Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = blast seismic wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3560 KiB  
Article
Study on Vibration Effects and Optimal Delay Time for Tunnel Cut-Blasting Beneath Existing Railways
by Ruifeng Huang, Wenqing Li, Yongxiang Zheng and Zhong Li
Appl. Sci. 2025, 15(15), 8365; https://doi.org/10.3390/app15158365 - 28 Jul 2025
Viewed by 153
Abstract
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, [...] Read more.
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, LS-DYNA numerical simulation is used to analyze the seismic wave superposition law under different superposition methods. This study also investigates the vibration reduction effect of millisecond blasting for cut-blasting under the different classes of surrounding rocks. The results show that the vibration reduction forms of millisecond blasting can be divided into separation and interference of waveform. Based on the principle of superposition of blasting seismic waves, vibration reduction through wave interference is further divided. At the same time, a new vibration reduction mode is proposed. This vibration reduction mode can significantly improve construction efficiency while improving damping efficiency. The new vibration reduction mode can increase the vibration reduction to 80% while improving construction efficiency. Additionally, there is a significant difference in the damping effect of different classes of surrounding rock on the blasting seismic wave. Poor-quality surrounding rock enhances the attenuation of seismic wave velocity and peak stress in the surrounding rock. In the Zhongliangshan Tunnel, a tunnel cut-blasting construction at a depth of 42 m, the best vibration reduction plan of Class III is 3 ms millisecond blasting, in which the surface points achieve separation vibration reduction. The best vibration reduction plan of Class V is 1 ms millisecond blasting, in which the surface points achieve a new vibration reduction mode. During the tunnel blasting construction process, electronic detonators are used for millisecond blasting of the cut-blasting. This method can reduce the vibration effects generated by blasting. The stability of the existing railway is ultimately guaranteed. This can improve construction efficiency while ensuring construction safety. This study can provide significant guidance for the blasting construction of the tunnel through the railway. Full article
Show Figures

Figure 1

19 pages, 4388 KiB  
Article
Engineering Safety-Oriented Blasting-Induced Seismic Wave Signal Processing: An EMD Endpoint Suppression Method Based on Multi-Scale Feature
by Miao Sun, Jing Wu, Yani Lu, Fangda Yu and Hang Zhou
Sensors 2025, 25(13), 4194; https://doi.org/10.3390/s25134194 - 5 Jul 2025
Viewed by 280
Abstract
Blasting-induced seismic waves are typically nonlinear and non-stationary signals. The EMD-Hilbert transform is commonly used for time–frequency analysis of such signals. However, during the empirical mode decomposition (EMD) processing of blasting-induced seismic waves, endpoint effects occur, resulting in varying degrees of divergence in [...] Read more.
Blasting-induced seismic waves are typically nonlinear and non-stationary signals. The EMD-Hilbert transform is commonly used for time–frequency analysis of such signals. However, during the empirical mode decomposition (EMD) processing of blasting-induced seismic waves, endpoint effects occur, resulting in varying degrees of divergence in the obtained intrinsic mode function (IMF) components at both ends. The further application of the Hilbert transform to these endpoint-divergent IMFs yield artificial time–frequency analysis results, adversely impacting the assessment of blasting-induced seismic wave hazards. This paper proposes an improved EMD endpoint effect suppression algorithm that considers local endpoint development trends, global time distribution, energy matching, and waveform matching. The method first analyzes global temporal characteristics and endpoint amplitude variations to obtain left and right endpoint extension signal fragment S(t)L and S(t)R. Using these as references, the original signal is divided into “b” equal segments S(t)1, S(t)2 … S(t)b. Energy matching and waveform matching functions are then established to identify signal fragments S(t)i and S(t)j that match both the energy and waveform characteristics of S(t)L and S(t)R. Replacing S(t)L and S(t)R with S(t)i and S(t)j effectively suppresses the EMD endpoint effects. To verify the algorithm’s effectiveness in suppressing EMD endpoint effects, comparative studies were conducted using simulated signals to compare the proposed method with mirror extension, polynomial fitting, and extreme value extension methods. Three evaluation metrics were utilized: error standard deviation, correlation coefficient, and computation time. The results demonstrate that the proposed algorithm effectively reduces the divergence at the endpoints of the IMFs and yields physically meaningful IMF components. Finally, the method was applied to the analysis of actual blasting seismic signals. It successfully suppressed the endpoint effects of EMD and improved the extraction of time–frequency characteristics from blasting-induced seismic waves. This has significant practical implications for safety assessments of existing structures in areas affected by blasting. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

