Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = blade tip shape optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 11851 KB  
Article
Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions
by Venkatesh Subramanian, Venkatesan Sorakka Ponnappa, Madhan Kumar Gurusamy and Kadhavoor R. Karthikeyan
Fluids 2025, 10(9), 221; https://doi.org/10.3390/fluids10090221 - 25 Aug 2025
Viewed by 696
Abstract
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from [...] Read more.
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from deeply convex (−50 mm) to strongly concave (+50 mm) across seven configurations. Using steady-state computational fluid dynamics (CFD) with the frozen rotor method, simulations were conducted over a low Reynolds number range of 25 to 300, representative of small-scale and rooftop wind scenarios. The results indicate that deeply convex blades achieve the highest lift-to-drag ratio (Cl/Cd), peaking at 1.65 at Re = 25 and decreasing to 0.76 at Re = 300, whereas strongly concave blades show lower and more stable values ranging from 0.95 to 0.86. The power coefficient (Cp) and torque coefficient (Ct) similarly favor convex shapes, with Cp starting at 0.040 and remaining above 0.030, and Ct sustaining a robust 0.067 at low Re. Convex blades also maintain higher tip speed ratios (TSR), exceeding 1.30 at Re = 300. Velocity and pressure analyses reveal that convex profiles promote stable laminar flows and compact wakes, whereas concave geometries experience early flow separation and fluctuating torque. These findings demonstrate that optimizing the blade curvature toward convexity enhances the start-up, torque stability, and power output, providing essential design guidance for urban VAWTs operating under low Reynolds number conditions. Full article
Show Figures

Figure 1

26 pages, 17582 KB  
Article
Effect Analysis of the V-Angle and Straight Edge Length on the Performance of V-Shaped Blades for a Savonius Hydrokinetic Turbine
by Bohan Wang, Xu Bai, Guoqiang Lei, Wen Zhang and Renwei Ji
J. Mar. Sci. Eng. 2025, 13(7), 1240; https://doi.org/10.3390/jmse13071240 - 27 Jun 2025
Cited by 2 | Viewed by 478
Abstract
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of [...] Read more.
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of a V-angle (30–140°) and straight-edge length (0.24 L–0.62 L) on hydrodynamic performance, where L = 25.46 mm (the baseline length of the straight edge). The results indicate that, as the V-angle and the straight-edge length vary independently, the performance of each blade first increases and then decreases. At TSR = 0.87, the maximum power coefficient (CP) of 0.2345 is achieved by the blade with a 70° V-Angle and a straight edge length of 0.335 L. Pressure and velocity field analyses reveal that appropriate geometric adjustments can optimize the high-pressure zone on the advancing blade and suppress negative torque on the returning blade, thereby increasing net output. The influence mechanisms of the V-angle and straight-edge length variations on blade performance were further explored and summarized through a comparative analysis of the vorticity characteristics. This study established a detailed performance dataset, providing theoretical and empirical support for V-shaped rotor blade design studies and offering engineering guidance for the effective use of low-flow hydropower. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

13 pages, 5181 KB  
Article
Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation
by Shengkun Jiang, Yuanyuan Zhao, Xin Zhao, Chunlin Chen, Wenwen Tu, Yu Chi and Junhao Wang
Processes 2025, 13(6), 1876; https://doi.org/10.3390/pr13061876 - 13 Jun 2025
Cited by 1 | Viewed by 913
Abstract
This study numerically investigates the solid–liquid mixing characteristics in solid–liquid stirred tanks with solid volume fraction as high as 35%, focusing on the effect of impeller and baffle configurations on solid and liquid flow behaviors. Three stirred tanks with different capacities and impellers [...] Read more.
This study numerically investigates the solid–liquid mixing characteristics in solid–liquid stirred tanks with solid volume fraction as high as 35%, focusing on the effect of impeller and baffle configurations on solid and liquid flow behaviors. Three stirred tanks with different capacities and impellers were analyzed to evaluate liquid flow field, solid suspension, and free surface profiles. It has demonstrated superior shear rate uniformity in the multi-impeller systems compared to the single-impeller, attributed to the enhanced fluid circulation. Multi-impeller systems can achieve near-complete off-bottom suspension, while the single-impeller configuration exhibited band-shaped particle accumulation above the impeller. Free surface vortices, significantly deeper in the 6 m3 multi-impeller tank due to high blade tip velocities, were mitigated through the integration of four circumferentially arranged triangular baffles. The existence of baffles can suppress surface turbulence, promote axial flow patterns, and eliminate particle accumulation at the tank bottom, improving shear rate and solid concentration homogeneity. These findings provide a beneficial guideline for the optimization of solid–liquid mixing efficiency the similar flow system or processes. Full article
Show Figures

