Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = boron based technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1667 KB  
Review
Enhancing the Performance of Materials in Ballistic Protection Using Coatings—A Review
by Georgiana Ghisman Alexe, Gabriel Bogdan Carp, Tudor Viorel Tiganescu and Daniela Laura Buruiana
Technologies 2026, 14(1), 13; https://doi.org/10.3390/technologies14010013 - 24 Dec 2025
Abstract
The continuous advancement of modern weaponry has intensified the pursuit of next-generation ballistic protection systems that integrate lightweight architectures, superior flexibility, and high energy absorption efficiency. This review provides a technological overview of current trends in the design, processing, and performance optimization of [...] Read more.
The continuous advancement of modern weaponry has intensified the pursuit of next-generation ballistic protection systems that integrate lightweight architectures, superior flexibility, and high energy absorption efficiency. This review provides a technological overview of current trends in the design, processing, and performance optimization of metallic, ceramic, polymeric, and composite materials for ballistic applications. Particular emphasis is placed on the role of advanced surface coatings and nanostructured interfaces as enabling technologies for improved impact resistance and multifunctionality. Conventional materials such as high-strength steels, alumina, silicon carbide, boron carbide, Kevlar®, and ultra-high-molecular-weight polyethylene (UHMWPE) continue to dominate the field due to their outstanding mechanical properties; however, their intrinsic limitations have prompted a transition toward nanotechnology-assisted solutions. Functional coatings incorporating nanosilica, graphene and graphene oxide, carbon nanotubes (CNTs), and zinc oxide nanowires (ZnO NWs) have demonstrated significant enhancement in interfacial adhesion, inter-yarn friction, and energy dissipation. Moreover, multifunctional coatings such as CNT- and laser-induced graphene (LIG)-based layers integrate sensing capability, electromagnetic interference (EMI) shielding, and thermal stability, supporting the development of smart and adaptive protection platforms. By combining experimental evidence with computational modeling and materials informatics, this review highlights the technological impact of coating-assisted strategies in the evolution of lightweight, high-performance, and multifunctional ballistic armor systems for defense and civil protection. Full article
Show Figures

Figure 1

22 pages, 11180 KB  
Article
Enhanced Mechanical Performance of Fluoroelastomer Composites with Boron–Gadolinium-Based Fillers for Cutting-Edge Applications
by Allan Bascuñan-Heredia, Francisco Molina, Maria José Inestrosa-Izurieta, Mohamed Dahrouch, Adolfo Henriquez, Catalina Cortés, Miguel Angel Lopez-Manchado and Héctor Aguilar-Bolados
Polymers 2026, 18(1), 6; https://doi.org/10.3390/polym18010006 - 19 Dec 2025
Viewed by 224
Abstract
The notable interest in materials with high-performance multifunctional properties, coupled with the diverse availability of raw materials—despite geopolitical controversies—allows for the design of a wide variety of new materials. Flexible materials with inorganic fillers derived from rare earths are of particular interest, as [...] Read more.
The notable interest in materials with high-performance multifunctional properties, coupled with the diverse availability of raw materials—despite geopolitical controversies—allows for the design of a wide variety of new materials. Flexible materials with inorganic fillers derived from rare earths are of particular interest, as elements such as gadolinium have multiple properties of high technological interest. In particular, gadolinium oxides and borates have not been explored as fillers in special rubbers, such as FKM fluoroelastomers, which correspond to copolymers based on hexafluoropropylene and difluorovinylidene. It is in this context that the present work consists of obtaining and characterizing FKM-based compounds containing gadolinium(III) oxide, gadolinium borate, or thermally treated gadolinium borate. The promising results allow us to identify unique qualities imparted by this type of filler in fluoroelastomers, especially regarding mechanical properties. In fact, the increase in tensile strength of the compounds reached up to 162%. Likewise, the elongation at break was almost doubled. DMA identified that the reinforcing effect of gadolinium compounds is limited; it is hypothesized that the electronic nature of gadolinium, with its available f orbitals, influences the structure of FKM and, consequently, its properties. Taken together, these results provide relevant information for the development of new materials that, due to their boron and gadolinium-based composition—both elements with high neutron capture cross sections—could be used in neutron shielding applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

