceptional physical and chemical properties, was used as a nanoparticle platform for BNCT. The surface of the boron carbide nanoparticles was optimised by modifying them with compounds such as dextrin, dextran T70, sorbitol, lysine, and arginine. Boron carbide was synthesised directly from boron and carbon and then subjected to grinding, washing, and centrifugation. The unmodified and modified samples were analysed for their particle size, zeta potential, and toxicity against glioblastoma T98G cells. Additionally, FTIR spectroscopy confirmed the successful surface modifications. The results demonstrate that boron carbide, as a ceramic material, can be effectively functionalised with biocompatible compounds. Among the tested modifications, B4C-dextrin and B4C-dextran T70 exhibited the highest toxicity towards cancer cells, demonstrating the potential of ceramic platforms in biomedical applications. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

23 pages, 5031 KiB  
Article
The Electrooxidation of Synthetic Bipyridyl Herbicide Wastewaters with Boron-Doped Diamond Electrodes: A Technical and Economic Study to Boost Their Application for Pollution Prevention in the Agricultural Sector
by Elia Alejandra Teutli-Sequeira, Ruben Vasquez-Medrano, Dorian Prato-Garcia and Jorge G. Ibanez
Processes 2024, 12(11), 2486; https://doi.org/10.3390/pr12112486 - 8 Nov 2024
Cited by 1 | Viewed by 1009
Abstract
Boron-doped diamond electrodes (BDDEs) offer a highly efficient pathway to mineralize recalcitrant compounds due to their reduced energy requirements, fewer chemical inputs, and mechanical stability. In this work, the electrochemical degradation of paraquat (PQ) and diquat (DQ) was studied using an undivided cell [...] Read more.
Boron-doped diamond electrodes (BDDEs) offer a highly efficient pathway to mineralize recalcitrant compounds due to their reduced energy requirements, fewer chemical inputs, and mechanical stability. In this work, the electrochemical degradation of paraquat (PQ) and diquat (DQ) was studied using an undivided cell (Condiacell®-type) at circumneutral pH, and under galvanostatic control. The roles of applied current density, volumetric flow rate, and herbicide concentration were systematically studied through a central composite design (CCD) using a closed-flow reaction setup. Under the best operating conditions (i.e., for PQ: 1.6 mA/cm2, 80 mL/min, and 70 mL/min, and 70 mg/L; and for DQ: 1.5 mA/cm2, 80 mL/min, and 73 mg/L), a spectrophotometric analysis evidenced that the herbicides were satisfactorily removed (ca. 100%) while mineralization degrees were above 90%. Furthermore, the produced effluents yielded significant increases in seed germination and root length, which suggest a reduction in toxicity. Energy consumptions of 0.13 and 0.18 kWh/g of TOC are reported with the electrochemical cells for the PQ and DQ treatments, respectively. The PQ and DQ treatments by electrooxidation are estimated to emit nearly 2.7 and 38.9 kg CO2/m3 of water treated, with a cost around USD 250/m3. Carbon emissions could be greatly decreased for PQ (0.28 kg CO2/m3) and DQ (0.40 kg CO2/m3) if electricity were generated from renewable resources. Although this study suggests that the use of BDDE can be considered as a green alternative for agrochemical removal due to lower carbon emissions, the environmental profile of the process is determined by the degree of renewability of the electrical grid of each country or region. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

