Boron-Based Compounds for Solid-State Hydrogen Storage: A Review
Abstract
1. Introduction
2. Key Properties of BN-Based Materials for Hydrogen Storage
3. Summary of Hydrogen Storage and Release in h-BN-Based Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Özdoğan, K.; Berber, S. Optimizing the hydrogen storage in boron nitride nanotubes by defect engineering. Int. J. Hydrogen Energy 2009, 34, 5213–5217. [Google Scholar] [CrossRef]
- Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M. High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Adv. Funct. Mater. 2010, 20, 1827–1833. [Google Scholar] [CrossRef]
- Skakov, M.; Batyrbekov, E.; Sokolov, I.; Miniyazov, A.; Tulenbergenov, T.; Sapataev, Y.; Orazgaliyev, N.; Bukina, O.; Zhanbolatova, G.; Kozhakhmetov, Y. Influence of Hydrogen Plasma on the Surface Structure of Beryllium. Materials 2022, 15, 6340. [Google Scholar] [CrossRef]
- Skakov, M.; Kozhakhmetov, Y.; Mukhamedova, N.; Miniyazov, A.; Sokolov, I.; Urkunbay, A.; Zhanbolatova, G.; Tulenbergenov, T. Effect of a High-Temperature Treatment on Structural-Phase State and Mechanical Properties of IMC of the Ti-25Al-25Nb at.% System. Materials 2022, 15, 5560. [Google Scholar] [CrossRef] [PubMed]
- Moussa, G.; Moury, R.; Demirci, U.; Miele, P. Boron-based hydrides for chemical hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 14007–14023. [Google Scholar] [CrossRef]
- Umegaki, T.; Yan, J.M.; Zhang, X.B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Hydrogen storage in boron nitride nanotubes: A first-principles study. Int. J. Hydrogen Energy 2009, 34, 2303–2311. [Google Scholar] [CrossRef]
- Blinov, D.V. Issledovanie Teplovykh Protsessov v Sistemakh Tverdofaznogo Akkumulirovaniya i Ochistki Vodoroda. Ph.D. Thesis, Moscow State Technical University, Moscow, Russia, 2016. [Google Scholar]
- Matsuo, M.; Nakamori, Y.; Orimo, S.; Maekawa, H.; Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 2007, 91, 224103. [Google Scholar] [CrossRef]
- Gunathilake, C.; Soliman, I.; Panthi, D.; Tandler, P.; Fatani, O.; Ghulamullah, N.A.; Marasinghe, D.; Farhath, M.; Madhujith, T.; Conrad, K.; et al. A Comprehensive Review on Hydrogen Production, Storage, and Applications. Chem. Soc. Rev. 2024, 53, 10900–10969. [Google Scholar] [CrossRef] [PubMed]
- Scarpati, D.; Orecchini, F.; Guida, M. Metal Hydrides for Hydrogen Storage: Current Status and Future Perspective. J. Energy Storage 2024, 72, 108587. [Google Scholar] [CrossRef]
- Mahmoud, H.A.; Zhang, X.; Li, J. Porous Carbon Materials for Hydrogen Storage: Strategies and Recent Developments. RSC Adv. 2024, 14, 2154–2170. [Google Scholar] [CrossRef]
- Elyasi, R.; Heidari, R.; Ghasemi, M. Biomass-Derived Nanoporous Carbon Materials for Solid-State Hydrogen Storage: Advances and Outlook. Int. J. Hydrogen Energy 2024, 49, 5678–5692. [Google Scholar] [CrossRef]
- Soni, S.; Pathak, A.K.; Singhal, R. Carbon-Based Materials for Hydrogen Storage: A Critical Review. Carbon. Energy 2021, 3, 700–724. [Google Scholar] [CrossRef]
- Sutton, A.; Sutton, A.G.; Mardel, J.I.; Hill, M.R. Metal-Organic Frameworks (MOFs) as Hydrogen Storage Materials at Near-Ambient Temperature. Chem. Eur. J. 2024, 30, e202400717. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Yuan, L.; Zhang, M.; Zhang, C. Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage. Molecules 2019, 24, 2382. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Zhang, X.; Puthirath, A.B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M.M.; Babu, G.; Susarla, S.; Saju, S.K.; Tran, M.K.; et al. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef] [PubMed]
- Verdal, N.; Her, J.-H.; Stavila, V.; Soloninin, A.V.; Babanova, O.A.; Skripov, A.V.; Udovic, T.J.; Rush, J.J. Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12. J. Solid. State Chem. 2014, 212, 81–91. [Google Scholar] [CrossRef]
- IEA. Emissions from Oil and Gas Operations in Net Zero Transitions: A World Energy Outlook Special Report for COP28; IEA: Paris, France, 2023. [Google Scholar]
- Jena, P. Materials for Hydrogen Storage: Past, Present, and Future. J. Phys. Chem. Lett. 2011, 2, 206–211. [Google Scholar] [CrossRef]
- Gulino, V.; Brighi, M.; Dematteis, E.M.; Murgia, F.; Nervi, C.; Cerny, R.; Baricco, M. Phase Stability and Fast Ion Conductivity in the Hexagonal LiBH4–LiBr–LiCl Solid Solution. Chem. Mater. 2019, 31, 5133–5144. [Google Scholar] [CrossRef]
- Kim, G.; Jhi, S.-H.; Park, N.; Louie, S.G.; Cohen, M.L. Optimization of Metal Dispersion in Doped Graphitic Materials for Hydrogen Storage. Phys. Rev. B 2008, 78, 085408. [Google Scholar] [CrossRef]
- Kim, J.; Han, J.; Seo, M.; Kang, S.; Kim, D.; Ihm, J. High-Surface Area Ceramic-Derived Boron Nitride and Its Hydrogen Uptake Properties. J. Mater. Chem. A 2013, 1, 1014–1017. [Google Scholar] [CrossRef]
- Bafekry, A.; Ghergherehchi, M.; Farjami Shayesteh, S.; Peeters, F.M. Adsorption of Molecules on C3N Nanosheet: A First-Principles Calculations. Chem. Phys. 2019, 526, 110442. [Google Scholar] [CrossRef]
- Duchêne, L.; Lunghammer, S.; Burankova, T.; Liao, W.-C.; Embs, J.P.; Coperet, C.; Wilkening, H.M.R.; Remhof, A.; Hagemann, H.; Battaglia, C. Ionic Conduction Mechanism in the Na2(B12H12)0.5(B10H10)0.5 Closo-Borate Solid-State Electrolyte: Interplay of Disorder and Ion–Ion Interactions. Chem. Mater. 2019, 31, 3449–3460. [Google Scholar] [CrossRef]
- Ariharan, A.; Viswanathan, B.; Nandhakumar, V. Hydrogen Storage on Boron Substituted Carbon Materials. Int. J. Hydrogen Energy 2016, 41, 3527–3536. [Google Scholar] [CrossRef]
- Murgia, F.; Brighi, M.; Cerny, R. Room-Temperature-Operating Na-Ion Solid-State Battery with Complex Hydride as Electrolyte. Electrochem. Commun. 2019, 106, 106534. [Google Scholar] [CrossRef]
- Skripov, A.V.; Soloninin, A.V.; Babanova, O.A.; Skoryunov, R.V. Anion and Cation Dynamics in Polyhydroborate Salts: NMR Studies. Molecules 2020, 25, 2940. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tang, C.; Fu, L. An Effective Method to Screen Carbon (Boron, Nitrogen) Based Two-Dimensional Hydrogen Storage Materials. Int. J. Hydrogen Energy 2020, 45, 25054–25064. [Google Scholar] [CrossRef]
- Weng, Q. Porosity Engineering of Boron Nitride Materials for Hydrogen Storage. Ph.D. Dissertation, University of Tsukuba, Graduate School of Pure and Applied Sciences, Tsukuba, Japan, 2015. Available online: http://hdl.handle.net/2241/00128908 (accessed on 10 April 2025).