Figure 1

20 pages, 10274 KB  
Article
High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser
by Zhen Li, Yuanming Xu, Xinling Liu, Changkui Liu and Chunhu Tao
Metals 2024, 14(12), 1354; https://doi.org/10.3390/met14121354 - 27 Nov 2024
Viewed by 1179
Abstract
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack [...] Read more.
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack initiation and propagation related to the pore structure facilitated the development of a crack shape factor reflecting these distinct fracture behaviors. Predictions about the high-cycle fatigue stress experienced by the specimen were made, accompanied by an error analysis, providing critical insights for precise stress calculations and structural optimization in engine blade design. The results reveal that high-cycle fatigue cracks originate from corner cracks at pore edges, with the initial propagation displaying smooth crystallographic plane features. Subsequent stages show clear fatigue arc patterns in the propagation zones. The fracture surface exhibits the significant layering of oxide layers, primarily composed of NiO, with traces of CoO displaying columnar growth. AL2O3 is predominantly found at the interfaces between the matrix and oxide layers. Short and straight dislocations near the oxide layers and within the matrix suggest that dislocation multiplication and planar slip dominate the slip mechanisms in this alloy. The orientation of the fracture surface is mainly perpendicular to the load direction, with minor inclined facets in localized areas. Correlations were established between the plastic zone dimensions at the crack tips and the corresponding fatigue stresses. Without grain boundaries in single-crystal alloys, these dimensions are easily derived as parameters for fatigue stress analysis. The selected crack shape factor, “elliptical corner crack at pore edges”, captures the initiation and propagation traits relevant to porous structures. Subsequent calculations, accounting for the impact of oxide layers on stress assessments, indicated an error ratio ranging from 1.00 to 1.21 compared to nominal stress values. Full article
Show Figures

