Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = blue sponge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2566 KiB  
Article
Simulating Effectiveness of Low Impact Development (LID) for Different Building Densities in the Face of Climate Change Using a Hydrologic-Hydraulic Model (SWMM5)
by Helene Schmelzing and Britta Schmalz
Hydrology 2025, 12(8), 200; https://doi.org/10.3390/hydrology12080200 - 31 Jul 2025
Viewed by 256
Abstract
To date, few studies have been published for cities in Germany that take into account climate change and changing hydrologic patterns due to increases in building density. This study investigates the efficiency of LID for past and future climate in the polycentric agglomeration [...] Read more.
To date, few studies have been published for cities in Germany that take into account climate change and changing hydrologic patterns due to increases in building density. This study investigates the efficiency of LID for past and future climate in the polycentric agglomeration area Frankfurt, Main (Central Germany) using observed and projected climate (model) data for a standard reference period (1961–1990) and a high emission scenario (RCP 8.5) as well as a climate protection scenario (RCP 2.6), under 40 to 75 percent building density. LID elements included green roofs, permeable pavement and bioretention cells. SWMM5 was used as model for simulation purposes. A holistic evaluation of simulation results showed that effectiveness increases incrementally with LID implementation percentage and inverse to building density if implemented onto at least 50 percent of available impervious area. Building density had a higher adverse effect on LID efficiency than climate change. The results contribute to the understanding of localized effects of climate change and the implementation of adaption strategies to that end. The results of this study can be helpful for the scientific community regarding future investigations of LID implementation efficiency in dense residential areas and used by local governments to provide suggestions for urban water balance revaluation. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

34 pages, 3624 KiB  
Article
Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes
by Tomás Soteras, Ignacio Manuel Argento Arruñada, Leila María Saleh Medina, Natalie Malikova, Koro de la Caba, Pedro Guerrero, Norma Beatriz D’Accorso and R. Martín Negri
Polymers 2025, 17(15), 2008; https://doi.org/10.3390/polym17152008 - 23 Jul 2025
Viewed by 365
Abstract
Aerogel sponges of bio-based polymers loaded with metal–organic frameworks (MOFs) are highly promising for environmental applications, but a central challenge is to improve their stability and efficiency for removal processes. Here, the effective incorporation of the MOFs MIL-100(Fe) and ZIF-8 in composite aerogels [...] Read more.
Aerogel sponges of bio-based polymers loaded with metal–organic frameworks (MOFs) are highly promising for environmental applications, but a central challenge is to improve their stability and efficiency for removal processes. Here, the effective incorporation of the MOFs MIL-100(Fe) and ZIF-8 in composite aerogels of chitosan–pectin–lactic acid is reported. The presence of pectin was critical to loading the MOFs efficiently and homogeneously, while the incorporation of lactic acid induced a large increase in the Young’s modulus and provided structural preservation in aqueous solutions. The presence of MOFs enhanced the removal of two dyes, methyl orange (MO) and methylene blue (MB), under batch and flow conditions, with removal efficiencies of methyl orange of about 85% and 90% when loaded with ZIF-8 and MIL-100(Fe), respectively. Bentonite, celite 545, and two ionenes were loaded for comparison. Factors beyond charge-to-charge electrostatic interactions influenced the removal, since no correlations were obtained between the electrical charges of dyes, fillers, and polymers. The kinetic data were analyzed by adapting the Langmuir kinetic model, incorporating absorption and desorption processes, which allowed the recovery of the respective rate constants. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2206 KiB  
Article
Turning Waste into Wealth: Sustainable Amorphous Silica from Moroccan Oil Shale Ash
by Anas Krime, Sanaâ Saoiabi, Mouhaydine Tlemcani, Ahmed Saoiabi, Elisabete P. Carreiro and Manuela Ribeiro Carrott
Recycling 2025, 10(4), 143; https://doi.org/10.3390/recycling10040143 - 20 Jul 2025
Viewed by 283
Abstract
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using [...] Read more.
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using a sol–gel process assisted by polyethylene glycol (PEG-6000) as a soft template. The resulting AS-Si material was extensively characterized to confirm its potential for environmental remediation. FTIR analysis revealed characteristic vibrational bands corresponding to Si–OH and Si–O–Si bonds, while XRD confirmed its amorphous nature with a broad diffraction peak at 2θ ≈ 22.5°. SEM imaging revealed a highly porous, sponge-like morphology composed of aggregated nanoscale particles, consistent with the nitrogen adsorption–desorption isotherm. The material exhibited a specific surface area of 68 m2/g, a maximum in the pore size distribution at a pore diameter of 2.4 nm, and a cumulative pore volume of 0.11 cm3/g for pores up to 78 nm. DLS analysis indicated an average hydrodynamic diameter of 779 nm with moderate polydispersity (PDI = 0.48), while a zeta potential of –34.10 mV confirmed good colloidal stability. Furthermore, thermogravimetric analysis (TGA) and DSC suggested the thermal stability of our amorphous silica. The adsorption performance of AS-Si was evaluated using methylene blue (MB) and ciprofloxacin (Cipro) as model pollutants. Kinetic data were best fitted by the pseudo-second-order model, while isotherm studies favored the Langmuir model, suggesting monolayer adsorption. AS-Si could be used four times for the removal of MB and Cipro. These results collectively demonstrate that AS-Si is a promising, low-cost, and sustainable adsorbent derived from Moroccan oil shale ash for the effective removal of organic contaminants from aqueous media. Full article
Show Figures