24 pages, 8426 KiB  
Article
Cavity Effects and Prediction in the Vibration of Large-Section Rectangular Coal Roadways Induced by Deep-Hole Bench Blasting in Open-Pit Mines
by Anjun Jiang, Honglu Fei, Yu Yan, Runcai Bai and Shijie Bao
Sensors 2025, 25(11), 3393; https://doi.org/10.3390/s25113393 - 28 May 2025
Viewed by 389
Abstract
The dynamic response law of the vibration cavity effect in the adjacent large-section rectangular coal roadways induced by deep-hole bench blasting vibrations was deeply revealed, and the prediction accuracy of the PPV in the coal roadway was improved. The vibration equations of the [...] Read more.
The dynamic response law of the vibration cavity effect in the adjacent large-section rectangular coal roadways induced by deep-hole bench blasting vibrations was deeply revealed, and the prediction accuracy of the PPV in the coal roadway was improved. The vibration equations of the coal roadway were derived based on the stress wave propagation theory and the wave-front momentum conservation theorem. Based on coal roadway vibration monitoring data and numerical simulations, the cavity effect and vibration response characteristics of the coal roadway induced by deep-hole bench blasting under varying blast source distances and relative angle conditions were analyzed. A predictive model for PPV of rectangular coal roadway surrounding rock, incorporating the relative angle as one of the key influencing factors, was developed. The results showed that the presence of cavities and changes in the relative angle enhance the asymmetry of the dynamic response of blasting stress waves near the free surfaces of the surrounding rock on each side of the coal roadway, resulting in significant differences. Moreover, as the blasting distance decreases, the cavity effect tends to promote greater PPV differences on each side of the coal roadway. The prediction model exhibited improved accuracy by about 15.6% compared to the traditional Sadovski equation for the face-blasting side of the coal roadway. It demonstrates better adaptability and predictive capability. This research provides a theoretical basis for the dynamic response of adjacent large-section rectangular coal roadways and for preventing dynamic instability failures in open-pit mining. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 2530 KiB  
Article
From Signal to Safety: A Data-Driven Dual Denoising Model for Reliable Assessment of Blasting Vibration Impacts
by Miao Sun, Jing Wu, Junkai Yang, Li Wu, Yani Lu and Hang Zhou
Buildings 2025, 15(10), 1751; https://doi.org/10.3390/buildings15101751 - 21 May 2025
Viewed by 293
Abstract
With the acceleration of urban renewal, directional blasting has become a common method for building demolition. Analyzing the time–frequency characteristics of blast-induced seismic waves allows for the assessment of risks to surrounding structures. However, the signals monitored are frequently tainted with noise, which [...] Read more.
With the acceleration of urban renewal, directional blasting has become a common method for building demolition. Analyzing the time–frequency characteristics of blast-induced seismic waves allows for the assessment of risks to surrounding structures. However, the signals monitored are frequently tainted with noise, which undermines the precision of time–frequency analysis. To counteract the dangers posed by blast vibrations, effective signal denoising is crucial for accurate evaluation and safety management. To tackle this challenge, a dual denoising model is proposed. This model consists of two stages. Firstly, it applies endpoint processing (EP) to the signal, followed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to suppress low-frequency clutter. High-frequency noise is then handled by controlling the multi-scale permutation entropy (MPE) of the intrinsic mode functions (IMF) obtained from EP-CEEMDAN. The EP-CEEMDAN-MPE framework achieves the first stage of denoising while mitigating the influence of endpoint effects on the denoising performance. The second stage of denoising involves combining the IMF obtained from EP-CEEMDAN-MPE to generate multiple denoising models. An objective function is established considering both the smoothness of the denoising models and the standard deviation of the error between the denoised signal and the measured signal. The denoising model corresponding to the optimal solution of the objective function is identified as the dual denoising model for blasting seismic wave signals. To validate the denoising effectiveness of the denoising model, simulated blasting vibration signals with a given signal-to-noise ratio (SNR) are constructed. Finally, the model is applied to real engineering blasting seismic wave signals for denoising. The results demonstrate that the model successfully reduces noise interference in the signals, highlighting its practical significance for the prevention and control of blasting seismic wave hazards. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 10539 KiB  
Article
Evaluation of Cumulative Damage and Safety of Large-Diameter Pipelines under Ultra-Small Clear Distance Multiple Blasting Using Non-Electric and Electronic Detonators
by Xiaoming Guan, Ning Yang, Yingkang Yao, Bocheng Xin and Qingqing Yu
Appl. Sci. 2024, 14(19), 9112; https://doi.org/10.3390/app14199112 - 9 Oct 2024
Viewed by 1196
Abstract
The safety assessment and control of large-diameter pipelines under tunnel blasting at ultrasmall clear distances is a significant problem faced in construction. However, there has been no reference case for the quantitative comparison of the disturbance degree of surrounding rock by using two [...] Read more.
The safety assessment and control of large-diameter pipelines under tunnel blasting at ultrasmall clear distances is a significant problem faced in construction. However, there has been no reference case for the quantitative comparison of the disturbance degree of surrounding rock by using two blasting schemes of non-electric detonator design and electronic detonator design under a similar total blasting charge consumption. In this study, the blasting test was carried out based on the engineering background of drilling and blasting methods to excavate the tunnel under the water pipeline at a close distance. The peak particle velocity (PPV), stress, and deformation responses of the pipeline under the two construction methods of non-electric and electronic detonators were comparatively analyzed. The PPV can be remarkably reduced by 64.2% using the hole-by-hole initiation of the electronic detonators. For the large-diameter pipeline, the PPV on the blasting side was much larger than that on the opposite side because the blasting seismic wave propagated a longer distance and attenuated more rapidly, owing to its greater cavity vibration reduction effect. The PPV of the electronic detonators decayed more slowly than that of the non-electric detonators. The cumulative damage caused by consecutive hole-by-hole blasting using electronic detonators was less than that caused by simultaneous multi-hole initiation using non-electric detonators, with a reduction of about 50.5%. When the nearest peripheral holes away from the pipeline are detonated, the cumulative damage variable D and damage range increase rapidly. The PPV, dynamic tensile strength, and cumulative damage variables were used to evaluate the safety of the pipelines. Full article
(This article belongs to the Special Issue New Challenges in Urban Underground Engineering)
Show Figures