Figure 1

26 pages, 28817 KB  
Article
Hydrodynamic Performance of Toroidal Propeller Based on Detached Eddy Simulation Method
by Pei Xu, Yingchun Guo, Liyu Ye and Kewei Song
J. Mar. Sci. Eng. 2024, 12(12), 2132; https://doi.org/10.3390/jmse12122132 - 22 Nov 2024
Cited by 3 | Viewed by 4067
Abstract
Toroidal propellers hold significant potential as underwater propulsion systems compared to traditional propellers, primarily due to their unique shape, which effectively reduces and minimizes hydrodynamic noise and enhances structural stability and overall strength. To investigate hydrodynamic loads, flow fields, and vortex characteristics of [...] Read more.
Toroidal propellers hold significant potential as underwater propulsion systems compared to traditional propellers, primarily due to their unique shape, which effectively reduces and minimizes hydrodynamic noise and enhances structural stability and overall strength. To investigate hydrodynamic loads, flow fields, and vortex characteristics of toroidal propellers, numerical simulations were conducted on both toroidal and conventional propellers using the detached eddy simulation (DES) method in Star CCM+ computational fluid dynamics software. Results show that at low advance coefficients, the primary thrust generated by toroidal blades comes from pressure difference in the front section, whereas at high advance coefficients, it originates in the back section. A high-velocity region exists between the front and back sections of the toroidal propeller, with the range and intensity of this region gradually increasing from front to back. The wake vortex of the toroidal propeller comprises two parts: the tip vortex, where the front section tip vortex, back section tip vortex, and transition section leakage vortex merge, and the trailing edge vortex, which forms from the fusion of the front and back section leakage vortices. The fusion of these vortices is influenced by the advance coefficient. Compared to conventional propellers, the toroidal propellers exhibit a more extensive and intense trailing edge vortex in the wake flow field. These findings provide guidance for the optimization design research of toroidal propellers. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 9646 KB  
Article
Study on the Structural Characteristics of Bulb Tubular Pumps Based on Fluid–Structure Interaction
by Wenjie Wang, Jingyu Li, Chunhui Wu, Ji Pei, Can Luo and Bo Hu
Processes 2024, 12(8), 1641; https://doi.org/10.3390/pr12081641 - 4 Aug 2024
Viewed by 1530
Abstract
As a special type of through-flow device, bulb turbine pumps have been widely used in the Eastern Route of the South-to-North Water Diversion Project due to their compact structure, flexible installation process, easy maintenance, high efficiency, and strong adaptability. Therefore, structural improvements to [...] Read more.
As a special type of through-flow device, bulb turbine pumps have been widely used in the Eastern Route of the South-to-North Water Diversion Project due to their compact structure, flexible installation process, easy maintenance, high efficiency, and strong adaptability. Therefore, structural improvements to enhance their safety and stability through fluid–structure interaction analysis have significant engineering value. This paper conducts static and transient fluid–structure interaction analyses of the bulb turbine pump structure. The results show that the rotor structure experiences the greatest deformation under low-flow conditions, with maximum deformation (2.13 mm) occurring at the leading edge of the impeller inlet and decreasing radially along a gradient distribution. The damping effect of water changes the mode shapes of the rotor structure, and although the vibration modes under wet conditions are similar to those in the air, the frequencies decrease to varying degrees. In transient analyses under different conditions, the total deformation of the rotor system is greater than in static analyses, showing significant regularity. Under low-flow conditions, the deformation of the pressure surface at the inlet and outlet of the blade tip is greater than that of the suction surface, with a maximum total deformation of 3.656 mm. The maximum total deformation under design flow is 3.337 mm; under high flow, it is 2.646 mm. The total deformation of the casing mainly occurs on both sides of the internal bulb body bottom support, with a maximum deformation of 2.0355 mm and an equivalent stress maximum of 44.848 MPa. The equivalent stress and total deformation distribution of the support structure are similar, located at the top support and trailing edge, with a maximum value of 22.94 MPa at the trailing edge. The research results provide technical references and theoretical foundations for the structural optimization of bulb turbine pumps. Full article
Show Figures

Figure 1

21 pages, 16962 KB  
Article
Variation in Flow Characteristics and Power Performance Due to Axial Distance Optimization in the Design of Counter-Rotating Tidal Turbines
by Haechang Jeong and Changjo Yang
Energies 2024, 17(13), 3207; https://doi.org/10.3390/en17133207 - 29 Jun 2024
Cited by 5 | Viewed by 1208
Abstract
Counter-rotating turbines, designed to enhance the performance efficiency of tidal turbines, exhibit variable operational characteristics depending on the axial distance between the front and rear blades. This study encompassed both numerical analyses and performance experiments to establish the optimal design by examining the [...] Read more.
Counter-rotating turbines, designed to enhance the performance efficiency of tidal turbines, exhibit variable operational characteristics depending on the axial distance between the front and rear blades. This study encompassed both numerical analyses and performance experiments to establish the optimal design by examining the relationship between flow field alterations and the performance of a counter-rotating tidal turbine with varied axial distances. The blades of the counter-rotating tidal turbine, based on a 10-kW single turbine, were designed utilizing the Blade Element Momentum technique. The turbine blades were assessed for changes in output performance attributed to flow separation by analyzing the velocity distribution and separation points within the flow, demonstrating a maximum power coefficient of 40.3% at a design Tip Speed Ratio of 3. At y/D = 0.3. The counter-rotating tidal turbine achieved a maximum power coefficient of 47%, with performance enhancements of the rear blades driven by the accelerated wake of the front blades. Furthermore, the pressure coefficients of the blades, influenced by their shape, inflow velocity, and angle, were detailed separately for the suction and pressure sides. The study also explored the correlation between the flow characteristics and the output performance of each blade by analyzing the distribution of pressure coefficients. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