13 pages, 5810 KB  
Article
Cobalt Nanoparticle-Modified Boron Nitride Nanobelts for Rapid Tetracycline Degradation via PMS Activation
by Pengcheng Dai, Xiangjian Wang, Yongxin Zhao, Huishan Chen, Hui Zhao, Longzhen Cheng, Longxi Xu and Zeyu Zhang
Catalysts 2025, 15(12), 1117; https://doi.org/10.3390/catal15121117 - 1 Dec 2025
Viewed by 304
Abstract
Tetracycline (TC), a widely used antibiotic, persists in aquatic environments due to its chemical stability, bioaccumulation potential, and role in promoting antimicrobial resistance, posing significant ecological and public health risks. To address the pressing need for effective wastewater treatment technologies, a cobalt nanoparticle-embedded [...] Read more.
Tetracycline (TC), a widely used antibiotic, persists in aquatic environments due to its chemical stability, bioaccumulation potential, and role in promoting antimicrobial resistance, posing significant ecological and public health risks. To address the pressing need for effective wastewater treatment technologies, a cobalt nanoparticle-embedded boron nitride nanocomposite (Co/BN) was developed for efficient peroxymonosulfate (PMS) activation. Among the synthesized catalysts, Co/BN-1 exhibited outstanding performance, achieving near-complete TC degradation within 5 min under mild conditions, along with excellent stability and reusability over four consecutive cycles, accompanied by minimal cobalt leaching. Mechanistic studies combining radical scavenging assays and LC-MS analysis revealed the involvement of both radical species (SO4 and OH) and non-radical pathways (1O2), highlighting a synergistic effect between Co nanoparticles and the BN matrix. This work demonstrates the feasibility of Co/BN composites as highly efficient, stable, and eco-friendly catalysts for sulfate radical-based advanced oxidation processes (SR-AOPs), providing a promising strategy for the rapid and sustainable removal of antibiotic pollutants from water systems. Full article
(This article belongs to the Special Issue Catalysis and New Energy Materials)
Show Figures

Graphical abstract

25 pages, 2281 KB  
Review
Material Design and Operation Strategy of the Electro-Fenton System for the Treatment of High Pollutant Load Wastewater
by Hong Ding, Qiqi Ma, Xiaoke Zhang, Chaoqi Wang, Na You and Shihai Deng
Sustainability 2025, 17(23), 10501; https://doi.org/10.3390/su172310501 - 24 Nov 2025
Viewed by 517
Abstract
Electro-Fenton (EF) technology holds significant promise for degrading recalcitrant organic pollutants. Still, it faces distinct challenges in high-pollutant-load wastewater, including insufficient radical generation, electrode passivation, and mass transfer limitations. This review systematically organizes recent advances in material design and operational strategies to address [...] Read more.
Electro-Fenton (EF) technology holds significant promise for degrading recalcitrant organic pollutants. Still, it faces distinct challenges in high-pollutant-load wastewater, including insufficient radical generation, electrode passivation, and mass transfer limitations. This review systematically organizes recent advances in material design and operational strategies to address these issues. We highlight innovative cathode materials (e.g., graphene-based structures, carbon nanotubes, and metal–organic frameworks), stable anodes such as boron-doped diamond, and catalysts tailored for harsh conditions. Key operational improvements are discussed, including pH adaptability, current density optimization, and oxygen supply enhancement. The integration of hybrid systems, such as bio-electro-Fenton and photo-electro-Fenton, is also examined. Looking forward, future research for treating high-pollutant load wastewater should focus on: (1) Developing electrodes and catalysts with superior antifouling properties and long-term stability in high-strength, complex wastewaters; (2) Constructing intelligent control systems capable of real-time response to water quality fluctuations for adaptive parameter optimization; (3) Exploring energy-efficient, self-sustaining EF systems coupled with renewable energy sources or incorporating energy recovery units. This review aims to provide a comprehensive reference for subsequent research endeavors and practical applications related to the treatment technology of EF systems in high-pollutant-load wastewater contexts. Full article
(This article belongs to the Special Issue Wastewater Treatment, Water Pollution and Sustainable Water Resources)
Show Figures