Figure 1

24 pages, 6399 KiB  
Article
lncRNA-mRNA-miRNA Networks in Arabidopsis thaliana Exposed to Micro-Nanoplastics
by Roberta Galbo, Domenico Giosa, Gaetano Gargiulo, Andrea Bonomo, Marcos Fernando Basso, Miriam Negussu, Antonio Giovino, Chiara Vergata, Ilaria Colzi, Cristina Gonnelli, Marco Dainelli, Federico Martinelli and Letterio Giuffrè
Int. J. Plant Biol. 2025, 16(2), 70; https://doi.org/10.3390/ijpb16020070 - 18 Jun 2025
Viewed by 515
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of genetic networks in numerous biological processes. Micro-nanoplastics represent a novel abiotic stress, having a direct xenobiotic impact on plant cells, while the regulation of lncRNAs in Arabidopsis thaliana under this kind of abiotic stress remains [...] Read more.
Long non-coding RNAs (lncRNAs) are key regulators of genetic networks in numerous biological processes. Micro-nanoplastics represent a novel abiotic stress, having a direct xenobiotic impact on plant cells, while the regulation of lncRNAs in Arabidopsis thaliana under this kind of abiotic stress remains largely unclear. We explored RNA-seq data sets of A. thaliana roots treated with two types of micro-nanoplastics: transparent polyethylene terephthalate (Tr-PET) and blue polyethylene terephthalate (Bl-PET) to reveal known and new unannotated lncRNAs. Our findings showed that the Tr-PET changed the expression of 104 lncRNAs, while the Bl-PET changed the expression of just 19. We speculate on the possible significance of the differential expressions for plant tolerance and resistance to micro-nanoplastic stress. A key finding of this work is that the studied lncRNAs tend to regulate their neighboring protein-coding genes. Consistent with this regulatory role, their promoters were found to contain cis-acting regulatory elements responsive to abscisic acid, light, MeJA, MYC/MYB, and other stress-related signals. Furthermore, some of the miRNAs that participate in plant development and defense were also predicted to be sponged by the differentially expressed lncRNAs. In summary, this study adds to our knowledge of A. thaliana lncRNAs through the discovery of new transcripts, describing their expression under micro-nanoplastic stress, and revealing their possible roles in post-transcriptional gene regulation. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

