Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of PA6/POE-g-MAH Blended Strands
2.3. Preparation of High-Filler-Loaded Blended Strands
2.4. Gradient Composite Materials Prepared by S2-FDM 3D Printing
2.5. Homogeneous Materials Were Prepared by Single-Feed FDM 3D Printing
2.6. Testing and Characterization
3. Results and Discussions
3.1. Preparation and Characterization of PA6/POE-g-MAH
3.2. Preparation of Gradient Structure and Warpage Test
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Drobny, J.G. 16—Recycling of Thermoplastic Elastomers. In Handbook of Thermoplastic Elastomers, 2nd ed.; Drobny, J.G., Ed.; William Andrew Publishing: Oxford, UK, 2014; pp. 339–340. [Google Scholar]
- Rietzler, B.; Manian, A.P.; Rhomberg, D.; Bechtold, T.; Pham, T. Investigation of the decomplexation of polyamide/CaCl2 complex toward a green, nondestructive recovery of polyamide from textile waste. J. Appl. Polym. Sci. 2021, 138, 9. [Google Scholar] [CrossRef]
- Cai, Z.Q.; Ye, J.Q.; Zhang, Y.F.; Nie, D.L.; Ouyang, J.L. The phase transition of polyamide 6 with pre-stretching process at different temperatures. Phys. Scr. 2021, 96, 9. [Google Scholar] [CrossRef]
- Ewender, J.; Welle, F. Functional barrier performance of a polyamide-6 membrane towards n-alkanes and 1-alcohols. Packag. Technol. Sci. 2016, 29, 277–287. [Google Scholar] [CrossRef]
- Morgado, G.F.D.; Montagna, L.S.; Gouvêa, R.F.; Guimaraes, A.; Passador, F.R.; Rezende, M.C. Fatigue and durability assessment of PA6-based carbon fiber composites for lightweight applications. J. Compos. Mater. 2023, 57, 4227–4238. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Dhanush, P.; Chethan, B.S.; Thamme Gowda, C.S.; Shrivastava, P.K. Recent Development in Hybrid Electrical Vehicle. Indian J. Sci. Technol. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Heino, M.; Hietaoja, P.; Seppala, J.; Harmia, T.; Friedrich, K. Studies on fracture behavior of tough PA6/PP blends. J. Appl. Polym. Sci. 1997, 66, 2209–2220. [Google Scholar] [CrossRef]
- Sharma, V.; Roozbahani, H.; Alizadeh, M.; Handroos, H. 3D Printing of Plant-Derived Compounds and a Proposed Nozzle Design for the More Effective 3D FDM Printing. IEEE Access 2021, 9, 57107–57119. [Google Scholar] [CrossRef]
- Maqsood, N.; Rimasauskas, M. Development and fabrication of continuous carbon fiber reinforced thermoplastic porous composite structures with different infill patterns by using additive manufacturing. J. Thermoplast. Compos. Mater. 2023, 36, 2050–2075. [Google Scholar] [CrossRef]
- Yap, E.P.; Koay, S.C.; Chan, M.Y.; Choo, H.L.; Ong, T.K.; Tshai, K.Y. Recycling Polymer Blend made from Post-used Styrofoam and Polyethylene for Fuse Deposition Modelling. J. Phys. Conf. Ser. 2021, 2120, 012021. [Google Scholar] [CrossRef]
- Raykar, S.J.; D’Addona, D.M. Selection of Best Printing Parameters of Fused Deposition modeling using VIKOR. In Proceedings of the 1st International Conference on Recent Advances in Materials and Manufacturing (ICRAMM), Belagavi, India, 12–14 September 2019; pp. 344–347. [Google Scholar]