Figure 1

16 pages, 3370 KB  
Article
A New Hope for All-Diamond Electrodes? The Interdigitated Double Diamond Electrode
by Manuel Zulla, Carolin Messerschmidt, Hanadi Ghanem, Johannes Bähr, Lukas Hegemann and Stefan Rosiwal
Electrochem 2025, 6(4), 41; https://doi.org/10.3390/electrochem6040041 - 22 Nov 2025
Viewed by 571
Abstract
Nowadays, the development of efficient water treatment processes is increasingly driven by the need to provide solutions for contaminants of emerging concern. Electrochemical advanced oxidation processes (EAOPs) based on diamond electrodes can be part of innovative removal concepts. However, expensive substrates, energy-intensive chemical [...] Read more.
Nowadays, the development of efficient water treatment processes is increasingly driven by the need to provide solutions for contaminants of emerging concern. Electrochemical advanced oxidation processes (EAOPs) based on diamond electrodes can be part of innovative removal concepts. However, expensive substrates, energy-intensive chemical vapor deposition (CVD) of diamond, and market availability complicate matters for diamond electrodes to gain traction in the water treatment sector. In addition, it has to be stated that the mining and complex processing of necessary substrates like Si, Ti, Nb, or Ta need a significant amount of fresh water, which counteracts the need for more sustainability in the field of EAOPs. In this context, a ceramic-based boron-doped diamond (BDD) electrode is presented, which addresses this dilemma. The presented concept of the so-called interdigitated double diamond electrode (iDDE) consumes 14–46% less energy in batch-mode experiments to degrade an organic model molecule compared to standard BDD technology in a poorly conductive electrolyte (κ < 350 µS/cm). Laser-induced micro-structuring of the BDD layer reduces the interelectrode spacing (IES) of the iDDE to below 50 µm. The structuring approach at the micrometer scale enables the treatment of electrically low-conductivity electrolytes more energy efficiently, while reducing the need for a supporting electrolyte or a proton exchange membrane. Degradation experiments and Raman measurements reveal different properties of an iDDE compared to standard BDD technology. The iDDE concept highlights the need to understand the significance of non-uniform current density distributions on the general electrochemical activity of BDD electrodes. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Graphical abstract

18 pages, 3472 KB  
Article
Study of Neutron Absorption of Reactor Spectrum by Composites Based on UHMWPE
by Yernat A. Kozhakhmetov, Mazhyn K. Skakov, Bauyrzhan T. Tuyakbayev, Yerzhan Ye. Sapatayev and Alexandr V. Gradoboev
Crystals 2025, 15(9), 828; https://doi.org/10.3390/cryst15090828 - 20 Sep 2025
Viewed by 712
Abstract
The development of radiation-protective materials with high resistance under reactor irradiation conditions is one of the urgent tasks in modern nuclear technologies. Ultra-high molecular weight polyethylene (UHMWPE) is considered a promising matrix material due to its high hydrogen content, low density, and strong [...] Read more.
The development of radiation-protective materials with high resistance under reactor irradiation conditions is one of the urgent tasks in modern nuclear technologies. Ultra-high molecular weight polyethylene (UHMWPE) is considered a promising matrix material due to its high hydrogen content, low density, and strong chemical resistance. Composite samples were fabricated by flame formation and irradiated in the IVG-1M research reactor of the National Nuclear Center of the Republic of Kazakhstan. Their neutron absorption capacity, bending strength, and chemical resistance were measured before and after irradiation. The results show that H3BO3 provides the strongest contribution to the increase in the neutron absorption coefficient, with the maximum effect observed at 30% filler content. Reactor irradiation caused only a moderate reduction in the composites’ bending strength. Chemical resistance tests confirmed that UHMWPE-based composites with WC and PbO retain stability in aggressive environments, even after reactor exposure. Overall, UHMWPE-based composites containing boron and heavy-element fillers demonstrate strong potential as radiation-protective materials. Their design should account not only for neutron absorption efficiency but also for mechanical strength and chemical resistance under reactor operating conditions. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