23 pages, 2307 KiB  
Systematic Review
Assessing Cultural Ecosystem Services in Sponge City Infrastructure: A Systematic Review and Framework Proposal
by Nuan Han, Roziya Binti Ibrahim and Mohd Sallehuddin Bin Mat Noor
Sustainability 2025, 17(11), 5130; https://doi.org/10.3390/su17115130 - 3 Jun 2025
Viewed by 565
Abstract
Urbanization has significantly transformed ecological landscapes and created challenges in sustaining both environmental functionality and cultural values. In response, China’s Sponge City Infrastructure (SPI) aims to enhance urban water resilience by integrating green and blue infrastructure. While the ecological benefits of SPI have [...] Read more.
Urbanization has significantly transformed ecological landscapes and created challenges in sustaining both environmental functionality and cultural values. In response, China’s Sponge City Infrastructure (SPI) aims to enhance urban water resilience by integrating green and blue infrastructure. While the ecological benefits of SPI have been widely studied, the cultural ecosystem services (CES) it provides remain underexplored. This study systematically reviews 61 empirical articles to evaluate how CES has been addressed in SPI-related research. Bibliometric analysis was conducted to identify CES research trends and to systematically categorize CES types, assessment methods, and evaluation indicators in SPI-related studies. The findings reveal a dominant use of non-monetary assessment methods, led by questionnaire surveys (47.5%), while monetary approaches were rarely applied. However, several limitations were identified, including the geographic concentration of studies in a few major cities, the scarcity of research on abstract CES categories (e.g., inspiration and sense of place), and the lack of measurable indicators in nearly half of the reviewed studies. To address these issues, this study proposes a context-specific CES assessment framework aligned with China’s socio-cultural conditions and planning priorities in sponge city development. The framework, based on the reviewed literature, provides a preliminary tool for evaluating CES in sponge city contexts. This work contributes to the integration of cultural ecosystem services into urban ecological planning and offers insights for sustainable development in rapidly urbanizing regions. Full article
Show Figures

Figure 1

23 pages, 4743 KiB  
Article
Utilizing Remote Sensing for Sponge City Development: Enhancing Flood Management and Urban Resilience in Karachi
by Asifa Iqbal, Lubaina Soni, Ammad Waheed Qazi and Humaira Nazir
Remote Sens. 2025, 17(11), 1818; https://doi.org/10.3390/rs17111818 - 23 May 2025
Viewed by 2174
Abstract
Rapid urbanization in Karachi, Pakistan, has resulted in increased impervious surfaces, leading to significant challenges, such as frequent flooding, urban heat islands, and loss of vegetation. These issues pose challenges to urban resilience, livability, and sustainability, which further demand solutions that incorporate urban [...] Read more.
Rapid urbanization in Karachi, Pakistan, has resulted in increased impervious surfaces, leading to significant challenges, such as frequent flooding, urban heat islands, and loss of vegetation. These issues pose challenges to urban resilience, livability, and sustainability, which further demand solutions that incorporate urban greening and effective water management. This research uses remote sensing technologies and Geographic Information Systems (GISs), to analyze current surface treatments and their relationship to Karachi’s blue-green infrastructure. By following this approach, we evaluate flood risk and identify key flood-conditioning factors, including elevation, slope, rainfall distribution, drainage density, and land use/land cover changes. By utilizing the Analytical Hierarchy Process (AHP), we develop a flood risk assessment framework and a comprehensive flood risk map. Additionally, this research proposes an innovative Sponge City (SC) framework that integrates nature-based solutions (NBS) into urban planning, especially advocating for the establishment of green infrastructure, such as green roofs, rain gardens, and vegetated parks, to enhance water retention and drainage capacity. The findings highlight the urgent need for targeted policies and stakeholder engagement strategies to implement sustainable urban greening practices that address flooding and enhance the livability of Karachi. This work not only advances the theoretical understanding of Sponge Cities but also provides practical insights for policymakers, urban planners, and local communities facing similar sustainability challenges. Full article
Show Figures