Figure 1

15 pages, 10873 KiB  
Article
TBM Advanced Geological Prediction via Ellipsoidal Positioning Velocity Analysis
by Zhen Gao, Xin Rong, Wei Wang, Bin Huang and Junqiang Liu
Buildings 2024, 14(10), 3126; https://doi.org/10.3390/buildings14103126 - 30 Sep 2024
Viewed by 1091
Abstract
Traditional seismic wave-based tunnel advanced geological forecasting techniques are primarily designed for drill and blast method construction tunnels. However, given the fast excavation speed and limited prediction space in tunnel boring machine (TBM) construction tunnels, traditional methods have significant technical limitations. This study [...] Read more.
Traditional seismic wave-based tunnel advanced geological forecasting techniques are primarily designed for drill and blast method construction tunnels. However, given the fast excavation speed and limited prediction space in tunnel boring machine (TBM) construction tunnels, traditional methods have significant technical limitations. This study analyzes the characteristics of different types of TBM construction tunnels and, considering the practical construction conditions, identifies an effective observation system and data acquisition method. To address the challenges in advanced forecasting for TBM construction tunnels, a method of ellipsoid positioning velocity analysis, which takes into account the constraints of three-component data directions, is proposed. Based on the characteristics of the advanced forecasting observation system, this method compares the maximum values on the spatial isochronous ellipsoidal surface to determine the average velocity of the geological layer rays, thereby enabling accurate inversion of the spatial distribution ahead. Utilizing numerical simulation, a model for the advanced detection of typical unfavorable geological formations is established by obtaining the wave field response characteristics of seismic waves in three-dimensional space, and the velocity structure of the model is retrieved through this velocity analysis method. In the engineering example, the fracture property, water content, and weathering degree of the surrounding rock are predicted accurately. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4965 KiB  
Article
Variations in Temperature and Pressure in the “Reservoir–Well” System Triggered by Blasting Recovery of Iron Ore at the Kursk Magnetic Anomaly
by Ella Gorbunova, Sofia Petukhova, Aleksey Ivanov, Zulfat Sharafiev, Dmitry Pavlov, Artem Karavaev and Andrey Fedorov
Water 2024, 16(18), 2682; https://doi.org/10.3390/w16182682 - 20 Sep 2024
Viewed by 890
Abstract
This paper presents the results of precise measurements of temperature and pore pressure in the “reservoir–well” system during the development of iron ore deposits of the Kursk Magnetic Anomaly (KMA) via blasting. For the observation period from October 2021 to June 2024, variations [...] Read more.
This paper presents the results of precise measurements of temperature and pore pressure in the “reservoir–well” system during the development of iron ore deposits of the Kursk Magnetic Anomaly (KMA) via blasting. For the observation period from October 2021 to June 2024, variations in compressibility, permeability and temperature in the upper Albian-Cenomanian confined aquifer, which is used for district water supply, were determined. The general trend in a decrease in water temperature was traced (from 12 °C to 11.4 °C). It was accompanied by an increase in the hydrostatic head (from 3.7 m to 7.4 m). Water temperature in the upper aquifer was measured for 9 industrial explosions in the mine and for 30 explosions in the quarry. For one explosion in the mine and five explosions in the quarry the coseismic changes in water temperature with amplitudes of 0.06–0.09 °C were established, while changes in pore pressure in the “reservoir–well” system were 0.4–2.2 kPa. Local changes in the permeability of the reservoir in the vicinity of the well (the skin effect) are considered to be the main factor that controls the coseismic response of temperature during industrial explosions. As the reservoir permeability increases, the water temperature in the “reservoir–well” system can decrease and vice versa. The same pattern was observed according to regime measurements performed in 2022–2023. The recorded coseismic responses of water temperature in the upper aquifer in the high-frequency range are similar to the effects observed during propagation of seismic waves originated from earthquakes in the low-frequency range at different sites all over the world for the seismic energy density of 0.05–0.45 J/m3. The observed variations in aquifer temperature in the “reservoir–well” system under episodic dynamic impacts are of particular interest from the point of view of activating hydrogeochemical processes that accompany the development of iron ore deposits. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 3372 KiB  
Article
Discussion on the Discreteness of the Attenuation Parameters of the Peak Particle Velocity Induced by Blasting
by Zhaowei Yang, Yingguo Hu, Meishan Liu, Peng Li, Erlei Yao and Chenyang Ma
Sensors 2024, 24(5), 1355; https://doi.org/10.3390/s24051355 - 20 Feb 2024
Viewed by 1642
Abstract
The research on the attenuation law of blasting vibration has become the foundation and precondition of the effective control of blasting vibration damage. Aiming at the characteristics of low frequency, low velocity, and strong amplitude of the R wave, an improved wave component [...] Read more.
The research on the attenuation law of blasting vibration has become the foundation and precondition of the effective control of blasting vibration damage. Aiming at the characteristics of low frequency, low velocity, and strong amplitude of the R wave, an improved wave component separation method based on R wave suppression is proposed. Combined with the measured vibration signals of a field test, the attenuation parameters of different types of waves in the propagation process of blasting seismic waves are studied. The analysis results show that, in the process of blasting seismic wave propagation, the attenuation parameters of different types of waves are significantly different. With an increase in propagation distance, the proportion of the different types of waves will also change. The study of attenuation law with only coupled particle peak vibration velocity often showed high discreteness. The fitting correlation coefficient and prediction accuracy of peak vibration velocity without distinguishing wave modes are lower than those induced by the P wave or R wave alone, which should be attributed to the conversion of dominant wave modes in blasting vibration at different distances. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 4445 KiB  
Article
Blast-Assisted Subsurface Characterisation Using a Novel Distributed Acoustic Sensing Setup Based on Geometric Phases
by Sabahat Shaheen, Konstantin Hicke and Katerina Krebber
Sensors 2024, 24(1), 30; https://doi.org/10.3390/s24010030 - 20 Dec 2023
Cited by 1 | Viewed by 1423
Abstract
A novel DAS setup based on geometric phases in coherent heterodyne detection is applied for the first time to the characterisation of the Earth’s subsurface. In addition, an optimisation of the proposed setup in terms of its spatial resolution is also presented for [...] Read more.
A novel DAS setup based on geometric phases in coherent heterodyne detection is applied for the first time to the characterisation of the Earth’s subsurface. In addition, an optimisation of the proposed setup in terms of its spatial resolution is also presented for the first time. The surface waves are generated by strong blasts of 25 kg of explosives at a dedicated test site. A 10 km dark fiber link in the vicinity of the test site connected to the test setup records the resulting strain signals. The spike-free and low-noise strain data thus obtained minimize post-processing requirements, making the setup a candidate for real-time seismic monitoring. An analysis of the dispersion characteristics of the generated surface waves is performed using a recently reported optimised seismic interferometric technique. Based on the dispersion characteristics, the shear wave velocities of the surface waves as a function of the depth profile of the Earth’s crust are determined using an optimised evolutionary algorithm. Full article
(This article belongs to the Special Issue New Prospects in Fiber Optic Sensors and Applications)
Show Figures