22 pages, 10141 KB  
Article
Multidisciplinary Design Optimization of Cooling Turbine Blade: An Integrated Approach with R/ICSM
by Wenjun Wang, Lan Xiang, Enzi Kang, Jiahao Xia, Shanguang Shi, Cunfu Wang and Cheng Yan
Appl. Sci. 2024, 14(11), 4559; https://doi.org/10.3390/app14114559 - 25 May 2024
Cited by 2 | Viewed by 3098
Abstract
This paper presents an efficient integrated multidisciplinary design optimization method for shaping a high-pressure cooling turbine blade in aero engines. This approach utilizes a novel regression/interpolation combination surrogate model (R/ICSM), facilitating comprehensive design optimization through collaborative coupling feature parameterization modeling and numerical simulation [...] Read more.
This paper presents an efficient integrated multidisciplinary design optimization method for shaping a high-pressure cooling turbine blade in aero engines. This approach utilizes a novel regression/interpolation combination surrogate model (R/ICSM), facilitating comprehensive design optimization through collaborative coupling feature parameterization modeling and numerical simulation analysis across various disciplines. The optimized blade adjusts the load distribution on its surface, effectively eliminating flow separation at the tip and trailing edge. Notably, the optimized blade achieves a 0.69% increase in isentropic efficiency while satisfying aerodynamic, strength, and structural constraints. This highlights the effectiveness and progressiveness of the multidisciplinary design optimization method for a cooling turbine blade based on the R/ICSM in enhancing overall performance. It offers a novel and feasible approach for turbine blade design optimization and provides valuable insights for future research and applications. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