Figure 1

21 pages, 9564 KiB  
Essay
An Evaluation of Sponge City Construction and a Zoning Construction Strategy from the Perspective of New Quality Productive Forces: A Case Study of Suzhou, China
by Xiaoyi Liu, Yiqin Chen, Heng Zhang and Jiang Chang
Land 2025, 14(4), 836; https://doi.org/10.3390/land14040836 - 11 Apr 2025
Viewed by 1172
Abstract
With the acceleration in urbanization, surface hardening has increased, urban flooding and soil erosion problems are frequent, and urban water resource management faces great challenges. Sponge city construction can effectively alleviate these problems by simulating the natural water cycle and constructing blue–green infrastructure. [...] Read more.
With the acceleration in urbanization, surface hardening has increased, urban flooding and soil erosion problems are frequent, and urban water resource management faces great challenges. Sponge city construction can effectively alleviate these problems by simulating the natural water cycle and constructing blue–green infrastructure. In this study, the analytic hierarchy process (AHP) and the ArcGIS weighted overlay tool were used to construct a framework for assessing the suitability of sponge city construction in Suzhou from the three dimensions of Geo-Smart spatial productive forces, Eco-Dynamic green productive forces, and Resilio-Tech responsive productive forces. A zoning strategy based on new quality productive forces is also proposed. The results show that Suzhou can be divided into three types of construction zones according to the suitability level: key construction zones, secondary key construction zones, and general construction zones. The key construction zones account for about 28.01% of the total land area, mainly covering the built-up areas of Suzhou, covering the developed urban areas such as Gusu District, Xiangcheng, Suzhou Industrial Park, and other key zones such as Northern Kunshan. The secondary key construction area and general construction area, on the other hand, account for 61.94% and 10.05% of the total area, respectively. From the new quality productive forces, this study proposes the following construction guidelines for sponge city zones: (1) enhance the coordinated development of urban planning and sponge city construction; (2) promote blue–green infrastructure development, strengthen inter-departmental cooperation, and ensure ecological and economic co-development; and (3) encourage public participation in governance. This research offers theoretical and practical guidance for sponge city construction in Suzhou and other cities from the perspective of new quality productive forces. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

25 pages, 10534 KiB  
Review
How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation
by Mariana Almeida, Tiago Silva, Runar Gjerp Solstad, Ana I. Lillebø, Ricardo Calado and Helena Vieira
Mar. Drugs 2025, 23(1), 2; https://doi.org/10.3390/md23010002 - 24 Dec 2024
Cited by 2 | Viewed by 1946
Abstract
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups [...] Read more.
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges. Co-word analysis of the literature highlights applications in regenerative medicine, the properties of hydrolysates, and biology and biochemistry studies. Innovation and the technological landscape, however, focus on fewer taxonomic groups, possibly reflecting the challenge of sustainably sourcing raw materials, with a higher number of patents coming from Asia. Globally, jellyfish collagen is the most prominent marine invertebrate source, while Asia also emphasizes the use of collagens derived from molluscs and sea cucumbers. Europe, despite fewer patents, explores a broader range of taxonomic groups. Globally, key applications registered are mostly in medical, dental and toiletry areas, with peptide preparations spanning multiple animal groups. The food domain is notably relevant for molluscs and sea cucumbers. Market trends show a strong presence of cosmetic and supplement products, aligning with market reports that predict a growing demand for marine collagens in cosmetics and personalized nutrition, particularly in targeted health supplements. Full article
Show Figures

Graphical abstract

19 pages, 1638 KiB  
Review
Implementation of Nature-Based Solutions in Urban Water Management in Viet Nam, a Comparison among European and Asian Countries
by Chau Huynh Thi Ngoc, Yannick Back, Fabian Funke, Martina Hauser and Manfred Kleidorfer
Sustainability 2024, 16(20), 8812; https://doi.org/10.3390/su16208812 - 11 Oct 2024
Cited by 2 | Viewed by 3646
Abstract
Climate change is severely affecting all regions of the world, and urban water management has become a major urban challenge. Although nature-based solutions (NBSs) have been widely implemented in developed countries in the Global North to address stormwater-related challenges in urban areas, implementation [...] Read more.
Climate change is severely affecting all regions of the world, and urban water management has become a major urban challenge. Although nature-based solutions (NBSs) have been widely implemented in developed countries in the Global North to address stormwater-related challenges in urban areas, implementation of such approaches in Viet Nam and other Asian countries remains limited. In addition, comprehensive and critical reviews of NBS adoption and development processes in Viet Nam are scarce. This study aims to clarify several aspects through a literature-based review: to understand the development of urban water management in Europe and Asia (China and Southeast Asian countries) along with the drivers for NBS implementation in Viet Nam, to explain the barriers to NBS adoption in Viet Nam, to present feasible solutions for promoting NBS adoption, and to explore future perspectives for NBS development in the context of Viet Nam. Although significant barriers exist, opportunities for NBS implementation are evident. The findings of this study can be used to promote NBS in other municipalities in developing countries. Full article
(This article belongs to the Special Issue Sustainable Stormwater Management and Green Infrastructure)
Show Figures