20 pages, 6692 KiB  
Article
Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties
by Qiming Chen, Zewei Cai, Dhandapani Kuzhandaivel, Xianliang Lin, Jianlei Wang and Suyu Chen
Polymers 2024, 16(19), 2697; https://doi.org/10.3390/polym16192697 - 24 Sep 2024
Viewed by 1314
Abstract
Fused deposition modeling (FDM) 3D printing has the advantages of a simple molding principle, convenient operation, and low cost, making it suitable for the production and fabrication of complex structural parts. Moving forward to mass production using 3D printing, the major hurdle to [...] Read more.
Fused deposition modeling (FDM) 3D printing has the advantages of a simple molding principle, convenient operation, and low cost, making it suitable for the production and fabrication of complex structural parts. Moving forward to mass production using 3D printing, the major hurdle to overcome is the achievement of high dimensional stability and adequate mechanical properties. In particular, engineering plastics require precise dimensional accuracy. In this study, we overcame the issues of FDM 3D printing in terms of ternary material compounds for polyamides with gradient structures. Using multi-walled carbon nanotubes (MWCNTs) and boron nitride (BN) as fillers, polyamide 6 (PA6)-based 3D-printed parts with high dimensional stability were prepared using a single-nozzle, two-component composite fused deposition modeling (FDM) 3D printing technology to construct a gradient structure. The ternary composites were characterized via DSC and XRD to determine the optimal crystallinity. The warpage and shrinkage of the printed samples were measured to ensure the dimensional properties. The mechanical properties were analyzed to determine the influence of the gradient structures on the composites. The experimental results show that the warpage of pure polymer 3D-printed parts is as high as 72.64%, and the introduction of a gradient structure can reduce the warpage to 3.40% by offsetting the shrinkage internal stress between layers. In addition, the tensile strength of the gradient material reaches up to 42.91 MPa, and the increasing filler content improves the interlayer bonding of the composites, with the bending strength reaching up to 60.91 MPa and the interlayer shear strength reaching up to 10.23 MPa. Therefore, gradient structure design can be used to produce PA6 3D-printed composites with high dimensional stability without sacrificing the mechanical properties of PA6 composites. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

13 pages, 2756 KiB  
Article
Low-Temperature Thermal Treatment and Boron Speciation Analysis from Coals
by Jonah Gamutan, Shunsuke Kashiwakura, Richard Alorro and Tetsuya Nagasaka
Sustainability 2024, 16(13), 5770; https://doi.org/10.3390/su16135770 - 6 Jul 2024
Viewed by 1375
Abstract
Despite urgent calls for decarbonization, the continued increasing demand for electricity, primarily from coals, has presented challenges in managing coal-derived wastes such as coal fly ash (CFA), which are enriched with environmentally hazardous substances like boron. This study explores a low-temperature heating process [...] Read more.
Despite urgent calls for decarbonization, the continued increasing demand for electricity, primarily from coals, has presented challenges in managing coal-derived wastes such as coal fly ash (CFA), which are enriched with environmentally hazardous substances like boron. This study explores a low-temperature heating process to remove boron from coal, aimed at preventing its condensation and enrichment into CFA during combustion. Initial boron concentrations in coals varied widely from 50 to 500 ppm by weight and were found to correlate with fixed carbon content (FC) through the following polynomial equation: [B]o = 0.0929(FC)2 − 14.388(FC) + 601.85; R2 = 0.9173. This relationship suggests that as coal undergoes coalification, boron-containing compounds are decomposed and released, resulting in a decline in boron levels as the coal matures. Boron-removal efficiency was investigated by drying coal samples at 110 °C, 160 °C, and 210 °C under natural air convection, and nuclear magnetic resonance (NMR) spectroscopy was used to assess changes in boron speciation during heating. Our results demonstrate that boron removal ranged from 5% to 82%, with minimal improvements observed beyond 110 °C. In addition, the 11B MAS-NMR spectra of the coal samples showed four peaks at isotropic chemical shift values of −1.0, 2.0, 8.0, and 14.0 ppm and suggested that the species of boron volatilized at low temperatures is the inorganic BO4 assigned to peak no. 0 at −1.0 ppm. The association of boron with inorganic components in coal suggests potential for efficient removal, particularly in coals with higher fixed carbon content. These findings highlight the viability of low-temperature thermal treatment as a cost-effective method for boron removal, which is crucial in mitigating the risks associated with coal combustion by-products. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