11 pages, 1951 KB  
Review
Recent Advances in Materials for Uranium Extraction from Salt Lake Brine: A Review
by Panting Wang, Miao Lei, Junhang Huang, Yuanhao Li, Ye Li and Junpeng Guo
Chemistry 2025, 7(5), 142; https://doi.org/10.3390/chemistry7050142 - 3 Sep 2025
Viewed by 1543
Abstract
With the rising importance of nuclear energy in the global energy landscape, the sustainable development of uranium resources has garnered increasing attention. Salt lake brine, as an unconventional uranium source, holds significant potential due to its relatively high uranium concentration and the co-occurrence [...] Read more.
With the rising importance of nuclear energy in the global energy landscape, the sustainable development of uranium resources has garnered increasing attention. Salt lake brine, as an unconventional uranium source, holds significant potential due to its relatively high uranium concentration and the co-occurrence of valuable elements such as lithium, boron, and potassium. However, the high salinity and complex ionic composition of brine environments pose considerable challenges for the efficient and selective extraction of uranium. In recent years, the rapid advancement of novel adsorbent materials has provided promising technological pathways for uranium extraction from salt lake brine. This review systematically summarizes recent progress in the application of inorganic and carbon-based materials, organic polymers with functional group modifications, and biomass-derived and green adsorbents in this field. The construction strategies, performance characteristics, and adsorption mechanisms of these materials are discussed in detail, with particular emphasis on their selectivity and stability under complex saline conditions. Furthermore, the application status and future prospects of emerging materials and techniques—such as photocatalysis and electrochemistry—are also explored. This review aims to offer theoretical insights and technical references to support the sustainable exploitation of uranium resources from salt lake brines. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

23 pages, 2300 KB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 867
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

26 pages, 3149 KB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 2 | Viewed by 1267
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

18 pages, 5372 KB  
Article
Effect of B4C Reinforcement on the Mechanical Properties and Corrosion Resistance of CoCrMo, Ti, and 17-4 PH Alloys
by Ömer Faruk Güder, Ertuğrul Adıgüzel and Aysel Ersoy
Appl. Sci. 2025, 15(13), 7284; https://doi.org/10.3390/app15137284 - 27 Jun 2025
Viewed by 684
Abstract
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating [...] Read more.
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating varying B4C contents into each matrix through mechanical alloying, cold pressing, and vacuum sintering. The microstructural integrity and dispersion of B4C were examined using scanning electron microscopy. The performance of the materials was evaluated using several methods, including Vickers hardness, pin-on-disk wear testing, ultrasonic elastic modulus measurements, electrical conductivity, and electrochemical assessments (potentiodynamic polarization and EIS). This study’s findings demonstrated that B4C significantly enhanced the hardness and wear resistance of all alloys, especially Ti- and CoCrMo-based systems. However, an inverse correlation was observed between B4C content and corrosion resistance, especially in 17-4 PH matrices. Ti-5B4C was identified as the most balanced composition, exhibiting high wear resistance, low corrosion rate and elastic modulus values approaching those of human bone. Weibull analysis validated the consistency and reliability of key performance metrics. The results show that adding B4C can change the properties of biomedical alloys, offering engineering advantages for B4C-reinforced biomedical implants. Ti-B4C composites exhibit considerable potential for application in advanced implant technologies. Full article
Show Figures

Figure 1

25 pages, 2020 KB  
Article
Boron-Based Compounds for Solid-State Hydrogen Storage: A Review
by Yernat Kozhakhmetov, Sherzod Kurbanbekov, Nurya Mukhamedova, Azamat Urkunbay, Aibar Kizatov, Leila Bayatanova, Raushan Nurdillayeva and Dilnoza Baltabayeva
Crystals 2025, 15(6), 536; https://doi.org/10.3390/cryst15060536 - 3 Jun 2025
Cited by 1 | Viewed by 2073
Abstract
Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered [...] Read more.
Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered by the lack of safe, efficient, and cost-effective storage methods. Among the various materials studied for solid-state hydrogen storage, boron nitride (BN)-based compounds have attracted significant attention owing to their high thermal stability, tunable morphology, and potential for physisorption-based storage. This review focuses on recent advances in the synthesis, functionalization, and structural optimization of BN-based materials, including nanotubes, nanosheets, porous frameworks, and chemically modified BN. Although other boron-containing hydrides such as LiBH4, Mg(BH4)2, and closo-borates are briefly mentioned for comparison, the primary emphasis is placed on BN-related systems. This paper discusses various modification strategies aimed at enhancing hydrogen uptake and reversibility, offering insights into the future potential of BN-based materials in hydrogen storage technologies. Full article
Show Figures