29 pages, 13271 KB  
Article
Fluid–Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips
by Ziaul Huque, Fadoua Zemmouri, Haidong Lu and Raghava Rao Kommalapati
Energies 2024, 17(5), 1090; https://doi.org/10.3390/en17051090 - 24 Feb 2024
Cited by 4 | Viewed by 3377
Abstract
The aerodynamic shapes of the blades are of great importance in wind turbine design to achieve better overall turbine performance. Fluid–structure interaction (FSI) analyses are normally carried out to take into consideration the effects due to the loads between the air flow and [...] Read more.
The aerodynamic shapes of the blades are of great importance in wind turbine design to achieve better overall turbine performance. Fluid–structure interaction (FSI) analyses are normally carried out to take into consideration the effects due to the loads between the air flow and the turbine structures. A structural integrity check can then be performed, and the structural/material design can be optimized accordingly. In this study, three different tip shapes are investigated based on the original blade of the test wind turbine (Phase VI) from the National Renewable Energy Laboratory (NREL). A one-way coupled simulation of FSI is conducted, and results with a focus on stresses and deformations along the span of the blade are investigated. The results show that tip modifications of the blade have the potential to effectively increase the power generation of wind turbines while ensuring adequate structural strength. Furthermore, instead of using more complicated but computationally expensive techniques, this study demonstrates an effective approach to making quality observations of this highly nonlinear phenomenon for wind turbine blade design. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 7392 KB  
Article
Study on the Influence of Radial Inlet Chamber Splitter Blades on the Oblique Flow Compressor Performance
by Jixiang Chen, Zhitao Zuo, Xin Zhou, Jianting Sun, Jingxin Li, Wenbin Guo and Haisheng Chen
Energies 2023, 16(11), 4384; https://doi.org/10.3390/en16114384 - 29 May 2023
Cited by 1 | Viewed by 1636
Abstract
The oblique flow compressor is one of the important components in the compressed air energy storage (CAES) system. The structural shape of the radial inlet chamber (RIC) directly affects the compressor performance, and a reasonable RIC design should achieve the smallest total pressure [...] Read more.
The oblique flow compressor is one of the important components in the compressed air energy storage (CAES) system. The structural shape of the radial inlet chamber (RIC) directly affects the compressor performance, and a reasonable RIC design should achieve the smallest total pressure loss and outlet distortion as much as possible to meet the structural design. To study the influence of splitter blades, 4 RICs equipped with different numbers of splitter blades are designed, and the performance of 4 RICs and the overall performance of the compressor is calculated. The results show that with the increase in the number of splitter blades, the stall margin increases from 6.3% to 13.94%. At the design point, the isentropic efficiency is highest for the RIC with 17 splitter blades, and the pressure ratio is highest for the RIC with 11 splitter blades. Compared with the direct axial intake mode, the uniformity of the relative leakage distribution and the attack angle distribution of the impeller leading edge under 4 radial intake modes are poor. However, with an increase in the number of splitter blades, the uniformity of the relative tip leakage and the attack angle distribution gradually increase. The flow loss of RIC will increase simultaneously, though the uniformity of the outlet aerodynamic parameters distribution improves, and the influence on the downstream component performance gradually weakens. There is an optimal number of splitter blades in RIC, which balances the total pressure loss and distortion coefficient. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 7251 KB  
Article
Wind Turbine Blade-Tip Optimization: A Systemic Computational Approach
by Panagiotis Zouboulis, Elias P. Koumoulos and Anna Karatza
Processes 2023, 11(4), 1170; https://doi.org/10.3390/pr11041170 - 11 Apr 2023
Cited by 3 | Viewed by 4751
Abstract
Curved bladelets on wind turbine blades play an important role in improving the performance and efficiency of wind turbines. Implementing such features on the tip of wind turbine blades can improve their overall aerodynamic characteristics by reducing turbulence and loading without hindering lift [...] Read more.
Curved bladelets on wind turbine blades play an important role in improving the performance and efficiency of wind turbines. Implementing such features on the tip of wind turbine blades can improve their overall aerodynamic characteristics by reducing turbulence and loading without hindering lift generation and overall efficiency, thus leading to increased energy capture and reduced costs over the life of the turbine. Subjecting the integrated blade tip to optimization procedures can maximize its beneficial contribution to the assembly in general. Within this context, a systemic workflow is proposed for the optimization of a curved bladelet implemented on a wind turbine blade. The approach receives input in the form of an initial tip geometry and performs improvements in two distinct stages. Firstly, shape optimization is performed directly on the outer shape to enhance its aerodynamic properties. Subsequently, the topology of its interior structure is refined to decrease its mass while retaining its improved airflow characteristics. The proposed workflow aims to approach blade tip optimization holistically, both in terms of aerodynamic performance and structural capabilities; is computationally validated via fluid dynamics studies and finite element analysis to evaluate the performance augmentation achieved through it; and is further coupled with additive manufacturing for the production of prototype parts, benefiting from the manufacturing flexibility offered by digital fabrication technologies. The optimized bladelet model presented an approximate 30% improvement in the torque generated on it, while maintaining only 70% of its original mass, effectively contributing to a 0.81% increase to the total torque generated by the blade, consequently confirming the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