- Sakr, M.A.; Abdelsalam, H.; Teleb, N.H.; Abd-Elkader, O.H.; Zhang, Q. Exploring the Structural, Electronic, and Hydrogen Storage Properties of Hexagonal Boron Nitride and Carbon Nanotubes: Insights from Single-Walled to Doped Double-Walled Configurations. Sci. Rep. 2024, 14, 4970. [Google Scholar] [CrossRef]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; A Khomyakov, P.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomicscale modelling tools. J. Phys. Condens. Matter 2020, 32, 36. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Guest, M.F.; Bush, I.J.; Van Dam, H.J.J.; Sherwood, P.; Thomas, J.M.H.; Van Lenthe, J.H.; Havenith, R.W.A.; Kendrick, J. The GAMESS-UK electronic structure package: Algorithms, developments and applications. Mol. Phys. 2005, 103, 719–747. [Google Scholar] [CrossRef]
- Ülgen, B.E.; Filiz, B.C.; Açıkalın, K.; Yörüklü, H.C.; Figen, A.K. Boron-Based Hydrogen Storage Materials for Highly Selective Hydrogenation to Liquid Organic Hydrogen Carriers Synthesis Focus on Formic Acid. Int. J. Hydrogen Energy 2024, in press. [CrossRef]
- Hafner, J. Materials simulations using VASP-a quantum perspective to materials science. Comput. Phys. Commun. 2007, 177, 6–13. [Google Scholar] [CrossRef]
- Yoshida, K.; Sato, T.; Unemoto, A.; Matsuo, M.; Ikeshoji, T.; Udovic, T.J.; Orimo, S.I. Fast Sodium Ionic Conduction in Na2B10H10-Na2B12H12 Pseudo-Binary Complex Hydride and Application to a Bulk-Type All-Solid-State Battery. Appl. Phys. Lett. 2017, 110, 103901. [Google Scholar] [CrossRef]
- Hussain, T.; Islam, M.S.; Rao, G.S.; Panigrahi, P.; Gupta, D.; Ahuja, R. Hydrogen storage properties of light metal adatoms (Li, Na) decorated fluorographene monolayer. Nanotechnology 2015, 26, 275401. [Google Scholar] [CrossRef]
- Weng, Q.; Zeng, L.; Chen, Z.; Han, Y.; Jiang, K.; Bando, Y.; Golberg, D. Hydrogen Storage in Carbon and Oxygen Co-Doped Porous Boron Nitrides. Adv. Funct. Mater. 2021, 31, 2007381. [Google Scholar] [CrossRef]
- Panigrahi, P.; Naqvi, S.R.; Hankel, M.; Ahuja, R.; Hussain, T. Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules. Appl. Surf. Sci. 2018, 444, 467–473. [Google Scholar] [CrossRef]
- Shao, H.; Felderhoff, M.; Schüth, F. Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int. J. Hydrogen Energy 2011, 36, 10828–10833. [Google Scholar] [CrossRef]
- Kozhakhmetov, Y.A.; Skakov, M.K.; Kurbanbekov, S.R.; Mukhamedov, N.M.; Mukhamedov, N.Y. Powder Composition Structurization of the Ti-25Al-25Nb (at.%) System upon Mechanical Activation and Subsequent Spark Plasma Sintering. Eurasian Chem. Technol. J. 2021, 23, 37–44. [Google Scholar] [CrossRef]
- Zhanbolatova, G.K.; Baklanov, V.V.; Skakov, M.K.; Sokolov, I.A.; Bukina, O.S.; Kozhahmetov, Y.A.; Orazgaliev, N.A. Influence of Temperature on Tungsten Carbide Formation in a Beam Plasma Discharge. J. Phys. Conf. Ser. 2021, 2064, 012055. [Google Scholar] [CrossRef]
- Skakov, M.; Miniyazov, A.; Batyrbekov, E.; Baklanov, V.; Koyanbayev, Y.; Gradoboev, A.; Kozhakhmetov, Y.; Sokolov, I.; Tulenbergenov, T.; Zhanbolatova, G. Influence of the Carbidized Tungsten Surface on the Processes of Interaction with Helium Plasma. Materials 2022, 15, 7821. [Google Scholar] [CrossRef]
- Salazar-Aparicio, R.V.; Vazquez-Nava, R.A.; Arzate, N.; Mendoza, B.S. Molecular hydrogen physisorption on boron-nitride nanotubes probed by second harmonic generation. Phys. Rev. B 2014, 90, 155403. [Google Scholar] [CrossRef]
- Lim, S.H.; Luo, J.; Ji, W.; Lin, J. Synthesis of boron nitride nanotubes and its hydrogen uptake. Catal. Today 2007, 120, 346–350. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Xu, B.; Zhang, J.; Sun, Q.; Jia, Y. Theoretical prediction of hydrogen storage on Li-decorated boron nitride atomic chains. J. Appl. Phys. 2013, 113, 064309. [Google Scholar] [CrossRef]
- Moussa, G.; Demirci, U.B.; Malo, S.; Bernard, S.; Miele, P. Hollow core mesoporous shell boron nitride nanopolyhedron-confined ammonia borane: A pure B–N–H composite for chemical hydrogen storage. J. Mater. Chem. A 2014, 2, 7717–7722. [Google Scholar] [CrossRef]
- Moussa, G.; Salameh, C.; Bruma, A.; Malo, S.; Demirci, U.B.; Bernard, S.; Miele, P. Nanostructured boron nitride: From molecular design to hydrogen storage application. Inorganics 2014, 2, 396–409. [Google Scholar] [CrossRef]
- Hamilton, C.W.; Baker, R.T.; Staubitz, A.; Manners, I. B–N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293. [Google Scholar] [CrossRef]
- Revabhai, P.M.; Singhal, R.K.; Basu, H.; Kailasa, S.K. Progress on boron nitride nanostructure materials: Properties, synthesis and applications in hydrogen storage and analytical chemistry. J. Nanostruct. Chem. 2023, 13, 1–41. [Google Scholar] [CrossRef]
- Brighi, M.; Murgia, F.; Cerny, R. Closo-Hydroborate Sodium Salts as an Emerging Class of Room-Temperature Solid Electrolytes. Cell Rep. Phys. Sci. 2020, 1, 100217. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Sun, M. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822. [Google Scholar] [CrossRef]
- Jepsen, L.H.; Ley, M.B.; Lee, Y.S.; Cho, Y.W.; Dornheim, M.; Jensen, J.O.; Jensen, T.R. Boron–nitrogen based hydrides and reactive composites for hydrogen storage. Mater. Today 2014, 17, 129–135. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef]