Figure 1

15 pages, 2332 KB  
Article
Preparation of Mesoporous Boron-Doped Porous Carbon Derived from Coffee Grounds via Hybrid Activation for Carbon Capture and Storage
by Hyeon Hye Kim, Kay-Hyeok An and Byung-Joo Kim
Batteries 2025, 11(4), 158; https://doi.org/10.3390/batteries11040158 - 17 Apr 2025
Cited by 4 | Viewed by 1209
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere necessitates the development of efficient carbon capture and storage (CCS) technologies. Among these, adsorption-based methods using porous carbon (PC) have attracted considerable attention due to their low energy requirements and cost-effectiveness. [...] Read more.
The increasing concentration of carbon dioxide (CO2) in the atmosphere necessitates the development of efficient carbon capture and storage (CCS) technologies. Among these, adsorption-based methods using porous carbon (PC) have attracted considerable attention due to their low energy requirements and cost-effectiveness. Biomass waste-derived porous carbon is particularly attractive as a sustainable alternative, offering environmental benefits and high-value applications with low costs. In this study, coffee grounds (CGs) were selected as a precursor due to their abundance and cost-effectiveness compared with other biomass wastes. To improve the pore characteristics of CG-derived carbon (CCG), boric acid treatment was applied during carbonization followed by steam activation to prepare boron-doped CG-derived porous carbon (B-PCG). The N2/77K adsorption–desorption isotherms revealed a significant increase in the specific surface area and total pore volume of B-PCG from 1590 m2/g and 0.71 cm3/g to 2060 m2/g and 1.01 cm3/g, respectively, compared with PCG. Furthermore, high pressure CO2 adsorption analysis at 298 K up to 50 bar showed an approximately 50% improvement in CO2 adsorption capacity for B-PCG compared with PCG. These results suggest that boron doping is an effective strategy to optimize the pore structure and adsorption performance of biomass-derived porous carbon materials for CCS application. Full article
Show Figures

Graphical abstract

26 pages, 1941 KB  
Review
Boron-Doped Diamond Electrodes for Toxins Sensing in Environmental Samples—A Review
by Aleksandar Mijajlović, Vesna Stanković, Tijana Mutić, Sladjana Djurdjić, Filip Vlahović and Dalibor Stanković
Sensors 2025, 25(7), 2339; https://doi.org/10.3390/s25072339 - 7 Apr 2025
Cited by 2 | Viewed by 3785
Abstract
Boron-doped diamond electrodes have found applications in the detection, monitoring, and mitigation of toxic chemicals resulting from various industries and human activities. The boron-doped diamond electrode is a widely applicable technology in this field, primarily due to its excellent surface characteristics: minimal to [...] Read more.
Boron-doped diamond electrodes have found applications in the detection, monitoring, and mitigation of toxic chemicals resulting from various industries and human activities. The boron-doped diamond electrode is a widely applicable technology in this field, primarily due to its excellent surface characteristics: minimal to no adsorption, a wide operating potential range, robustness, and high selectivity. These extraordinary properties can be further enhanced through surface termination, which can additionally improve the analytical performance of boron-doped diamond (BDD) electrodes. The high accuracy and precision of the developed methods indicate the broad practical applicability of these electrodes across various sample matrices. Some studies have shown that different strategies can lead to enhanced sensitivity and selectivity, such as modifying the electrode surface (nanostructuring), forming different composite materials based on BDD, or implementing miniaturization techniques. Thus, this review summarizes the recent literature on the electroanalytical applications of BDDE surfaces, with a particular focus on environmental applications. Full article
(This article belongs to the Special Issue Chemical Sensors for Toxic Chemical Detection: 2nd Edition)
Show Figures