31 pages, 16106 KB  
Article
CFD Investigation and Optimization on the Aerodynamic Performance of a Savonius Vertical Axis Wind Turbine and Its Installation in a Hybrid Power Supply System: A Case Study in Iran
by Shayan Farajyar, Farzad Ghafoorian, Mehdi Mehrpooya and Mohammadreza Asadbeigi
Sustainability 2023, 15(6), 5318; https://doi.org/10.3390/su15065318 - 16 Mar 2023
Cited by 34 | Viewed by 5642
Abstract
In this study, a 3D-CFD simulation on the effect of various design and operating parameters, namely the number of blades, overlap ratio, spacing size, arc angle, shape factor, presence of curtain, wind velocity, and multi-bucket rotor, on the aerodynamic performance of a Savonius [...] Read more.
In this study, a 3D-CFD simulation on the effect of various design and operating parameters, namely the number of blades, overlap ratio, spacing size, arc angle, shape factor, presence of curtain, wind velocity, and multi-bucket rotor, on the aerodynamic performance of a Savonius vertical axis wind turbine (VAWT) is conducted. In order to evaluate the effect of each parameter, the rotor’s power coefficient (Cp) for different tip speed ratio (TSR) values and overall torque as a function of the azimuth angle are investigated. The results show that the generated power of a solid rotor with more buckets is less than that of the two-bladed rotor, and by decreasing the overlap ratio and spacing size, Cp values are enhanced. Moreover, a rotor with a larger bucket arc angle has less Cp value and total torque, in addition to shape factor, which changes the configuration of the rotor by adding arms, thus enhancing the aerodynamic performance of the prototype. Furthermore, it is shown that installing a curtain in the upstream section of the rotor improves Cp value by directing airflow. Moreover, it is observed that by increasing inlet wind velocity and, subsequently, the Reynolds number, generated power is boosted. In addition, it is noted that a suitable multi-bucket rotor configuration can boost generated power. Finally, the optimum design is achieved by using the Kriging method. Based on the optimization results, a 2-bladed Savonius VAWT with an overlap ratio of 0, spacing size of 0 (m), arc angle of 170°, shape factor of 0.5, and inlet wind velocity of 12 (m/s) at TSR = 0.37 introduces the highest efficiency. Full article
(This article belongs to the Special Issue Sustainable Integration of Renewable Power Generation Systems)
Show Figures

Figure 1

11 pages, 1414 KB  
Article
Axial Impeller-Only Fans with Optimal Hub-to-Tip Ratio and Blades Adapted for Minimum Exit Loss
by Thomas Carolus and Konrad Bamberger
Int. J. Turbomach. Propuls. Power 2023, 8(1), 7; https://doi.org/10.3390/ijtpp8010007 - 1 Mar 2023
Cited by 9 | Viewed by 8441
Abstract
This study targets determining impellers of impeller-only axial fans with an optimal hub-to-tip ratio for the highest achievable total-to-static efficiency. Differently from other studies, a holistic approach is chosen. Firstly, the complete class of these fans is considered. Secondly, the radial distribution of [...] Read more.
This study targets determining impellers of impeller-only axial fans with an optimal hub-to-tip ratio for the highest achievable total-to-static efficiency. Differently from other studies, a holistic approach is chosen. Firstly, the complete class of these fans is considered. Secondly, the radial distribution of blade sweep angle, stagger angle, chord length, and camber are varied to adapt the blades to the complex flow in the hub and tip regions. The tool being used is an optimization scheme with three key components: (i) a database created beforehand by Reynolds-averaged Navier–Stokes (RANS)-predicted performance characteristics of 14,000 designs, (ii) an artificial neural network as a metamodel for the fan performance as a function of 26 geometrical parameters, and (iii) an evolutionary algorithm for optimization, performed on the metamodel. Typically, the hub-to-tip ratios for the impellers proposed by the optimization scheme are smaller than those obtained by applying the classic design rules. A second outcome are the shapes of the blades, which are adapted for a minimum exit loss. These shapes deviate substantially from the classic and even the state-of-the-art “swept-only” or “swept with dihedral” designs. The chord length, stagger, and sweep angle are distributed from hub to tip in a complex manner. The inherent reason is that the scheme tries to minimize not only the dynamic exit loss but also frictional losses due to secondary flows in the hub and tip regions, which eventually results in the maximum achievable total-to-static efficiency. Upon request, the authors will provide the full geometry of the four impellers analysed in some detail in this study to any individual for experimental validation or further analysis of their performance. Full article
(This article belongs to the Special Issue Fan Noise, Aerodynamics, Applications and Systems)
Show Figures