Figure 1

16 pages, 6759 KiB  
Article
Finite Element Analysis-Based Blast Performance Evaluation for Reinforced Concrete Columns with Shear and Flexure Failure Modes
by Ye-Eun Kim, Jaeeun Park, Quoc Bao To, Kihak Lee and Jiuk Shin
Sustainability 2023, 15(20), 14967; https://doi.org/10.3390/su152014967 - 17 Oct 2023
Cited by 1 | Viewed by 2176
Abstract
Blast loads have significantly damaged non-ductile reinforced concrete building structures with seismically deficient column details, which have lower shear capacity than the building structures with the current code-required details. This paper aims to evaluate the blast performance of non-ductile (shear-governed) and ductile (flexure-governed) [...] Read more.
Blast loads have significantly damaged non-ductile reinforced concrete building structures with seismically deficient column details, which have lower shear capacity than the building structures with the current code-required details. This paper aims to evaluate the blast performance of non-ductile (shear-governed) and ductile (flexure-governed) RC columns using ductility- and residual capacity-based performance limits. To accomplish this research goal, the shear- and flexure-governed RC column models were developed using a finite element method and validated with previous experimental results. The efficient blast modeling method representing the reflected and incident waves was implemented in the validated column models, and these were simulated under various blast loading scenarios. The blast-induced responses for each column were investigated and utilized to determine the performance levels using the two different performance limits. The flexure-governed column model has higher performance levels than the shear-governed column model because of the lower ductility capacity of the shear-governed column model. The residual capacity-based performance level of the shear-governed column was underestimated compared to the ductility-based limits specified in a current design code. Full article
Show Figures

Figure 1

16 pages, 6690 KiB  
Article
Determination of Dynamic Properties of Fine-Grained Soils at High Cyclic Strains
by Syed Samran Ali Shah, Abdul Rahim Asif, Waqas Ahmed, Ihtisham Islam, Muhammad Waseem, Hammad Tariq Janjuhah and George Kontakiotis
Geosciences 2023, 13(7), 204; https://doi.org/10.3390/geosciences13070204 - 4 Jul 2023
Cited by 5 | Viewed by 3392
Abstract
Shear modulus (SM) and damping ratio (DR) are significant in seismic design and the performance of geotechnical systems. The evaluation of soil reactions to dynamic loads, such as earthquakes, blasts, train, and traffic vibrations, necessitates the estimation of dynamic SM and DR. The [...] Read more.
Shear modulus (SM) and damping ratio (DR) are significant in seismic design and the performance of geotechnical systems. The evaluation of soil reactions to dynamic loads, such as earthquakes, blasts, train, and traffic vibrations, necessitates the estimation of dynamic SM and DR. The aim of this research is to determine the cyclic parameters of unsaturated soils in and around Peshawar, and how these properties depend upon the varied confining pressures and shear strains. Undisturbed samples were collected using Shelby tubes from five boreholes at different locations along Jamrud Road, Peshawar. The index properties (grain size distribution, plasticity index, and specific gravity) and dynamic properties of these samples were determined. Three samples of 100 mm in height and 50 mm in diameter were obtained from each Shelby tube. After preparing and mounting the sample in the triaxial cell, the sample is first saturated by increasing the cell and back pressures in increments of 50 kPa until the value of Skempton’s pore pressure parameter (B) reaches ≥ 0.96. Samples were consolidated at confining pressures of 150, 200, and 300 kPa, then subjected to cyclic shear strains of 0.2, 1, 2, 2.5, and 5%. Shear stress–strain hysteresis loops were plotted, and the values of SM and DR were calculated for each cycle. Generally, at shear strains of 0.2 and 1%, the slope of the loops is steep, and gradually becomes gentler at higher strains of 2, 2.5, and 5%. It is found that, with an increasing number of cycles, the SM and DR decrease. The SM decreases with increasing shear strain, whereas the DR increases at shear strains of 0.2–1%, then decreases for strains of 2, 2.5, and 5%. The confining pressure has more influence at a shear strain of 0.2–1%, while little effect has been observed at a shear strain of 2.2–5%. The values of SM are higher at higher confining pressures at a given shear strain. The results show higher stress values during the initial cycles because of the greater effective stress that developed in response to shear strain while, with an increase in the number of cycles, the pore water pressure gradually increases, thereby reducing the effective stress and weakening the bonds between soil particles. In dynamics, when the confining pressure increases, particles are closer to contact, so the travel paths of waves increase. The energy loss will increase, so DR will decrease. Full article
Show Figures