Figure 1

11 pages, 3519 KiB  
Article
Cell Proliferation, Chondrogenic Differentiation, and Cartilaginous Tissue Formation in Recombinant Silk Fibroin with Basic Fibroblast Growth Factor Binding Peptide
by Manabu Yamada, Arata Nakajima, Kayo Sakurai, Yasushi Tamada and Koichi Nakagawa
J. Funct. Biomater. 2024, 15(8), 230; https://doi.org/10.3390/jfb15080230 - 17 Aug 2024
Cited by 1 | Viewed by 1567
Abstract
Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. [...] Read more.
Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. In this study, we cultured a human mesenchymal cell line derived from bone marrow, UE6E7-16, in wild-type fibroin sponge (FS) and recombinant silk fibroin sponge with P7 peptide (P7 FS). We compared cell proliferation, chondrogenic differentiation and cartilaginous tissue formation between the two types of sponge. After stimulation with bFGF at 3 ng/mL, P7 FS showed significantly higher cell growth (1.2-fold) and higher cellular DNA content (5.6-fold) than did wild-type FS. To promote chondrogenic differentiation, cells were cultured in the presence of TGF-β at 10 ng/mL for 28 days. Immunostaining of P7 FS showed SOX9-positive cells comparable to wild-type FS. Alcian-Blue staining of P7 FS also showed cartilaginous tissue formation equivalent to wild-type FS. A significant increase in cell proliferation in P7 FS implies future clinical application of this transgenic fibroin for regeneration of articular cartilage. To produce cartilaginous tissue efficiently, transgenic fibroin sponges and culture conditions must be improved. Such changes should include the selection of growth factors involved in chondrogenic differentiation and cartilage formation. Full article
Show Figures

Figure 1

15 pages, 4979 KiB  
Article
Methanolic Extract and Brominated Compound from the Brazilian Marine Sponge Aplysina fulva Are Neuroprotective and Modulate Inflammatory Profile of Microglia
by Catarina de Jesus Nunes, Cinthia Cristina Santos, Erica Novaes Soares, Irlã Santos Lima, Uesley Vieira Alves, Emílio Lanna, Ronan Batista, Ravena Pereira do Nascimento and Silvia Lima Costa
Mar. Drugs 2024, 22(6), 235; https://doi.org/10.3390/md22060235 - 22 May 2024
Cited by 1 | Viewed by 2024
Abstract
Neurodegenerative diseases involve neuroinflammation and a loss of neurons, leading to disability and death. Hence, the research into new therapies has been focused on the modulation of the inflammatory response mainly by microglia/macrophages. The extracts and metabolites of marine sponges have been presented [...] Read more.
Neurodegenerative diseases involve neuroinflammation and a loss of neurons, leading to disability and death. Hence, the research into new therapies has been focused on the modulation of the inflammatory response mainly by microglia/macrophages. The extracts and metabolites of marine sponges have been presented as anti-inflammatory. This study evaluated the toxicity of an extract and purified compound from the Brazilian marine sponge Aplysina fulva as well as its neuroprotection against inflammatory damage associated with the modulation of microglia response. PC12 neuronal cells and neonatal rat microglia were treated with the methanolic extract of A. fulva (AF-MeOH, 0.1–200 μg/mL) or with its purified dimethyl ketal of 3,5-dibromoverongiaquinol (AF-H1, 0.1–100 μM). Cytotoxicity was determined by MTT tetrazolium, Trypan blue, and propidium iodide; microglia were also treated with the conditioned medium (CM) from PC12 cells in different conditions. The microglia phenotype was determined by the expression of Iba-1 and CD68. AF-MeOH and AF-H1 were not toxic to PC12 or the microglia. Inflammatory damage with Escherichia coli lipopolysaccharide (LPS, 5 μg/mL) was not observed in the PC12 cells treated with AF-MeOH (1–10 μg/mL) or AF-H1 (1–10 μM). Microglia subjected to the CM from PC12 cells treated with LPS and AF-MeOH or AF-H1 showed the control phenotype-like (multipolar, low-CD68), highlighting the anti-neuroinflammatory and neuroprotective effect of components of this marine sponge. Full article
(This article belongs to the Special Issue Bio-Active Components from Marine Sponges)
Show Figures