- Feng, D.; Wang, B.; Liu, Q.; Chen, S.; Chen, G.; Hu, T. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology. Acta Mater. Compos. Sin. 2021, 38, 1371–1386. [Google Scholar]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Tang, F.; Chen, J. Multi-material additive manufacturing via fused deposition modeling 3D printing: A systematic review on the material feeding mechanism. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024. [Google Scholar] [CrossRef]
- García-Martínez, H.; Avila-Navarro, E.; Torregrosa-Penalva, G.; Rodríguez-Martínez, A.; Blanco-Angulo, C.; de la Casa-Lillo, M.A. Low-Cost Additive Manufacturing Techniques Applied to the Design of Planar Microwave Circuits by Fused Deposition Modeling. Polymers 2020, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- FicĂ, S.; Dimitrescu, A.; BabiȘ, C. Additive Manufacturing Through 3D Printing FDM-Fused Deposit Modeling of Top Cover. Ann. “Dunarea De Jos” Univ. Galati Fascicle IX Metall. Mater. Sci. 2023, 46, 28–32. [Google Scholar] [CrossRef]
- Li, G.W.; Zhao, J.; Jiang, J.L.; Jiang, H.; Wu, W.Z.; Tang, M.X. Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing. Int. J. Adv. Manuf. Technol. 2018, 96, 2747–2755. [Google Scholar] [CrossRef]
- Zhao, H.X.; Ma, Y.F.; Zhang, J.; Hu, Z.L.; Li, H.; Wang, Y.J.; Liu, J.P.; Wang, K.C. Effect of clay content on shrinkage of cementitious materials. Constr. Build. Mater. 2022, 322, 12. [Google Scholar] [CrossRef]
- Friess, K.; Sagidullin, A.; Wiesner, B.; Meier-Haack, J.; Scheler, U. Polymer chain mobility in polyelectrolyte multilayers. Polym. Sci. Ser. C 2017, 59, 102–105. [Google Scholar] [CrossRef]
- Sreejith, P.; Kannan, K.; Rajagopal, K.R. A Thermodynamic Framework for Additive Manufacturing, using Amorphous Polymers, Capable of Predicting Residual Stress, Warpage and Shrinkage. arXiv 2021. [Google Scholar] [CrossRef]
- Sakai, T.; Shamsudim, N.S.B.; Fukushima, R.; Kageyama, K. Effect of matrix crystallinity of carbon fiber reinforced polyamide 6 on static bending properties. Adv. Compos. Mater. 2021, 30, 71–84. [Google Scholar] [CrossRef]
- Naima Khalid, N.; Afiqah Mohd Radzuan, N.; Bakar Sulong, A.; Mohd Foudzi, F. A review on bonding of Polyamide reinforced carbon fibre via additive manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1078, 012004. [Google Scholar] [CrossRef]
- Jia, Y.C.; He, H.; Peng, X.D.; Meng, S.N.; Chen, J.; Geng, Y. Preparation of a new filament based on polyamide-6 for three-dimensional printing. Polym. Eng. Sci. 2017, 57, 1322–1328. [Google Scholar] [CrossRef]
- Peng, X.; He, H.; Jia, Y.; Liu, H.; Geng, Y.; Huang, B.; Luo, C. Shape memory effect of three-dimensional printed products based on polypropylene/nylon 6 alloy. J. Mater. Sci. 2019, 54, 9235–9246. [Google Scholar] [CrossRef]