- Rubio, A.; Corkill, J.L.; Cohen, M.L. Theory of graphitic boron nitride nanotubes. Phys. Rev. B 1994, 49, 5081–5084. [Google Scholar] [CrossRef] [PubMed]
- Blase, X.; Rubio, A.; Louie, S.G.; Cohen, M.L. Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhys. Lett. 1994, 28, 335–340. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Golberg, D.; Bando, Y.; von Ragué Schleyer, P.; Chen, Z. Stone–Wales defects in single-walled boron nitride nanotubes: Formation energies, electronic structures, and reactivity. J. Phys. Chem. C 2008, 112, 1365–1370. [Google Scholar] [CrossRef]
- Choyal, V.; Kundalwal, S.I. Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes. Acta Mech. 2020, 231, 4003–4018. [Google Scholar] [CrossRef]
- Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of boron nitride nanotubes and their applications. Beilstein J. Nanotechnol. 2015, 6, 84–102. [Google Scholar] [CrossRef]
- Pakdel, A.; Zhi, C.; Bando, Y.; Nakayama, N.; Golberg, D. A comprehensive analysis of the CVD growth of boron nitride nanotubes. Nanotechnology 2012, 23, 215601. [Google Scholar] [CrossRef]
- Guo, C.; Wang, C. Strategies for Enhancing Hydrogen Storage Capacity of Carbon-Based Sandwich Material by Boron Doping: Exploring the Optimal Doping Ratio. J. Energy Storage 2024, 97, 112915. [Google Scholar] [CrossRef]
- Singhal, S.K.; Srivastava, A.K.; Pasricha, R.; Mathur, R.B. Fabrication of Al-Matrix Composites Reinforced with Amino Functionalized Boron Nitride Nanotubes. J. Nanosci. Nanotechnol. 2011, 11, 5179–5186. [Google Scholar] [CrossRef]
- Wu, J.; Yin, L. Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor. ACS Appl. Mater. Interfaces 2011, 3, 4354–4362. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Liu, Y.; Fu, L.; Huang, C.; Llewellyn, D. Over 1.0 mm-Long Boron Nitride Nanotubes. Chem. Phys. Lett. 2008, 463, 130–133. [Google Scholar] [CrossRef]
- Samanta, S.K.; Gomathi, A.; Bhattacharya, S.; Rao, C.N.R. Novel Nanocomposites Made of Boron Nitride Nanotubes and a Physical Gel. Langmuir 2010, 26, 12230–12236. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Chen, Y. Superhydrophobic Properties of Nonaligned Boron Nitride Nanotube Films. Langmuir 2010, 26, 5135–5140. [Google Scholar] [CrossRef]
- Chen, Y.; Conway, M.; Williams, J.S.; Lefler, M.; Zhi, C.; Han, W.; Chai, G. Large-Quantity Production of High-Yield Boron Nitride Nanotubes. J. Mater. Res. 2002, 17, 1896–1899. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Pakdel, A.; Zhi, C.; Bando, Y.; Golberg, D. Utilization of Multiwalled Boron Nitride Nanotubes for the Reinforcement of Lightweight Aluminum Ribbons. Nanoscale Res. Lett. 2013, 8, 3. [Google Scholar] [CrossRef]
- Özmen, D.; Sezgi, N.A.; Balcı, S. Synthesis of Boron Nitride Nanotubes from Ammonia and a Powder Mixture of Boron and Iron Oxide. Chem. Eng. J. 2013, 219, 28–36. [Google Scholar] [CrossRef]
- Zhou, S.-J.; Ma, C.-Y.; Meng, Y.-Y.; Su, H.-F.; Zhu, Z.; Deng, S.-L.; Xie, S.-Y. Activation of Boron Nitride Nanotubes and Their Polymer Composites for Improving Mechanical Performance. Nanotechnology 2012, 23, 055708. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Huang, X.; Wen, G.; Li, M.; Liu, D.; Xu, S.; Wang, C.; Zhi, C.; Tang, D. Large-Scale Fabrication of Boron Nitride Nanotubes via a Facile Chemical Vapor Reaction Route and Their Cathodoluminescence Properties. Nanoscale Res. Lett. 2011, 6, 36. [Google Scholar] [CrossRef]
- Saner Okan, B.; Kocabaş, Z.Ö.; Nalbant Ergün, A.; Baysal, M.; Letofsky-Papst, I.; Yürüm, Y. Effect of Reaction Temperature and Catalyst Type on the Formation of Boron Nitride Nanotubes by Chemical Vapor Deposition and Measurement of Their Hydrogen Storage Capacity. Ind. Eng. Chem. Res. 2012, 51, 11341–11347. [Google Scholar] [CrossRef]
- Narita, I.; Oku, T. Synthesis of Boron Nitride Nanotubes by Using YB6 Powder. Solid. State Commun. 2002, 123, 395–398. [Google Scholar] [CrossRef]
- Chai, L.; Chen, K.; Zhi, Y.; Murty, K.L.; Chen, L.-Y.; Yang, Z. Nanotwins Induced by Pulsed Laser and Their Hardening Effect in a Zr Alloy. J. Alloys Compd. 2018, 750, 443–450. [Google Scholar] [CrossRef]
- Abbasov, G.D.; Tahirli, H.M.; Verdiev, S.C.; Mammadova, S.A.; Shirinov, T.I.; Guliyeva, L.; Museyibli, K.; Adigozalova, M.N.; Rustamova, S.M.; Huseynova, A.S. Corrosion of Carbon Steel and Some Other Metals in Fresh Water of Hydraulic Structures. Chem. Probl. 2024, 22, 516–524. [Google Scholar] [CrossRef]
- Rakhadilov, B.K.; Kurbanbekov, S.R.; Kilishkhanov, M.K.; Kenesbekov, A.B.; Amanzholov, S. Changing the Structure and Phase States and the Microhardness of the R6M5 Steel Surface Layer after Electrolytic-Plasma Nitriding. Eurasian J. Phys. Funct. Mater. 2018, 2, 259–266. [Google Scholar] [CrossRef]
- Kengesbekov, A. Influence of Plasma Arc Current and Gas Flow on the Structural and Tribological Properties of TiN Coatings Obtained by Plasma Spraying. Coatings 2024, 14, 1404. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Kenesbekov, A.; Skakov, M.; Miniyzov, A. Hydrogen and Deuterium Storage in Tungsten When Irradiation with Plasma Beam. In Proceedings of the METAL 2018–27th International Conference on Metallurgy and Materials, Conference Proceedings, Ostrva, Czech Republic, 23–25 May 2018; pp. 1216–1221. [Google Scholar]