15 pages, 3671 KiB  
Article
One-Step Synthesis, Crystallography, and Acute Toxicity of Two Boron–Carbohydrate Adducts That Induce Sedation in Mice
by Ricardo Ivan Cordova-Chávez, José G. Trujillo-Ferrara, Itzia I. Padilla-Martínez, Héctor González-Espinosa, Antonio Abad-García, Eunice D. Farfán-García, Clara Ortega-Camarillo, Alejandra Contreras-Ramos and Marvin A. Soriano-Ursúa
Pharmaceuticals 2024, 17(6), 781; https://doi.org/10.3390/ph17060781 - 14 Jun 2024
Cited by 2 | Viewed by 2209
Abstract
Boronic acids form diester bonds with cis-hydroxyl groups in carbohydrates. The formation of these adducts could impair the physical and chemical properties of precursors, even their biological activity. Two carbohydrate derivatives from d-fructose and d-arabinose and phenylboronic acid were synthesized in [...] Read more.
Boronic acids form diester bonds with cis-hydroxyl groups in carbohydrates. The formation of these adducts could impair the physical and chemical properties of precursors, even their biological activity. Two carbohydrate derivatives from d-fructose and d-arabinose and phenylboronic acid were synthesized in a straightforward one-step procedure and chemically characterized via spectroscopy and X-ray diffraction crystallography. Additionally, an acute toxicity test was performed to determine their lethal dose 50 (LD50) values by using Lorke’s method. Analytical chemistry assays confirmed the formation of adducts by the generation of diester bonds with the β-d-pyranose of carbohydrates, including signals corresponding to the formation of new bonds, such as the stretching of B–O bonds. NMR spectra yielded information about the stereoselectivity in the synthesis reaction: Just one signal was found in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests showed that the LD50 value for both compounds was 1265 mg/kg, while the effective dose 50 (ED50) for sedation was 531 mg/kg. However, differences were found in the onset and lapse of sedation. For example, the arabinose derivative induced sedation for more than 48 h at 600 mg/kg, while the fructose derivative induced sedation for less than 6 h at the same dose without the death of the mice. Thus, we report for the first time two boron-containing carbohydrate derivatives inducing sedation after intraperitoneal administration. They are bioactive and highly safe agents. Further biological evaluation is desirable to explore their medical applications. Full article
Show Figures

Figure 1

25 pages, 6307 KiB  
Article
On the Determination of Elastic Properties of Single-Walled Nitride Nanotubes Using Numerical Simulation
by Nataliya A. Sakharova, André F. G. Pereira, Jorge M. Antunes, Bruno M. Chaparro, Tomás G. Parreira and José V. Fernandes
Materials 2024, 17(10), 2444; https://doi.org/10.3390/ma17102444 - 18 May 2024
Cited by 2 | Viewed by 1518
Abstract
In recent years, tubular nanostructures have been related to immense advances in various fields of science and technology. Considerable research efforts have been centred on the theoretical prediction and manufacturing of non-carbon nanotubes (NTs), which meet modern requirements for the development of novel [...] Read more.
In recent years, tubular nanostructures have been related to immense advances in various fields of science and technology. Considerable research efforts have been centred on the theoretical prediction and manufacturing of non-carbon nanotubes (NTs), which meet modern requirements for the development of novel devices and systems. In this context, diatomic inorganic nanotubes formed by atoms of elements from the 13th group of the periodic table (B, Al, Ga, In, Tl) and nitrogen (N) have received much research attention. In this study, the elastic properties of single-walled boron nitride, aluminium nitride, gallium nitride, indium nitride, and thallium nitride nanotubes were assessed numerically using the nanoscale continuum modelling approach (also called molecular structural mechanics). The elastic properties (rigidities, surface Young’s and shear moduli, and Poisson’s ratio) of nitride nanotubes are discussed with respect to the bond length of the corresponding diatomic hexagonal lattice. The results obtained contribute to a better understanding of the mechanical response of nitride compound-based nanotubes, covering a broad range, from the well-studied boron nitride NTs to the hypothetical thallium nitride NTs. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

21 pages, 15617 KiB  
Article
Combustion Synthesis of Functionalized Carbonated Boron Nitride Nanoparticles and Their Potential Application in Boron Neutron Capture Therapy
by Stanisław Cudziło, Bożena Szermer-Olearnik, Sławomir Dyjak, Mateusz Gratzke, Kamil Sobczak, Anna Wróblewska, Agnieszka Szczygieł, Jagoda Mierzejewska, Katarzyna Węgierek-Ciura, Andrzej Rapak, Paulina Żeliszewska, Dawid Kozień, Zbigniew Pędzich and Elżbieta Pajtasz-Piasecka
Materials 2024, 17(10), 2438; https://doi.org/10.3390/ma17102438 - 18 May 2024
Cited by 1 | Viewed by 1556
Abstract
In this research, we developed boron-rich nanoparticles that can be used for boron neutron capture therapy as potential carriers for boron delivery to cancerous tissues. Functionalized carbonated boron nitride nanostructures (CBNs) were successfully synthesized in self-propagating combustion waves in mixtures of high-nitrogen explosives [...] Read more.
In this research, we developed boron-rich nanoparticles that can be used for boron neutron capture therapy as potential carriers for boron delivery to cancerous tissues. Functionalized carbonated boron nitride nanostructures (CBNs) were successfully synthesized in self-propagating combustion waves in mixtures of high-nitrogen explosives and boron compounds. The products’ composition, morphology, and structural features were investigated using Fourier transform infrared spectroscopy, powder X-ray diffraction, low-temperature nitrogen sorption analysis, thermogravimetric analysis, high-resolution scanning electron microscopy, and high-resolution transmission electron microscopy. The extreme conditions prevailing in combustion waves favor the formation of nanosized CBN hollow grains with highly disordered structures that are properly functionalized on the surface and inside the particles. Therefore, they are characterized by high porosity and good dispersibility in water, which are necessary for medical applications. During biological tests, a concentration-dependent effect of the obtained boron nitride preparations on the viability of normal and neoplastic cells was demonstrated. Moreover, the assessment of the degree of binding of fluorescently labeled nanoparticles to selected cells confirmed the relationships between the cell types and the concentration of the preparation at different incubation time points. Full article
Show Figures

Figure 1

23 pages, 15079 KiB  
Article
Optoelectronic Response to the Fluor Ion Bond on 4-(4,4,5,5-Tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde
by Ulises J. Guevara, Jesús Núñez, Laura M. Pérez, Anton Tiutiunnyk, Neudo Urdaneta, Eduardo Cisternas and David Laroze
Int. J. Mol. Sci. 2024, 25(9), 5000; https://doi.org/10.3390/ijms25095000 - 3 May 2024
Cited by 1 | Viewed by 1310
Abstract
Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried [...] Read more.
Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B–F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands nπ* and ππ* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom. Full article
Show Figures

Figure 1

17 pages, 930 KiB  
Article
Nitrogen-Rich Sewage Sludge Mineralized Quickly, Improving Lettuce Nutrition and Yield, with Reduced Risk of Heavy Metal Contamination of Soil and Plant Tissues
by Margarida Arrobas, Ramily Meneses, Andressa Gribler Gusmão, Julieta Moreira da Silva, Carlos Manuel Correia and Manuel Ângelo Rodrigues
Agronomy 2024, 14(5), 924; https://doi.org/10.3390/agronomy14050924 - 27 Apr 2024
Cited by 8 | Viewed by 2179
Abstract
Sewage sludge should primarily find use in agriculture, reducing the quantity directed towards alternative disposal methods like incineration or deposition in municipal landfills. This study evaluated the agronomic value and the risk of soil and plant tissue contamination with heavy metals in sewage [...] Read more.
Sewage sludge should primarily find use in agriculture, reducing the quantity directed towards alternative disposal methods like incineration or deposition in municipal landfills. This study evaluated the agronomic value and the risk of soil and plant tissue contamination with heavy metals in sewage sludge obtained from two wastewater treatment plants (WWTP). The experiment was arranged as a 2 × 5 factorial (two sewage sludges, five sanitation treatments), involving lettuce cultivation in pots over two growing cycles. The two sewage sludges were sourced from the WWTPs of Gelfa and Viana do Castelo and underwent five sanitation and stabilization treatments (40% and 20% calcium oxide, 40% and 20% calcium hydroxide, and untreated sewage sludge). The Gelfa sewage sludge, characterized by a higher initial nitrogen (N) concentration, resulted in greater dry-matter yield (DMY) (12.4 and 8.6 g plant−1 for the first and second growing cycles, respectively) compared to that from Viana do Castelo (11.0 and 8.1 g plant−1), with N release likely being a major factor influencing crop productivity. The high N concentration and the low carbon (C)/N ratio of sewage sludge led to rapid mineralization of the organic substrate, which additionally led to a higher release of other important nutrients, such as phosphorus (P) and boron (B), making them available for plant uptake. Alkalizing treatments further stimulated sewage sludge mineralization, increasing soil pH and exchangeable calcium (Ca), thereby enhancing Ca availability for plants, and indicating a preference for use in acidic soils. Cationic micronutrients were minimally affected by the sewage sludge and their treatments. The concentrations of heavy metals in the sewage sludge, soils, and lettuce tissues were all below internationally established threshold limits. This study highlighted the high fertilizing value of these sewage sludges, supplying N, P, and B to plants, while demonstrating a low risk of environmental contamination with heavy metals. Nevertheless, the safe use of sewage sludge by farmers depends on monitoring other risks, such as toxic organic compounds, which were not evaluated in this study. Full article
Show Figures

Figure 1

11 pages, 3517 KiB  
Article
Preparation of Mesophase Pitch with Fine-Flow Texture from Ethylene Tar/Naphthalene by Catalytic Synthesis for High-Thermal-Conductivity Carbon Fibers
by Xubin He, Xiao Wu, Kui Shi, Shipeng Zhu, Dong Huang, Hongbo Liu and Jinshui Liu
Polymers 2024, 16(7), 970; https://doi.org/10.3390/polym16070970 - 2 Apr 2024
Cited by 5 | Viewed by 2116
Abstract
Mesophase pitch is usually prepared by radical polymerization or catalytic polymerization from coal tar, petroleum, and aromatic compounds, and the catalytic synthesis of mesophase pitch from pure aromatic compounds is more controllable in the preparation of high-quality mesophase pitch. However, the corrosive and [...] Read more.
Mesophase pitch is usually prepared by radical polymerization or catalytic polymerization from coal tar, petroleum, and aromatic compounds, and the catalytic synthesis of mesophase pitch from pure aromatic compounds is more controllable in the preparation of high-quality mesophase pitch. However, the corrosive and highly toxic nature of the catalyst has limited the further development of this method. In this study, mesophase pitch was synthetized using ethylene tar and naphthalene as raw materials and boron trifluoride diethyl etherate as a catalyst. The effect of the catalytic reaction on the structure and properties of the mesophase pitch was investigated. The results show that naphthalene plays an important role in the mesophase content and reaction pressure (from above 6 MPa to 2.35 MPa). Mesophase pitch with fine-flow texture can be prepared by introducing more methylene groups, naphthenic structures, and aliphatic hydrocarbons during synthesis. Carbon fibers prepared from mesophase pitch show a split structure, and the thermal conductivity is 730 W/(m·K). This work provides theoretical support for lower toxicity and causticity and for reaction-controlled technology for the synthesis of high-purity mesophase pitch. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

15 pages, 6372 KiB  
Article
Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature
by Xin Zuo, Lisheng Zhang, Ge Gao, Changchun Xin, Bingfeng Fu, Shejiang Liu and Hui Ding
Molecules 2024, 29(7), 1463; https://doi.org/10.3390/molecules29071463 - 25 Mar 2024
Cited by 6 | Viewed by 1813
Abstract
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input [...] Read more.
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron–carbon–nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment. Full article
(This article belongs to the Special Issue Nano Environmental Materials II)
Show Figures

Figure 1

11 pages, 4214 KiB  
Article
Fast Synthesis of Fine Boron Carbide Powders Using Electromagnetic Induction Synthesis Method
by Anna V. Gubarevich and Katsumi Yoshida
Powders 2024, 3(1), 17-27; https://doi.org/10.3390/powders3010002 - 8 Jan 2024
Viewed by 1985
Abstract
Boron carbide (B4C) powders with defined stoichiometry, high crystallinity, minimal impurity content, and a fine particle size are imperative for realizing the exceptional properties of this compound in advanced high-technology applications. Nevertheless, achieving the desired stoichiometry and particle size using traditional [...] Read more.
Boron carbide (B4C) powders with defined stoichiometry, high crystallinity, minimal impurity content, and a fine particle size are imperative for realizing the exceptional properties of this compound in advanced high-technology applications. Nevertheless, achieving the desired stoichiometry and particle size using traditional synthesis methods, which rely on prolonged high-temperature processes, can be challenging. The primary objective of this study is to synthesize fine B4C powders characterized by high crystallinity and a sub-micron particle size, employing a fast and energy-efficient method. B4C powders are synthesized from elemental boron and carbon in a high-frequency induction heating furnace using the electromagnetic induction synthesis (EMIS) method. The rapid heating rate achieved through contactless heating promotes the ignition and propagation of the exothermic chemical reaction between boron and carbon. Additionally, electromagnetic effects accelerate atomic diffusion, allowing the reaction to be completed in an exceptionally short timeframe. The grain size and crystallinity of B4C can be finely tuned by adjusting various process parameters, including the post-ignition holding temperature and the duration of heating. As a result, fine B4C powders can be synthesized in under 10 min. Moreover, these synthesized B4C powders exhibit oxidation onset temperatures higher than 500 °C when exposed to air. Full article
(This article belongs to the Special Issue Feature Papers in Powders 2023)
Show Figures

Figure 1

Back to TopTop