Figure 1

15 pages, 1015 KB  
Article
Effect of Foliar and Root Silicon Supply on Yielding and Gray Mold Incidence in Strawberry Pot Cultivation
by Zbigniew Jarosz, Katarzyna Dzida, Zofia Zydlik, Magdalena Jarosz, Szymon Kamiński and Karolina Pitura
Agriculture 2025, 15(4), 401; https://doi.org/10.3390/agriculture15040401 - 14 Feb 2025
Cited by 1 | Viewed by 1916
Abstract
Climate changes increase environmental stress pressure, limiting the yields of crops, e.g., strawberries. The green transformation introduced in the European Union, eliminating the use of chemical plant protection agents, requires the development of a technology that will simultaneously mitigate stresses and increase plant [...] Read more.
Climate changes increase environmental stress pressure, limiting the yields of crops, e.g., strawberries. The green transformation introduced in the European Union, eliminating the use of chemical plant protection agents, requires the development of a technology that will simultaneously mitigate stresses and increase plant yields. The basis of this type of technology may be the targeted application of stabilized orthosilicic acid. The validation of this silicon-based technology was carried out through the pot cultivation of strawberries cv. ‘Falco’ in controlled conditions, compatible with their production. The experiment consisted of the foliar and intra-root (A) application of stabilized orthosilicic acid at concentrations of 0, 240, and 360 g Si·ha−1 (B). A significant increase in the total and marketable yield, the weight of single fruits, and the number of fruits in the silicon-treated variants was noted in this study. The intra-root application of silicon had a more potent effect on the yield performance than foliar feeding. The intra-root application of the tested silicon doses significantly reduced the occurrence of gray mold (Botrytis cinerea) during the fruit harvest period. The application of the tested silicon doses in strawberry cultivation exerted a positive effect on the post-harvest shelf life of the fruits. Higher levels of Lascorbic acid, nitrates (V), and TSS were determined in strawberry fruits treated with stabilized orthosilicic acid. The leaves of plants treated with stabilized orthosilicic acid had lower contents of nitrogen, calcium, magnesium, iron, manganese, zinc, and boron and higher levels of potassium and copper. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

21 pages, 10622 KB  
Article
Development and Characterization of κ-Carrageenan and Boron Nitride Nanoparticle Membranes for Improved Ionic Conductivity in Fuel Cells
by Ermides Chavez-Baldovino, Carlos A. Malca-Reyes, Roberto Masso, Peter Feng and Liz M. Díaz-Vázquez
Fuels 2025, 6(1), 15; https://doi.org/10.3390/fuels6010015 - 12 Feb 2025
Viewed by 2198
Abstract
The development of alga-based biodegradable membranes represents a significant advancement in fuel cell technology, aligning with the need for sustainable material solutions. In a significant advancement for sustainable energy technologies, we have developed a novel biodegradable κ-carrageenan (KC) and boron nitride (BN) nanoparticle [...] Read more.
The development of alga-based biodegradable membranes represents a significant advancement in fuel cell technology, aligning with the need for sustainable material solutions. In a significant advancement for sustainable energy technologies, we have developed a novel biodegradable κ-carrageenan (KC) and boron nitride (BN) nanoparticle membrane, optimized with ammonium sulfate (NHS). This study employed a set of characterization techniques, including thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), where thermal anomalies were observed in the membranes around 160 °C and 300 °C as products of chemical decomposition. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) revealed the phases corresponding to the different precursors, whose value in the EDS measurements reached a maximum in the KC/BN/NHS5% membrane at 2.31 keV. In terms of the mechanical properties (MPs), a maximum tensile stress value of 10.96 MPa was achieved for the KC/BN sample. Using Fourier transform infrared spectroscopy (FTIR), the physicochemical properties of the membranes were evaluated. Our findings reveal that the KC/BN/NHS1% membrane achieves an exceptional ionic conductivity of 7.82 × 10−5 S/cm, as determined by impedance spectroscopy (IS). The properties of the developed membrane composite suggest possible broader applications in areas such as sensor technology, water purification, and ecologically responsive packaging. This underscores the role of nanotechnology in enhancing the functional versatility and sustainability of energy materials, propelling the development of green technology solutions. Full article
Show Figures

Graphical abstract

Back to TopTop