Figure 1

25 pages, 9450 KB  
Article
Conjugate Heat Transfer Analysis of the Aero-Thermal Impact of Different Feeding Geometries for Internal Cooling in Lifetime Extension Processes for Heavy-Duty Gas Turbines
by Lorenzo Laveneziana, Nicola Rosafio, Simone Salvadori, Daniela Anna Misul, Mirko Baratta, Luca Forno, Massimo Valsania and Marco Toppino
Energies 2022, 15(9), 3022; https://doi.org/10.3390/en15093022 - 20 Apr 2022
Cited by 6 | Viewed by 3963
Abstract
Regulations from the European Union move towards a constant reduction of pollutant emissions to match the single-digit goal by 2050. Original equipment manufacturers propose newly designed components for the lifetime extension ofgGas turbines that both reduce emissions and allow for increasing thermodynamic performance [...] Read more.
Regulations from the European Union move towards a constant reduction of pollutant emissions to match the single-digit goal by 2050. Original equipment manufacturers propose newly designed components for the lifetime extension ofgGas turbines that both reduce emissions and allow for increasing thermodynamic performance by redesigning turbine cooling geometries and optimizing secondary air systems. The optimal design of internal cooling geometries allows for reducing both blade metal temperature and coolant mass-flow rates. In the present study, four different geometries of the region upstream from the blade’s internal cooling channels are investigated by using computational fluid dynamics with a conjugate heat transfer approach. The baseline configuration is compared to solutions that include turbulators, vanes, and a diffuser-like shapes. The impact of each solution on the blade metal temperature is thoroughly analysed. The diffuser-like solution allows for a more uniform distribution of the coolant and may reduce the metal temperature by 30% in the central part of the blade. There are also regions where the metal temperature increases up to 15%, thus requiring a specific thermal fatigue analysis. Eventually, the non-negligible impact of the coolant flow purged in the tip clearance region on the generation of the tip leakage vortex is described. Full article
Show Figures

Figure 1

25 pages, 10860 KB  
Article
Study on Structural Performance of Horizontal Axis Wind Turbine with Air Duct for Coal Mine
by Xiaohong Gui, Haiteng Xue, Ripeng Gao, Xingrui Zhan and Fupeng Zhao
Energies 2022, 15(1), 225; https://doi.org/10.3390/en15010225 - 29 Dec 2021
Cited by 3 | Viewed by 2073
Abstract
Considering the characteristics of narrow underground space and energy distribution, based on blade element momentum theory, Wilson optimization model and MATLAB programming calculation results, the torsion angle and chord length of wind turbine blade under the optimized conditions were obtained. Through coordinate transformation, [...] Read more.
Considering the characteristics of narrow underground space and energy distribution, based on blade element momentum theory, Wilson optimization model and MATLAB programming calculation results, the torsion angle and chord length of wind turbine blade under the optimized conditions were obtained. Through coordinate transformation, the data were transformed into three-dimensional form. The three-dimensional model of the blade was constructed, and the horizontal axis wind turbine blade under the underground low wind speed environment was designed. The static structural analysis and modal analysis were carried out. Structural design, optimization calculation and aerodynamic analysis were carried out for three kinds of air ducts: external convex, internal concave and linear. The results show that the velocity distribution in the throat of linear air duct is relatively uniform and the growth rate is large, so it should be preferred. When the tunnel wind speed is 4.3 m/s and the rated speed is 224 rad/s, the maximum displacement of the blade is in the blade tip area and the maximum stress is at the blade root, which is not easy to resonate. The change rate of displacement, stress and strain of blade is positively correlated with speed. The energy of blade vibration is mainly concentrated in the swing vibration of the first and second modes. With the increase in vibration mode order, the amplitude and shape of the blade gradually transition to the coupling vibration of swing, swing and torsion. The stress and strain of the blade are lower than the allowable stress and strain of glass fiber reinforced plastics (FRP), and resonance is not easy to occur in the first two steps. The blade is generally safe and meets the design requirements. Full article
Show Figures

Graphical abstract

Back to TopTop