- Zhu, J.; Wang, H.; Cai, W.; Liu, J.; Ouyang, L.; Zhu, M. The Milled LiBH4/h-BN Composites Exhibiting Unexpected Hydrogen Storage Kinetics and Reversibility. Int. J. Hydrogen Energy 2017, 42, 15790–15798. [Google Scholar] [CrossRef]
- Muthu, R.N.; Rajashabala, S.; Kannan, R. Hydrogen Storage Performance of Lithium Borohydride Decorated Activated Hexagonal Boron Nitride Nanocomposite for Fuel Cell Applications. Int. J. Hydrogen Energy 2017, 42, 15586–15596. [Google Scholar] [CrossRef]
- Tu, G.; Xiao, X.; Jiang, Y.; Qin, T.; Li, S.; Ge, H.; Wang, Q.; Chen, L. Composite cooperative enhancement on the hydrogen desorption kinetics of LiBH4 by co-doping with NbCl5 and hexagonal BN. Int. J. Hydrogen Energy 2015, 40, 10527–10535. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Liu, T.; Zhao, X.; Zhang, L.; Han, S.; Wang, Y. Enhanced hydrogen storage properties of LiBH4 generated using a porous Li3BO3 catalyst. J. Alloys Compd. 2016, 689, 187–191. [Google Scholar] [CrossRef]
- Li, Z.; Gao, M.; Gu, J.; Xian, K.; Yao, Z.; Shang, C.; Liu, Y.; Guo, Z.; Pan, H. In situ introduction of Li3BO3 and NbH leads to superior cyclic stability and kinetics of a LiBH4-based hydrogen storage system. ACS Appl. Mater. Interfaces 2020, 12, 893–903. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, X.; Chen, J.; Qi, Y.; Zhang, Y.; Fu, H.; Zheng, J.; Li, X. Boric acid destabilized lithium borohydride with a 5.6 wt% dehydrogenation capacity at moderate temperatures. Dalton Trans. 2017, 46, 4499–4503. [Google Scholar] [CrossRef]
- Roedern, E.; Hansen, B.R.S.; Ley, M.B.; Jensen, T.R. Effect of eutectic melting, reactive hydride composites, and nanoconfinement on decomposition and reversibility of LiBH4-KBH4. J. Phys. Chem. C 2015, 119, 25818–25825. [Google Scholar] [CrossRef]
- Matus, M.H.; Anderson, K.D.; Camaioni, D.M.; Autrey, S.T.; Dixon, D.A. Reliable Predictions of the Thermochemistry of Boron− Nitrogen Hydrogen Storage Compounds: BxNxHy, x = 2, 3. J. Phys. Chem. A 2007, 111, 4411–4421. [Google Scholar] [CrossRef]
- Frommen, C.; Heere, M.; Riktor, M.D.; Sørby, M.H.; Hauback, B.C. Hydrogen storage properties of rare earth (RE) borohydrides (RE = La, Er) in composite mixtures with LiBH4 and LiH. J. Alloys Compd. 2015, 645, S155–S159. [Google Scholar] [CrossRef]
- Liu, Y.; Reed, D.; Paterakis, C.; Contreras Vasquez, L.; Baricco, M.; Book, D. Study of the decomposition of a 0.62LiBH4–0.38NaBH4 mixture. Int. J. Hydrogen Energy 2017, 42, 22480–22488. [Google Scholar] [CrossRef]
- Lohstroh, W.; Heere, M. Structure and Dynamics of Borohydrides Studied by Neutron Scattering Techniques: A Review. J. Phys. Soc. Jpn. 2020, 89, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Wang, R.; Hao, L.; Jiao, W. Hydrogen storage using Na-decorated graphyne and its boron nitride analog. Int. J. Hydrogen Energy 2014, 39, 12757–12764. [Google Scholar] [CrossRef]
- Weidenthaler, C.; Pommerin, A.; Felderhoff, M.; Sun, W.; Wolverton, C.; Bogdanovic, B.; Schuth, F. Complex rare-earth aluminum hydrides: Mechanochemical preparation, crystal structure and potential for hydrogen storage. J. Am. Chem. Soc. 2009, 131, 16735–16743. [Google Scholar] [CrossRef]
- Hagemann, H. Boron Hydrogen Compounds for Hydrogen Storage and As Solid Ionic Conductors. Chimia 2019, 73, 868. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.-R.; Wang, X.; Chen, X.-M.; Jing, Y.; Wie, D. A Safe and Efficient Synthetic Method of the Alkali Metal Octahydrotriborate, Unravelling a General Mechanism of Constructing the Delta B3 Unit of Polyhedral Boranes. Dalton Trans. 2021, 50, 13676–13679. [Google Scholar] [CrossRef]
- Chen, X.-M.; Ma, N.; Zhang, Q.-F.; Wang, J.; Feng, X.; Wei, C.; Wang, L.-S.; Zhang, J.; Chen, X. Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion (B3H8−) through the Nucleophilicity of the B–H Bond. J. Am. Chem. Soc. 2018, 140, 6718–6726. [Google Scholar] [CrossRef]
- Moury, R.; Gigante, A.; Hagemann, H. An alternative approach to the synthesis of NaB3H8 and Na2B12H12 for solid electrolyte applications. Int. J. Hydrogen Energy 2017, 42, 22417–22421. [Google Scholar] [CrossRef]
- Hagemann, H. Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications. Molecules 2021, 26, 7425. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Remhof, A.; Rentsch, D.; Züttel, A. The role of MgB12H12 in the hydrogen desorption process of Mg(BH4)2. Chem. Commun. 2015, 51, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Paskevicius, M.; Pitt, M.P.; Brown, D.H.; Sheppard, D.A.; Chumphongphan, S.; Buckley, C.E. First-order phase transition in the Li2B12H12 system. Phys. Chem. Chem. Phys. 2013, 15, 15825–15828. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Matus, M.H.; Dixon, D.A. Heats of Formation of Boron Hydride Anions and Dianions and Their Ammonium Salts [BnHmy−][NH4+]y with y = 1−2. Inorg. Chem. 2007, 46, 7561–7570. [Google Scholar] [CrossRef]