Figure 1

25 pages, 9353 KiB  
Article
Dynamic Response and Failure Mechanism of Deep-Buried Tunnel with Small Net Distance under Blasting Load
by Jianjun Shi, Wenxiang Xu, Hao Zhang, Xinyan Ma and Huaming An
Buildings 2023, 13(3), 711; https://doi.org/10.3390/buildings13030711 - 8 Mar 2023
Cited by 7 | Viewed by 2006
Abstract
Under blasting load, a series of safety problems, such as lining cracking and surrounding rock instability, are prone to occur in deep-buried tunnels with a small net distance. It is significant to understand the dynamic response and failure mechanism of tunnels under blasting. [...] Read more.
Under blasting load, a series of safety problems, such as lining cracking and surrounding rock instability, are prone to occur in deep-buried tunnels with a small net distance. It is significant to understand the dynamic response and failure mechanism of tunnels under blasting. The blasting attenuation formula is optimized through theoretical analysis and field experiments. The measuring point vibration is monitored in real time and the tunnel blasting model is established by ANSYS/LS-DYNA software. The model was set as having no reflective boundary and an uncoupled charge structure was used. The attenuation law of blasting seismic waves is studied from the adjacent tunnel lining and the direction of the tunnel cross-section and length. The inner and outer sides of the tunnel lining are investigated, respectively. The displacement and acceleration of lining measuring point are also analyzed. The dynamic response of the tunnel lining under blasting excavation is analyzed from multiple angles. The results show that the arch foot on the inner side of the lining (the side in contact with the tunnel headroom) is the first to generate vibration. On the outside of the lining (the side in contact with the rock),the peak vibration velocity is reached after blasting load unloading. There is little difference in the vibration velocity at different positions of the transverse section, but great difference in the vibration velocity of the longitudinal section. The influence of the horizontal displacement was greater than that of the vertical displacement. The vibration acceleration of the measuring point at the arch foot of the section is the largest and the detonation is also the largest. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 16372 KiB  
Article
Investigation on the Seismic Wave Propagation Characteristics Excited by Explosion Source in High-Steep Rock Slope Site Using Discrete Element Method
by Danqing Song, Xuerui Quan, Mengxin Liu, Chun Liu, Weihua Liu, Xiaoyu Wang and Dechao Han
Sustainability 2022, 14(24), 17028; https://doi.org/10.3390/su142417028 - 19 Dec 2022
Cited by 6 | Viewed by 3345
Abstract
The influence of seismic waves induced by explosion sources on the dynamic response characteristics of rock slope sites is one of the most important problems affecting engineering construction. To investigate the wave propagation characteristics and attenuation law of seismic waves induced by explosive [...] Read more.
The influence of seismic waves induced by explosion sources on the dynamic response characteristics of rock slope sites is one of the most important problems affecting engineering construction. To investigate the wave propagation characteristics and attenuation law of seismic waves induced by explosive sources in rock sites from the perspective of time and frequency domains, the high-performance matrix discrete element method (MatDEM) is used to carry out numerical simulation tests on a granite rock medium site. The discrete element model of the high-steep rock slope is established by MatDEM, and the dynamic analysis of the rock medium site is conducted by loading blasting vibration load to generate seismic waves. The results show that the seismic waves in the rock site present characteristics of arc propagation attenuation. The maximum attenuation rate of the dynamic response is the fastest within 0.3 s and 25 m from the explosion source. The slope region can weaken the dynamic response of seismic waves generated by the explosion source. In particular, the high-frequency band (>20 Hz) has an obvious filtering effect. The dynamic response of the P-wave induced by the explosive source is greater than that of the S-wave in the bedrock and surface region. The dynamic amplification effect of the P-wave is greater than that of the S-wave in the slope region. The seismic waves in the slope region show an attenuation effect along the slope surface and have a typical elevation amplification effect inside the slope. Full article
(This article belongs to the Special Issue Sustainability in Geology and Civil Engineering)
Show Figures