- Honma, T.; Zhao, L.; Asakawa, N.; Inoue, Y. Poly(ε-Caprolactone)/Chitin and Poly(ε-Caprolactone)/Chitosan Blend Films With Compositional Gradients: Fabrication and Their Biodegradability. Macromol. Biosci. 2006, 6, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; He, H.; Jia, Y.; Peng, X.; Li, Y. Enhanced through-plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling. Polym. Compos. 2019, 40, 3375–3382. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C.D.; Pfaendner, R. Influence of accelerated aging on clay-reinforced polyamide 6. Polym. Degrad. Stabil. 2009, 94, 389–396. [Google Scholar] [CrossRef]
- Ramesh, C.; Gowd, E.B. High-temperature X-ray diffraction studies on the crystalline transitions in the α- and γ-forms of nylon-6. Macromolecules 2001, 34, 3308–3313. [Google Scholar] [CrossRef]
- Liu, T.X.; Liu, Z.H.; Ma, K.X.; Shen, L.; Zeng, K.Y.; He, C.B. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Compos. Sci. Technol. 2003, 63, 331–337. [Google Scholar] [CrossRef]
- Medellín-Rodríguez, F.J.; Larios-López, L.; Zapata-Espinoza, A.; Dávalos-Montoya, O.; Phillips, P.J.; Lin, J.S. Melting behavior of polymorphics:: Molecular weight dependence and steplike mechanisms in nylon-6. Macromolecules 2004, 37, 1799–1809. [Google Scholar] [CrossRef]
- Murthy, N.S. Metastable Crystalline Phases in Nylon 6. Polym. Commun. 1991, 32, 301–305. [Google Scholar]
- Lincoln, D.M.; Vaia, R.A.; Wang, Z.G.; Hsiao, B.S.; Krishnamoorti, R. Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 2001, 42, 9975–9985. [Google Scholar] [CrossRef]
- Liu, T.X.; Phang, I.Y.; Shen, L.; Chow, S.Y.; Zhang, W.D. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites. Volume 37, Number 19, September 21, 2004, pp 7214−7222. Macromolecules 2007, 40, 8812. [Google Scholar] [CrossRef]
- Yu, Z.Z.; Ou, Y.C.; Hu, G.H. Influence of interfacial adhesion on toughening of polyethylene-octene elastomer nylon 6 blends. J. Appl. Polym. Sci. 1998, 69, 1711–1718. [Google Scholar] [CrossRef]
- Xie, T.T.; Wu, H.; Bao, W.T.; Guo, S.Y.; Chen, Y.; Huang, H.; Chen, H.Y.; Lai, S.Y.; Jow, J. Enhanced Compatibility of PA6/POE Blends by POE-g-MAH Prepared Through Ultrasound-Assisted Extrusion. J. Appl. Polym. Sci. 2010, 118, 1846–1852. [Google Scholar] [CrossRef]
- Sun, H.Y.; Jiang, F.; Lei, F.; Chen, L.; Zhang, H.; Leng, J.; Sun, D.Z. Graphite fluoride reinforced PA6 composites: Crystallization and mechanical properties. Mater. Today Commun. 2018, 16, 217–225. [Google Scholar] [CrossRef]
PA6/wt.% | POE-g-MAH/wt.% | MWCNTs/wt.% | BN/wt.% |
---|---|---|---|
93 | 5.5 | 2.5 | — |
90 | 5 | 5 | — |
89 | 4.5 | 7.5 | |
85.5 | 4.5 | 10 | — |
83 | 4.5 | 12.5 | |
81 | 4 | 15 | — |
90 | 5 | — | 5 |
85.5 | 4.5 | — | 10 |
76 | 4 | — | 20 |
Parameter | Set Value |
---|---|
Nozzle diameter (mm) | 0.4 |
Nozzle temperature (°C) | 240 |
Hot-bed temperature (°C) | 30 |
Gradient configuration A | 0 |
Gradient configuration B | 100 |
Story height (mm) | 0.2 |
Filling rate (%) | 100 |
Print speed (mm s−1) | 40 |
Name of the Sample | Enthalpy (J/g) | Melting Temperature (°C) | Crystallinity (%) |
---|---|---|---|
100PA6 | 73.63 | 247.54 | 38.75 |
95PA6/5POE-g-MAH | 69.17 | 247.97 | 38.32 |
90PA6/10POE-g-MAH | 64.74 | 247.52 | 37.86 |
85PA6/15POE-g-MAH | 60.13 | 247.54 | 37.23 |
Name of the Sample | Enthalpy (J/g) | Melting Temperature (°C) | Crystallization Temperature (°C) | Crystallinity (%) |
---|---|---|---|---|
PA6/ POE-g-MAH | 69.17 | 247.97 | 248.53 | 38.32 |
PA6/POE-g-MAH/2.5 wt.% MWCNTs | 66.86 | 248.38 | 244.83 | 37.83 |
PA6/POE-g-MAH/5 wt.% MWCNTs | 64.04 | 248.37 | 244.84 | 37.45 |
PA6/POE-g-MAH/7.5 wt.% MWCNTs | 62.65 | 248.39 | 244.86 | 37.05 |
PA6/POE-g-MAH/10 wt.% MWCNTs | 59.15 | 248.38 | 244.82 | 36.41 |
PA6/POE-g-MAH/12.5 wt.% MWCNTs | 56.41 | 248.4 | 244.83 | 35.77 |
PA6/POE-g-MAH/15 wt.% MWCNTs | 54.01 | 248.41 | 244.81 | 35.09 |
Sample Name | Enthalpy (J/g) | Melting Temperature (°C) | Crystallization Temperature (°C) | Crystallinity (%) |
---|---|---|---|---|
PA6/ POE-g-MAH | 69.17 | 247.97 | 248.53 | 38.32 |
PA6/POE-g-MAH/5 wt.% BN | 64.88 | 248.48 | 248.48 | 37.94 |
PA6/POE-g-MAH/10 wt.% BN | 60.29 | 248.43 | 247.73 | 37.11 |
PA6/POE-g-MAH/20 wt.% BN | 50.93 | 248.53 | 247.77 | 35.27 |
Number | Typology |
---|---|
A | 95PA6/5POE-g-MAH |
B | PA6/POE-g-MAH/MWCNTs-COOH (2.5 wt.%) |
C | PA6/POE-g-MAH/MWCNTs-COOH (5 wt.%) |
D | PA6/POE-g-MAH/MWCNTs-COOH (7.5 wt.%) |
E | PA6/POE-g-MAH → POE-g-MAH/MWCNTs-COOH (5 wt.%), from bottom to top |
F | PA6/POE-g-MAH → POE-g-MAH/MWCNTs-COOH (10 wt.%), from bottom to top |
G | PA6/POE-g-MAH → POE-g-MAH/MWCNTs-COOH (15 wt.%), from bottom to top |
H | POE-g-MAH/MWCNTs-COOH (5 wt.%) → PA6/POE-g-MAH, from bottom to top |
I | POE-g-MAH/MWCNTs-COOH (10 wt.%) → PA6/POE-g-MAH, from bottom to top |
J | POE-g-MAH/MWCNTs-COOH (15 wt.%) → PA6/POE-g-MAH, from bottom to top |
K | PA6/POE-g-MAH/BN (5 wt.%) |
L | PA6/POE-g-MAH/BN (10 wt.%) |
M | PA6/POE-g-MAH → POE-g-MAH/BN (10 wt.%), from bottom to top |
N | PA6/POE-g-MAH → POE-g-MAH/BN (20 wt.%), from bottom to top |
O | POE-g-MAH/BN (10 wt.%) → PA6/POE-g-MAH, from bottom to top |
P | POE-g-MAH/BN (20 wt.%) → PA6/POE-g-MAH, from bottom to top |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Cai, Z.; Kuzhandaivel, D.; Lin, X.; Wang, J.; Chen, S. Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties. Polymers 2024, 16, 2697. https://doi.org/10.3390/polym16192697
Chen Q, Cai Z, Kuzhandaivel D, Lin X, Wang J, Chen S. Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties. Polymers. 2024; 16(19):2697. https://doi.org/10.3390/polym16192697
Chicago/Turabian StyleChen, Qiming, Zewei Cai, Dhandapani Kuzhandaivel, Xianliang Lin, Jianlei Wang, and Suyu Chen. 2024. "Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties" Polymers 16, no. 19: 2697. https://doi.org/10.3390/polym16192697
APA StyleChen, Q., Cai, Z., Kuzhandaivel, D., Lin, X., Wang, J., & Chen, S. (2024). Three-Dimensionally Printed Ternary Composites of Polyamide: Effect of Gradient Structure on Dimensional Stability and Mechanical Properties. Polymers, 16(19), 2697. https://doi.org/10.3390/polym16192697