- Kelley, S.P.; McCrary, P.D.; Flores, L.; Garner, E.B.; Dixon, D.A.; Rogers, R.D. Structural and Theoretical Study of Salts of the [B9H14]− Ion: Isolation of Multiple Isomers and Implications for Energy Storage. ChemPlusChem 2016, 81, 922–925. [Google Scholar] [CrossRef]
- Sethio, D.; Lawson Daku, L.M.; Hagemann, H.; Kraka, E. Quantitative Assessment of B–B–B, B–Hb–B, and B–Ht Bonds: From BH3 to B12H122−. ChemPhysChem 2019, 20, 1967–1977. [Google Scholar] [CrossRef]
- Maillard, R.; Sethio, D.; Hagemann, H.; Lawson Daku, L.M. Accurate Computational Thermodynamics Using Anharmonic Density Functional Theory Calculations: The Case Study of B−H Species. ACS Omega 2019, 4, 8786–8794. [Google Scholar] [CrossRef]
- Lee, T.B.; Mc Kee, M.L. Redox Energetics of Hypercloso Boron Hydrides BnHn (n = 6–13) and B12X12 (X = F, Cl, OH, and CH3). Inorg. Chem. 2012, 51, 4205–4214. [Google Scholar] [CrossRef]
- Lee, T.B.; Mc Kee, M.L. Dissolution Thermochemistry of Alkali Metal Dianion Salts (M2X1, M = Li+, Na+, and K+ with X = CO32−, SO42−, C8H82−, and B12H122−). Inorg. Chem. 2011, 50, 11412–11422. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, L.; Ding, R.; Ding, Z.; Wang, X.; Wang, Z. Grand canonical Monte Carlo simulation of hydrogen physisorption in single-walled boron nitride nanotubes. Int. J. Hydrogen Energy 2007, 32, 3402–3405. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Wu, C.Z.; Xu, S.T.; Cheng, H.M. Hydrogen Storage in Carbon Nanotubes Revisited. Carbon 2010, 48, 452–455. [Google Scholar] [CrossRef]
- Aliyeva, N.A.; Sardarly, R.M.; Gadzhieva, N.N.; Gakhramanova, S.M.; Mammadov, R.A. Radiation-Stimulated Conversion to Superionic State of TlSe and TlS Crystals. Probl. At. Sci. Technol. 2024, 2024, 23–28. [Google Scholar] [CrossRef]
- Grochala, W.; Edwards, P.P. Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem. Rev. 2004, 104, 1283–1315. [Google Scholar] [CrossRef]
- Reiser, A.; Bogdanović, B.; Schlichte, K. The Application of Mg-Based Metal-Hydrides as Heat Energy Storage Systems. Int. J. Hydrogen Energy 2000, 25, 425–430. [Google Scholar] [CrossRef]
- Dehouche, Z.; Klassen, T.; Oelerich, W.; Goyette, J.; Bose, T.K.; Schulz, R. Cycling and Thermal Stability of Nanostructured MgH2–Cr2O3 Composite for Hydrogen Storage. J. Alloys Compd. 2002, 347, 319–323. [Google Scholar] [CrossRef]
- Huot, J.; Liang, G.; Boily, S.; Van Neste, A.; Schulz, R. Structural Study and Hydrogen Sorption Kinetics of Ball-Milled Magnesium Hydride. J. Alloys Compd. 1999, 293–295, 495–500. [Google Scholar] [CrossRef]
- Imamura, H.; Masanari, K.; Kusuhara, M.; Katsumoto, H.; Sumi, T.; Sakata, Y. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J. Alloys Compd. 2005, 386, 211–216. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, P.; Tian, Y.; Li, Y.; Wang, C. Hydrogen Storage on Transition-Metal-Decorated Boron Nitride Nanotubes: A First-Principles Study. J. Phys. Chem. C 2011, 115, 553–560. [Google Scholar] [CrossRef]
- Jhi, S.H.; Kwon, Y.K. Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 69, 245407–245414. [Google Scholar] [CrossRef]
- Bae, S.Y.; Seo, H.W.; Park, J.; Choi, Y.S.; Park, J.C.; Lee, S.Y. Boron nitride nanotubes synthesized in the temperature range 1000–1200 °C. Chem. Phys. Lett. 2003, 374, 534–541. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.L.; Zeng, X.C. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes. J. Chem. Phys. 2006, 125, 44704. [Google Scholar] [CrossRef]
- Banerjee, P.; Pathak, B.; Ahuja, R.; Das, G.P. First Principles Design of Li Functionalized Hydrogenated h-BN Nanosheet for Hydrogen Storage. Int. J. Hydrogen Energy 2016, 41, 14437–14446. [Google Scholar] [CrossRef]
- Gigante, A.; Leick, N.; Lipton, A.S.; Tran, B.; Strange, N.A.; Bowden, M.; Martinez, M.B.; Moury, R.; Gennett, T.; Hagemann, H.; et al. Thermal Conversion of Unsolvated Mg(B3H8)2 to BH4− in the Presence of MgH2. ACS Appl. Energy Mater. 2021, 4, 3737–3747. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Shindo, K.; Sakurai, Y. Comparison of hydrogen absorption properties of Ti mechanically milled with hexagonal boron nitride (h-BN) and with graphite. J. Alloys Compd. 2005, 386, 202–206. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.J.; Liao, J.H.; Bao, Y.X. Transition-Metal Dispersion on Carbon-Doped Boron Nitride Nanostructures: Applications for High-Capacity Hydrogen Storage. Phys. Rev. B 2012, 86, 045459–45467. [Google Scholar] [CrossRef]
- He, L.; Wang, H.; Chen, L.; Wang, X.; Xie, H.; Jiang, C.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K.; et al. Isolating Hydrogen in Hexagonal Boron Nitride Bubbles by a Plasma Treatment. Nat. Commun. 2019, 10, 2815–2819. [Google Scholar] [CrossRef] [PubMed]
- Kovalskii, A.M.; Manakhov, A.M.; Afanasev, P.A.; Popov, Z.I.; Matveev, A.T.; Al-Qasim, A.S. Hydrogen Storage Ability of Hexagonal Boron Nitride. Front. Mater. 2024, 11, 1375977. [Google Scholar] [CrossRef]
- Ma, R.; Bando, Y.; Sato, T.; Golberg, D.; Zhu, H.; Xu, C.; Wu, D. Synthesis of Boron Nitride Nanofibers and Measurement of Their Hydrogen Uptake Capacity. Appl. Phys. Lett. 2002, 81, 5225–5227. [Google Scholar] [CrossRef]