Figure 1

25 pages, 1977 KiB  
Article
Dynamics of Strength Gain in Sandy Soil Stabilised with Mixed Binders Evaluated by Elastic P-Waves during Compressive Loading
by Per Lindh and Polina Lemenkova
Materials 2022, 15(21), 7798; https://doi.org/10.3390/ma15217798 - 4 Nov 2022
Cited by 9 | Viewed by 2003
Abstract
This paper addresses the problem of stabilisation of poor subgrade soil for improving its engineering properties and stiffness. The study aim is to evaluate the effects from single and mixed binders on the gain of strength in sandy soil over the period of [...] Read more.
This paper addresses the problem of stabilisation of poor subgrade soil for improving its engineering properties and stiffness. The study aim is to evaluate the effects from single and mixed binders on the gain of strength in sandy soil over the period of curing. We propose an effective non-destructive approach of using P-waves for identifying soil strength upon stabilisation. The growth of strength and stiffness is strongly dependent on time of curing and type of the stabilising agents which can include both single binders and their blended mixtures. The diverse effects from mixed binders on the properties of soil were evaluated, compared and analysed. We performed the experimental trials of five different binders for stabilisation of sandy soil using cement, lime, Ground Granulated Blast Furnace Slag (GGBFS), energy fly ash and bio fly ash. The methodology included soil stabilisation by binders during a total period of 90 days, strength test for the Unconfined Compressive Strength (UCS) and seismic tests on the stabilised samples. The dynamics of soil behaviour stabilised by different binders for days 7, 14, 28 and 90 was statistically analysed and compared. The optimisation of binder blending has been performed using mixture simplex lattice design with three binders in each case as independent variables. Using P-waves naturally exploited strength characteristics of soil samples and allowed us to compare the effects from the individual and blended binders over the complete period of curing with dominating mixes. The results indicate that strength growth in stabilised soil samples is nonlinear in both time and content of binders with dominating effects from slag which contributed the most to the compressive strength development, followed by cement. Full article
(This article belongs to the Special Issue Convergence & Sustainable Technology in Building Materials)
Show Figures

Figure 1

20 pages, 5412 KiB  
Article
Energy Generation and Attenuation of Blast-Induced Seismic Waves under In Situ Stress Conditions
by Jianhua Yang, Jinshan Sun, Yongsheng Jia and Yingkang Yao
Appl. Sci. 2022, 12(18), 9146; https://doi.org/10.3390/app12189146 - 12 Sep 2022
Cited by 9 | Viewed by 3084
Abstract
During blasting in deep mining and excavation, the rock masses usually suffer from high in situ stress. The initial seismic energy generated in deep rock blasting and its attenuation with distance is first theoretically analyzed in this study. Numerical modeling of the multiple-hole [...] Read more.
During blasting in deep mining and excavation, the rock masses usually suffer from high in situ stress. The initial seismic energy generated in deep rock blasting and its attenuation with distance is first theoretically analyzed in this study. Numerical modeling of the multiple-hole blasting in a circular tunnel excavation under varied in situ stress conditions is then conducted to investigate the influences of in situ stress levels and anisotropy on the blasting seismic energy generation and attenuation. The case study of the deep rock blasting in the China Jinping Underground Laboratory (CJPL) is finally presented to demonstrate the seismic energy attenuation laws under varied in situ stress levels. The results show that with the increase in the in situ stress level, the explosive energy consumed in the rock fracture is reduced, and more explosive energy is converted into seismic energy. The increasing in situ stress causes the seismic Q of the rock mass medium to first increase and then decrease, and consequently, the seismic energy attenuation rate first decreases and then increases. Compared to the condition without in situ stress, the blasting seismic energy decays more slowly with distance under in situ stress. Then the seismic waves generated in deep rock blasting are more likely to reach and exceed the peak particle velocity (PPV) limits stipulated in the blasting vibration standards. Under non-hydrostatic in situ stress, the generation and attenuation of the blasting seismic energy are anisotropic. The highest seismic energy density is generated in the rock mass in the minimum principal stress orientation. Its attenuation is dependent upon the in situ stress aligning the wave propagation orientation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop