Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation
Abstract
1. Introduction
2. Flow System and Simulation Method
2.1. Flow System
2.2. Multiphase Flow Model and Governing Equations
2.3. System Investigated and Boundary Conditions
3. Results and Discussion
3.1. Flow Field
3.2. Solid–Liquid Suspension
3.3. Free Surface
3.4. Effect of Baffle on Solid–Liquid Mixing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Jin, Z.; Liu, B.; Bengt, S. Experimental Investigation on Solid Suspension Performance of Coaxial Mixer in Viscous and High Solid Loading Systems. Chem. Eng. Sci. 2019, 208, 115144. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Y.G.; Pullum, L. Suspension of High Concentration Slurry. AIChE J. 2002, 48, 1349–1352. [Google Scholar] [CrossRef]
- Ayranci, I.; Kresta, S.M. Critical Analysis of Zwietering Correlation for Solids Suspension in Stirred Tanks. Chem. Eng. Res. Des. 2014, 92, 413–422. [Google Scholar] [CrossRef]
- Zwietering, T.N. Suspending of Solid Particles in Liquid by Agitators. Chem. Eng. Sci. 1958, 8, 244–253. [Google Scholar] [CrossRef]
- Narayanan, S.; Bhatia, V.K.; Guha, D.K.; Rao, M.N. Suspension of Solids by Mechanical Agitation. Chem. Eng. Sci. 1969, 24, 223–230. [Google Scholar] [CrossRef]
- Švec, O.; Skoček, J.; Stang, H.; Geiker, M.R.; Roussel, N. Free Surface Flow of a Suspension of Rigid Particles in a Non−Newtonian Fluid: A Lattice Boltzmann Approach. J. Non−Newton. Fluid Mech. 2012, 179–180, 32–42. [Google Scholar] [CrossRef]
- Sbrizzai, F.; Lavezzo, V.; Verzicco, R.; Campolo, M.; Soldati, A. Direct Numerical Simulation of Turbulent Particle Dispersion in an Unbaffled Stirred−Tank Reactor. Chem. Eng. Sci. 2006, 61, 2843–2851. [Google Scholar] [CrossRef]
- Freudig, B.; Hogekamp, S.; Schubert, H. Dispersion of Powders in Liquids in a Stirred Vessel. Chem. Eng. Process. Process Intensif. 1999, 38, 525–532. [Google Scholar] [CrossRef]
- Busciglio, A.; Scargiali, F.; Grisafi, F.; Brucato, A. Oscillation Dynamics of Free Vortex Surface in Uncovered Unbaffled Stirred Vessels. Chem. Eng. J. 2016, 285, 477–486. [Google Scholar] [CrossRef]
- Busciglio, A.; Caputo, G.; Scargiali, F. Free−Surface Shape in Unbaffled Stirred Vessels: Experimental Study via Digital Image Analysis. Chem. Eng. Sci. 2013, 104, 868–880. [Google Scholar] [CrossRef]
- Scargiali, F.; Busciglio, A.; Grisafi, F.; Brucato, A. Free Surface Oxygen Transfer in Large Aspect Ratio Unbaffled Bio−Reactors, with or Without Draft−Tube. Biochem. Eng. J. 2015, 100, 16–22. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Yang, C.; Ma, B.; Mao, Z.-S. Computational Fluid Dynamics Simulation and Experimental Measurement of Gas and Solid Holdup Distributions in a Gas–Liquid–Solid Stirred Reactor. Ind. Eng. Chem. Res. 2016, 55, 3276–3286. [Google Scholar] [CrossRef]
- Micale, G.; Carrara, V.; Grisafi, F.; Brucato, A. Solids Suspension in Three−Phase Stirred Tanks. Chem. Eng. Res. Des. 2000, 78, 319–326. [Google Scholar] [CrossRef]
- Kovalev, A.; Yagodnitsyna, A.; Bilsky, A. Plug Flow of Immiscible Liquids with Low Viscosity Ratio in Serpentine Microchannels. Chem. Eng. J. 2021, 417, 127933. [Google Scholar] [CrossRef]
- Der, O.; Bertola, V. An Experimental Investigation of Oil−Water Flow in a Serpentine Channel. Int. J. Multiph. Flow 2020, 129, 103327. [Google Scholar] [CrossRef]
- Guha, D.; Ramachandran, P.A.; Dudukovic, M.P.; Derksen, J.J. Evaluation of large Eddy simulation and Euler−Euler CFD models for solids flow dynamics in a stirred tank reactor. AIChE J. 2008, 54, 766–778. [Google Scholar] [CrossRef]
- Sungkorn, R.; Derksen, J.J.; Khinast, J.G. Euler–Lagrange Modeling of a Gas–Liquid Stirred Reactor with Consideration of Bubble Breakage and Coalescence. AIChE J. 2012, 58, 1356–1370. [Google Scholar] [CrossRef]
- Liu, B.; Xu, Z.; Xiao, Q.; Huang, B. Numerical Study on Solid Suspension Characteristics of a Coaxial Mixer in Viscous Systems. Chin. J. Chem. Eng. 2019, 27, 2325. [Google Scholar] [CrossRef]
- Hosseini, S.; Patel, D.; Ein−Mozaffari, F.; Mehrvar, M. Study of Solid−Liquid Mixing in Agitated Tanks Through Computational Fluid Dynamics Modeling. Ind. Eng. Chem. Res. 2010, 49, 4426–4435. [Google Scholar] [CrossRef]
- Ochieng, A.; Onyango, M.S.; Kiriamiti, K.H. CFD Simulation and Experimental Measurement of Nickel Solids Concentration Distribution in a Stirred Tank. J. South. Afr. Inst. Min. Metall. 2010, 110, 213–218. [Google Scholar]
- Liu, L.; Barigou, M. Experimentally Validated Computational Fluid Dynamics Simulations of Multicomponent Hydrodynamics and Phase Distribution in Agitated High Solid Fraction Binary Suspensions. Ind. Eng. Chem. Res. 2014, 53, 895–908. [Google Scholar] [CrossRef]
- Pukkella, A.K.; Vysyaraju, R.; Tammishetti, V.; Rai, B.; Subramanian, S. Improved Mixing of Solid Suspensions in Stirred Tanks with Interface Baffles: CFD Simulation and Experimental Validation. Chem. Eng. J. 2019, 358, 621–633. [Google Scholar] [CrossRef]
- Tamburini, A.; Cipollina, A.; Micale, G.; Brucato, A.; Ciofalo, M. CFD Simulations of Dense Solid–Liquid Suspensions in Baffled Stirred Tanks: Prediction of Suspension Curves. Chem. Eng. J. 2011, 178, 324–341. [Google Scholar] [CrossRef]
- Kasat, G.R.; Khopkar, A.R.; Ranade, V.V.; Pandit, A.B. CFD Simulation of Liquid−Phase Mixing in Solid–Liquid Stirred Reactor. Chem. Eng. Sci. 2008, 63, 3877–3885. [Google Scholar] [CrossRef]
- Altway, A.; Setyawan, H.; Margono; Winardi, S. Effect of Particle Size on Simulation of Three−Dimensional Solid Dispersion in Stirred Tank. Chem. Eng. Res. Des. 2001, 79, 1011–1016. [Google Scholar] [CrossRef]
- Shao, T.; Hu, Y.; Wang, W.; Jin, Y.; Cheng, Y. Simulation of Solid Suspension in a Stirred Tank Using CFD−DEM Coupled Approach. Chin. J. Chem. Eng. 2013, 21, 1069–1081. [Google Scholar] [CrossRef]
- Liu, L.; Barigou, M. Numerical Modelling of Velocity Field and Phase Distribution in Dense Monodisperse Solid–Liquid Suspensions Under Different Regimes of Agitation: CFD and PEPT Experiments. Chem. Eng. Sci. 2013, 101, 837–850. [Google Scholar] [CrossRef]
- Takahashi, K.; Fujita, H.; Yokota, T. Effect of Size of Spherical Particle on Complete Suspension Speed in Agitated Vessels of Different Scale. J. Chem. Eng. Jpn. 1993, 26, 98–100. [Google Scholar] [CrossRef]
Case | Volume of Tank/m3 | Diameter of Tank/mm | Straight Section Length/mm | Layers of Impeller | Diameter of Blade /mm | Rotating Speed /rpm | Solids Loading /vol% |
---|---|---|---|---|---|---|---|
1 | 1 | 1100 | 1225 | 4 | 870 | 100 | 35 |
2 | 6 | 1800 | 1945 | 4 | 1508 | 100 | 35 |
3 | 6 | 1800 | 1945 | 1 | 1000 | 100 | 35 |
Material | Density/kg m−3 | Viscosity/Pa s | Diameter/mm |
---|---|---|---|
Air | 1.225 | 1.789 × 10−5 | / |
Water | 998.2 | 1.003 × 10−3 | / |
Particle | 1300 | / | 1.2 |
Case | Minimum Cell Size/mm | Maximum Cell Size/mm | Cells Number |
---|---|---|---|
1 m3 multi-impeller | 1 | 10 | 1,039,436 |
6 m3 multi-impeller | 2 | 15 | 1,034,965 |
6 m3 single-impeller | 2 | 15 | 1,178,469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Zhao, Y.; Zhao, X.; Chen, C.; Tu, W.; Chi, Y.; Wang, J. Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation. Processes 2025, 13, 1876. https://doi.org/10.3390/pr13061876
Jiang S, Zhao Y, Zhao X, Chen C, Tu W, Chi Y, Wang J. Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation. Processes. 2025; 13(6):1876. https://doi.org/10.3390/pr13061876
Chicago/Turabian StyleJiang, Shengkun, Yuanyuan Zhao, Xin Zhao, Chunlin Chen, Wenwen Tu, Yu Chi, and Junhao Wang. 2025. "Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation" Processes 13, no. 6: 1876. https://doi.org/10.3390/pr13061876
APA StyleJiang, S., Zhao, Y., Zhao, X., Chen, C., Tu, W., Chi, Y., & Wang, J. (2025). Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation. Processes, 13(6), 1876. https://doi.org/10.3390/pr13061876