- Ma, R.; Bando, Y.; Zhu, H.; Sato, T.; Xu, C.; Wu, D. Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature. J. Am. Chem. Soc. 2002, 124, 7672–7673. [Google Scholar] [CrossRef]
- Leela, A.; Reddy, M.; Tanur, A.E.; Walker, G.C. Synthesis and Hydrogen Storage Properties of Different Types of Boron Nitride Nanostructures. Int. J. Hydrogen Energy 2010, 35, 4138–4143. [Google Scholar] [CrossRef]
- Wang, P.; Orimo, S.; Matsushima, T.; Fujii, H.; Majer, G. Hydrogen in Mechanically Prepared Nanostructured h-BN: A Critical Comparison with That in Nanostructured Graphite. Appl. Phys. Lett. 2002, 80, 318–320. [Google Scholar] [CrossRef]
- Tang, C.; Bando, Y.; Ding, X.; Qi, S.; Golberg, D. Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes. J. Am. Chem. Soc. 2002, 124, 14550–14551. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Zhang, H.; Wu, Y.; Zhang, B.; Liu, D.; Qin, S.; Liu, Z.; Liu, L.; Ma, Y.; Chen, Y. Oxygen-Doped Boron Nitride Nanosheets with Excellent Performance in Hydrogen Storage. Nano Energy 2014, 6, 219–224. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, X.; Bando, Y.; Golberg, D. One-Step Template-Free Synthesis of Highly Porous Boron Nitride Microsponges for Hydrogen Storage. Adv. Energy Mater. 2014, 4, 1301525. [Google Scholar] [CrossRef]
- Li, J.; Lin, J.; Xu, X.; Zhang, X.; Xue, Y.; Mi, J.; Mo, Z.; Fan, Y.; Hu, L.; Yang, X.; et al. Porous Boron Nitride with a High Surface Area: Hydrogen Storage and Water Treatment. Nanotechnology 2013, 24, 155603. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, X.; Zhi, C.; Bando, Y.; Golberg, D. Boron Nitride Porous Microbelts for Hydrogen Storage. ACS Nano 2013, 7, 1558–1565. [Google Scholar] [CrossRef]
- Tokarev, A.; Kjeang, E.; Cannon, M.; Bessarabov, D. Theoretical Limit of Reversible Hydrogen Storage Capacity for Pristine and Oxygen-Doped Boron Nitride. Int. J. Hydrogen Energy 2016, 41, 16984–16991. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, N.; Zhang, H.; Peng, X. First-Principles Study of Hydrogen Storage on Pt (Pd)-Doped Boron Nitride Sheet. Struct. Chem. 2015, 26, 731–738. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, C.J.; Zhang, Y.; Zhang, Y.N.; Liu, L.M. Porous BN for Hydrogen Generation and Storage. J. Mater. Chem. A 2015, 3, 9632–9637. [Google Scholar] [CrossRef]
- Shahsavari, R.; Zhao, S. Merger of Energetic Affinity and Optimal Geometry Provides New Class of Boron Nitride Based Sorbents with Unprecedented Hydrogen Storage Capacity. Small 2018, 14, 1702863. [Google Scholar] [CrossRef]
- Zhang, N.; Shi, Y.; Li, J.; Zhang, Y.; Guo, J.; Fu, Z.; Zhang, P. Potential Applications of OLi3-Decorated h-BN Monosheet for High Hydrogen Storage. Appl. Phys. Lett. 2023, 123, 83902. [Google Scholar] [CrossRef]
- Rai, D.P.; Chettri, B.; Patra, P.K.; Sattar, S. Hydrogen Storage in Bilayer Hexagonal Boron Nitride: A First-Principles Study. ACS Omega 2021, 6, 30362–30370. [Google Scholar] [CrossRef] [PubMed]
- Chettri, B.; Patra, P.K.; Srivastava, S.; Laref, A.; Rai, D.P. Enhanced H2 Storage Capacity of Bilayer Hexagonal Boron Nitride (h-BN) Incorporating Van Der Waals Interaction under an Applied External Electric Field. ACS Omega 2021, 6, 22374–22382. [Google Scholar] [CrossRef]
- Fu, P.; Wang, J.; Jia, R.; Bibi, S.; Eglitis, R.I.; Zhang, H.X. Theoretical Study on Hydrogen Storage Capacity of Expanded h-BN Systems. Comput. Mater. Sci. 2017, 139, 335–340. [Google Scholar] [CrossRef]
- Chodvadiya, D.; Kanabar, S.; Chakraborty, B.; Jha, P.K. Exploring the Hydrogen Storage Possibility of the Pristine, Defected, and Metals Decorated o-B2N2 Monolayers: Insights from DFT Simulations. Int. J. Hydrogen Energy 2024, 53, 958–968. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Silvi, L.; Petry, W.; Lohstroh, W. A Quasielastic and Inelastic Neutron Scattering Study of the Alkaline and Alkaline-Earth Borohydrides LiBH4 and Mg(BH4)2 and the Mixture LiBH4 + Mg(BH4)2. Phys. Chem. Chem. Phys. 2019, 21, 718–728. [Google Scholar] [CrossRef]
- Roy, L.; Bhunya, S.; Paul, A. A Metal-Free Strategy to Release Chemisorbed H2 from Hydrogenated Boron Nitride Nanotubes. Angew. Chem. Int. Ed. 2014, 53, 12430–12435. [Google Scholar] [CrossRef] [PubMed]
- Qiu, N.X.; Zhang, C.H.; Xue, Y. Tuning Hydrogen Storage in Lithium Functionalized BC2N Sheets by Doping with Boron and Carbon. ChemPhysChem 2014, 15, 3015–3025. [Google Scholar] [CrossRef]
- Kinal, A.; Sayhan, S. Accurate Prediction of Hydrogen Storage Capacity of Small Boron Nitride Nanocages by Dispersion Corrected Semi-Empirical PM6-DH2 Method. Int. J. Hydrogen Energy 2016, 41, 392–400. [Google Scholar] [CrossRef]
- Zhao, J.; Huo, Z.; Xu, S.; Xiong, M.; Liu, D.; Wang, Y.; Jia, X. Novel Functional Materials of Hydrogen Storage B20N24: A First-Principles Calculation. Crystals 2023, 13, 1029. [Google Scholar] [CrossRef]
- Grinderslev, J.B.; Møller, K.T.; Yan, Y.; Chen, X.-M.; Li, Y.; Li, H.-W.; Zhou, W.; Skibsted, J.; Chen, X.; Jensen, T.R. Potassium Octahydridotriborate: Diverse Polymorphism in a Potential Hydrogen Storage Material and Potassium Ion Conductor. Dalton Trans. 2019, 48, 8872–8881. [Google Scholar] [CrossRef]
- Cao, D.; Lan, J.; Wang, W.; Smit, B. Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials. Angew. Chem. Int. Ed. 2009, 48, 4730–4733. [Google Scholar] [CrossRef] [PubMed]