Graphical abstract

15 pages, 10305 KiB  
Article
Storage Scale Assessment of a Low-Impact Development System in a Sponge City
by Mingkun Xie, Dongxu He, Zengchuan Dong and Yuning Cheng
Water 2024, 16(10), 1427; https://doi.org/10.3390/w16101427 - 17 May 2024
Cited by 3 | Viewed by 1911
Abstract
A sponge city is an established urban stormwater management approach that effectively reduces urban runoff and pollutant discharges. In order to plan and design, estimate costs, and evaluate the performance of urban sponge city systems, it is essential to calculate the storage scale. [...] Read more.
A sponge city is an established urban stormwater management approach that effectively reduces urban runoff and pollutant discharges. In order to plan and design, estimate costs, and evaluate the performance of urban sponge city systems, it is essential to calculate the storage scale. In this context, a sponge city storage scale and calculation method based on a multifactor spatial overlay was designed, utilising the starting area of the Dafeng Hi-tech Development Zone in Yancheng City, China, as an illustrative example. The indicators for assessing the impact of sponge city systems on river plain networks are constructed based on four aspects: land planning, building density, water surface rate and green space rate. The relative importance of each indicator was determined based on the necessity of controlling runoff from land parcels and the appropriateness of facility construction. The annual runoff control rate of the 39 low-impact development control units in the study area was calculated using ArcGIS through multifactor spatial overlay mapping and weighting. The results showed that (1) the Geographic Information System (GIS)overlay technology can effectively assist in the decomposition of LID scales; (2) data can be derived, including the design storage volume and other basic control scale indicators for each unit. The study results are expected to serve as a reference for the preparation of special low-impact development plans in the river plain network area of China and the promotion of the construction of a sustainable blue–green system in the city. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 4810 KiB  
Article
Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering
by Eugenia Spessot, Serena Passuello, Lekha Vinod Shah, Devid Maniglio and Antonella Motta
Biomimetics 2024, 9(4), 218; https://doi.org/10.3390/biomimetics9040218 - 6 Apr 2024
Cited by 6 | Viewed by 3243
Abstract
The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated [...] Read more.
The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated silk fibroin (SilMA) sponges were investigated as scaffolds for bone tissue engineering by exploiting the combination of physical (induced by NaCl salt during particulate leaching) and chemical crosslinking (induced by UV-light exposure) techniques. A biomimetic approach was adopted to better simulate the extracellular matrix of the bone by introducing either natural (mussel shell-derived) or synthetic-origin hydroxyapatite nanoparticles into the SilMA sponges. The obtained materials were characterized in terms of pore size, water absorption capability and mechanical properties to understand both the effect of the inclusion of the two different types of nanoparticles and the effect of the photocrosslinking. Moreover, the SilMA sponges were tested for their bioactivity and suitability for bone tissue engineering purposes by using osteosarcoma cells, studying their metabolism by an AlamarBlue assay and their morphology by scanning electron microscopy. Results indicate that photocrosslinking helps in obtaining more regular structures with bimodal pore size distributions and in enhancing the stability of the constructs in water. Moreover, the addition of naturally derived hydroxyapatite was observed to be more effective at activating osteosarcoma cell metabolism than synthetic hydroxyapatite, showing a statistically significant difference in the AlamarBlue measurement on day 7 after seeding. The methacrylated silk fibroin/hydroxyapatite nanocomposite sponges developed in this work were found to be promising tools for targeting bone regeneration with a sustainable approach. Full article
(This article belongs to the Special Issue Silk-Based Bioinspired Materials: Design and Applications)
Show Figures