Storage Method | Advantages | Disadvantages | |
---|---|---|---|
Physical methods | Compressed gaseous hydrogen (300 K, ≤200 bar) stationary storage systems and underground repositories; glass microspheres and capillaries | Mature and accessible technology, relatively low cost | Low volumetric capacity (~7.7 kg/m3 at 100 bar). High-pressure storage (up to 700 bar) remains underdeveloped. |
Liquid hydrogen (20.4 K) | High density (71 kg/m3) | High energy costs for liquefaction, hydrogen loss due to evaporation, need for superinsulation, high cost. | |
Storing hydrogen in its physical form, either as a liquefied gas at cryogenic temperatures or as a compressed gas under high pressure, allows for large volumes to be stored. However, this requires specialized equipment capable of withstanding extreme conditions, such as pressures of hundreds of megapascals and temperatures below the temperature of liquid nitrogen. Although technically feasible, these storage methods often prove to be disadvantageous in terms of cost, ease of use, and safety. Liquid hydrogen is stable only in a narrow temperature range between its boiling point (20 K) and freezing point (17 K). As the temperature rises above the boiling point, it rapidly evaporates and becomes a gas. Although the strength and material requirements for cryogenic liquid hydrogen tanks are less stringent than for pressure vessels used to store gaseous hydrogen, the gravimetric density of storage in liquid form is higher. However, the maximum bulk density is limited by the intrinsic density of liquid hydrogen, which is 70.8 kg/m3. | |||
Adsorption Methods | Cryoadsorption (activated carbon, 155 K) | Simple and well-developed technology | Low volumetric capacity (0.5–20 kg/m3). Requires cooling and compression. |
Zeolites, MOFs | Low cost, scalable production, reusability, low losses (0.1%) | Low hydrogen capacity (Zeolites: ~0.3 wt.% at RT, 1.8 wt.% at 77 K; MOFs: 1 wt.% at RT, 4.5 wt.% at 70 K) | |
Carbon nanostructures (nanotubes, fullerenes) | Technologies in the future can provide high Potential for high storage density (30–100 kg/m3) | Unreliable production methods, inconsistent hydrogen retention results. | |
Hydrogen storage systems that use physical sorption have high storage capacity for their size and weight at low pressures, are affordable, and are easy to build. Nonetheless, notable limitations exist, such as a low hydrogen capacity—spanning from 1 to 4.5 wt.%—and reduced sorption temperatures, which are generally at the temperature of liquid nitrogen. A common problem with how hydrogen is stored in various materials like metal–organic frameworks, zeolites, and carbon is that the energy holding hydrogen to the surface is not strong enough to allow for good storage at temperatures higher than that of liquid nitrogen. | |||
Chemical Methods | Metal hydrides, intermetallics, composites | Safe solid-state storage, well-developed technologies | Limited capacity (≤1.5 wt.%), heating required, degradation over time, high cost. |
Irreversible hydrides (AlH3, NH3, methanol) water-reactive (AlH3, Fe, Al, Si, water-regulating alloys based on aluminum and silicon, NH3, methanol, ethanol, etc.) | High volumetric density (~100 kg/m3) | Difficult to reuse storage media. | |
It is evident that the metal hydride method can successfully compete with conventional hydrogen storage methods in terms of compactness, but it is inferior to them in gravimetric performance. The hydrogen content by mass is significantly higher for high-temperature hydrides of light elements. |
Precursor | T [°C]; t [h] | Substrate | Method | Growth Mechanism | Physical Properties | Modification | Application | Ref. |
---|---|---|---|---|---|---|---|---|
B, h-BN, NH3 | <1100; 2 | iron deposits alumina | ball milling (20 h), CVD | base-growth | 40–100 nm diam., bamboo-like | – | – | [60] |
1200; 2 | 40–100 nm diam., cylindrical shape | |||||||
B:FeO:MgO (2:1:1), NH3 | 1200; 0.5 | Si/SiO2 | mechanic. mixed CVD | base-growth | 30 nm diam., random direction, closed tip ends | – | – | [61] |
1300; 0.5 | tip-growth | 60 nm diam., random direction, closed tip ends | ||||||
1400; 0.5 | mixed-growth | 10 nm diam., flower-like, closed tip ends | ||||||
B:FeO:MgO (1:1:1), NH3 | 1300; 0.5 | tip-/base-growth | 100–500 nm diam., closed tip ends | [62] | ||||
B:FeO:MgO (4:1:1), NH3 | 1300; 0.5 | tip-/base-growth | 50–150 nm diam., closed tip ends | |||||
B2O3, CaB6, Mg, NH3 | 1150; 6 | – | CVD | base-growth | 150 nm diam., >10 µm length | – | – | |
h-BN, N2 | 1250–1300; 10 | – | ball milling (100 h), CVD | – | 30–60 nm diam., cylindirical shape, 500 nm length | covalent with NH4HCO3 | reinforced material for Al-matrix composite | [63] |
B, FeO, MgO | 1100–1700; 1 | – | ball milling, CVD | metal catalytic growth | 50–80 nm diam., up to 10 µm length, straight nanowires | noncoval. polyaniline/Pt/GOX | amper. glucose biosensor | [64] |
B, iron particle, N2 | 1100; 15 | Si/SiO2 | ball milling (50 h), CVD | metal catalytic growth | 50–200 nm diam., up to 1 mm length, bamboo-like | – | insulators for electromechanical systems | [65] |
MWCNT, H3BO3, NH3 | 1300; 3 | – | substitution | – | 40–50 nm diam. | noncoval. trioctylam., tributylam., triphenyphos. | gel nanocomposite | [66] |
B, Co(NO3)2, N2, H2 | 1100; 0.5–3 | stainless steel | ball milling, CVD | – | bamboo-like | – | superhydrophobic surface | [67] |
B, N2 | 1200; 16 | – | ball milling (150 h), CVD | – | 20–50 nm diam. cylindrical, cylindrical capped by iron, bamboo-like | – | – | [68] |
BH4, NH4CI, N2 | 1200–1300; 5–10 | – | CVD | – | 10–30 nm diam., up to 5 µm length, bamboo-like | – | – | [69] |
B, Fe2O3, NH3 | 1200–1300; 2.25 | – | CVD | – | 64–136 nm diam., bamboo-like | – | – | [70] |
MWCNT, H3BO3, NH3 | 1080; 6 | – | substitution | – | 10–100 nm diam., 10 µm length | coval. PVA and HP-MEC | imp. mechanical performance of polymer | [71] |
mmon. borane, ferrocn., N2 | 1450; 1 | graphite crucible (graphite paper inner line) | CVD | (large diam. catalyst) | 300 nm diam., 10 µm length, bamboo-like | – | – | [72] |
vapor–liquid–solid (small diam. catalyst) | 15–200 nm diam., 100 µm length, cylindrical shape | |||||||
B, Fe2O3, NH3 | 600; 1 | – | CVD | – | 20–60 nm diam. | – | hydrogen storage | [73] |
B, Fe3+-MCM-41, NH3 | 2.5–4 nm diam. | |||||||
YB6, N2/Ar | – | – | arc discharge | mixed-growth | 4–10 nm diam., 4–6 µm length, closed or open tip | – | – | [74] |
Material | Method | Temperature (°C) | Pressure (MPa) | Kinetic (min) | Cyclical Stability | Max.% (mas.) H2 | Ref. |
---|---|---|---|---|---|---|---|
Mg/MgH2- 5% (мac.) Ni | Wet chemical method | Tabs. 230–370 | Pabs. and Pdes. 0.4–0.14 | tabs. 90 | 800 cycles, stable | 6.0 | [111] |
MgH2- 0.2% (мoл.) Cr2O3 | BM | Tabs. and Tdes. 300 | Pabs. and Pdes. 0.1–0.2 | tabs. 6 tdes. 10–35 | 1000 cycles, stable | 6.40 | [112] |
MgH2 | BM | Tabs. 300 and Tdes. 350 | Pabs. 0.3–1.0 Pdes. 0.015 | tdes. 12.5 tdes. 50 tabs. 420 | - | 7.0 | [113] |
MgH2-1% (aт.) Al | BM benzene or hexane | Tbs. 180 Tdes. 335–347 | Pabs. 0.06 | - | 7.30 | [114] |
Storage Ability, wt% | Morphology | Material’s Features | Storing Conditions | References | |
---|---|---|---|---|---|
P, MPa | T, K | ||||
Experimental data | |||||
2.9 | Nanofibres | 30–100 nm width and several µm length | 10 | 293 | [123] |
1.8 | Multifalled nanotubes | 10 | 293 | [124] | |
2.5 | Flower-type nanostrucrures | Specific surface area about 180 m2 g−1 | 10 | 298 | [125] |
2.6 | Bamboo-like nanotubes | 10–80 nm width and >µm length | 10 | 293 | [126] |
3.0 | Bamboo-like nanotubes | Specific surface area about 180 m2 g−1 | 10 | 298 | [127] |
0.2 | Bulk powder | - | 10 | 293 | [123] |
0.1 | Bulk powder | - | 6 | 293 | [123] |
2.6 | Nanostractured milled powder | Fine-milled (80 h) | 1 | 293 | [126] |
4.2 | Collapsed nanotubes | Catalyzed by the Pt | 10 | 293 | [127] |
5.7 | o-doped | Nanosheets with 2–6 atomic layers | 5 | 293 | [127] |
2.57 | Porous microsponge | Ultrahigh surface area up to 1900 m2 g−1 | 1 | 77 | [128] |
5.6 | Micro/meso-porous | High surface area pf 1.687 m2 g−1, pore volume of 0.99 cm3 g−1, rich structural defects | 3 | 298 | [129] |
2.3 | Porous microbelts | High surface area up to 1.488 m2 g−1 | 1 | 77 | [130] |
Theoritical modeling data | |||||
1.5 | Pristine | - | 5 | 293 | [131] |
1.9 | o-doped | Interlayer distance 7–7.5 Å | 5 | 293 | [132] |
5.5 | o-doped | - | N/a | [126] | |
2.81 | Pt-doped sheets | - | N/a | [131] | |
4.82 | Pt-doped sheets | - | N/a | [131] | |
6.33 | C-doped nanosheets modified with Ti | - | 0.5 | 298 | [132] |
5.1 | Porous | Ultrahigh surface area 3.260 m2 g−1 | N/a | [133] | |
7.5 | Li-decorated porous | One-side decoration | N/a | [133] | |
8.65 | Li-doped nanosheets | Distance between sheets 8.3 Å | 0.1 | 300 | [131] |
9.67 | h-BN monolayer | 2(Oli3)-decorated | N/a | [134] | |
3.4 | h-BN bilayer | Sorption in the interlayer spacing | N/a | [135] | |
6.7 | h-BN bilayer | Sorption on the h-BN surface | N/a | [136] | |
3.86 | eh-BN | Expanded h-BN | 20 | 243 | [137] |
11.21 | O-B2N2 monolayer | Decorated by Ti atoms | - | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhakhmetov, Y.; Kurbanbekov, S.; Mukhamedova, N.; Urkunbay, A.; Kizatov, A.; Bayatanova, L.; Nurdillayeva, R.; Baltabayeva, D. Boron-Based Compounds for Solid-State Hydrogen Storage: A Review. Crystals 2025, 15, 536. https://doi.org/10.3390/cryst15060536
Kozhakhmetov Y, Kurbanbekov S, Mukhamedova N, Urkunbay A, Kizatov A, Bayatanova L, Nurdillayeva R, Baltabayeva D. Boron-Based Compounds for Solid-State Hydrogen Storage: A Review. Crystals. 2025; 15(6):536. https://doi.org/10.3390/cryst15060536
Chicago/Turabian StyleKozhakhmetov, Yernat, Sherzod Kurbanbekov, Nurya Mukhamedova, Azamat Urkunbay, Aibar Kizatov, Leila Bayatanova, Raushan Nurdillayeva, and Dilnoza Baltabayeva. 2025. "Boron-Based Compounds for Solid-State Hydrogen Storage: A Review" Crystals 15, no. 6: 536. https://doi.org/10.3390/cryst15060536
APA StyleKozhakhmetov, Y., Kurbanbekov, S., Mukhamedova, N., Urkunbay, A., Kizatov, A., Bayatanova, L., Nurdillayeva, R., & Baltabayeva, D. (2025). Boron-Based Compounds for Solid-State Hydrogen Storage: A Review. Crystals, 15(6), 536. https://doi.org/10.3390/cryst15060536