Graphical abstract

18 pages, 2134 KiB  
Review
Trees in Sponge Cities—A Systematic Review of Trees as a Component of Blue-Green Infrastructure, Vegetation Engineering Principles, and Stormwater Management
by Michael Richter, Kirya Heinemann, Nadine Meiser and Wolfgang Dickhaut
Water 2024, 16(5), 655; https://doi.org/10.3390/w16050655 - 23 Feb 2024
Cited by 12 | Viewed by 4663
Abstract
Combining street trees with stormwater management measures can, in some circumstances, both increase tree vitality and reduce the risk of flooding by directing stormwater into tree pits. Using systematic review methods, this study aimed to provide an overview of the vegetation engineering systems [...] Read more.
Combining street trees with stormwater management measures can, in some circumstances, both increase tree vitality and reduce the risk of flooding by directing stormwater into tree pits. Using systematic review methods, this study aimed to provide an overview of the vegetation engineering systems being researched and applied that combine tree planting with urban stormwater management. We also sought to identify the positive as well as possible negative impacts on urban hydrology and tree health. It has been shown that diverting rainwater from impervious surfaces into tree pits has considerable potential for stormwater management and for improving tree health by reducing drought stress in urban trees. Worldwide approaches to optimizing tree pits for rainwater infiltration and water supply are promising. Different systems and substrate types have been tested, and street trees generally show good vitality, although systematic long-term monitoring of tree vitality has rarely been undertaken. There is still a need for research into temporary water storage for dry periods. Full article
(This article belongs to the Special Issue Review Papers of Urban Water Management 2023)
Show Figures

Figure 1

32 pages, 49487 KiB  
Article
Simplified Synthesis of Renieramycin T Derivatives to Target Cancer Stem Cells via β-Catenin Proteasomal Degradation in Human Lung Cancer
by Zin Zin Ei, Satapat Racha, Masashi Yokoya, Daiki Hotta, Hongbin Zou and Pithi Chanvorachote
Mar. Drugs 2023, 21(12), 627; https://doi.org/10.3390/md21120627 - 30 Nov 2023
Cited by 3 | Viewed by 2853
Abstract
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations [...] Read more.
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations and clinical trials focused on CSC regulator β-catenin signaling targeted interventions in malignancies. As part of the ongoing advancements in marine-organism-derived compound development, it was observed that among the six analogs of Renieramycin T (RT), a potential lead alkaloid from the blue sponge Xestospongia sp., the compound DH_32, displayed the most robust anti-cancer activity in lung cancer A549, H23, and H292 cells. In various lung cancer cell lines, DH_32 exhibited the highest efficacy, with IC50 values of 4.06 ± 0.24 μM, 2.07 ± 0.11 μM, and 1.46 ± 0.06 μM in A549, H23, and H292 cells, respectively. In contrast, parental RT compounds had IC50 values of 5.76 ± 0.23 μM, 2.93 ± 0.07 μM, and 1.52 ± 0.05 μM in the same order. Furthermore, at a dosage of 25 nM, DH_32 showed a stronger ability to inhibit colony formation compared to the lead compound, RT. DH_32 was capable of inducing apoptosis in lung cancer cells, as demonstrated by increased PARP cleavage and reduced levels of the proapoptotic protein Bcl2. Our discovery confirms that DH_32 treatment of lung cancer cells led to a reduced level of CD133, which is associated with the suppression of stem-cell-related transcription factors like OCT4. Moreover, DH_32 significantly suppressed the ability of tumor spheroids to form compared to the original RT compound. Additionally, DH_32 inhibited CSCs by promoting the degradation of β-catenin through ubiquitin–proteasomal pathways. In computational molecular docking, a high-affinity interaction was observed between DH_32 (grid score = −35.559 kcal/mol) and β-catenin, indicating a stronger binding interaction compared to the reference compound R9Q (grid score = −29.044 kcal/mol). In summary, DH_32, a newly developed derivative of the right-half analog of RT, effectively inhibited the initiation of lung cancer spheroids and the self-renewal of lung cancer cells through the upstream process of β-catenin ubiquitin–proteasomal degradation. Full article
(This article belongs to the Special Issue Synthesis and Discovery of Marine Antitumor Molecules)
Show Figures

Figure 1

Back to TopTop