Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = bitter gourd (Momordica charantia L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3556 KiB  
Article
Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages
by Boyin Qiu, Dazhong Li, Qianrong Zhang, Hui Lin, Yongping Li, Qingfang Wen and Haisheng Zhu
Plants 2025, 14(14), 2248; https://doi.org/10.3390/plants14142248 - 21 Jul 2025
Viewed by 383
Abstract
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, [...] Read more.
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, metabolomic and transcriptomic analyses, and differential gene expression patterns, along with a correlation analysis, were conducted in different stages of fruit growth and development. The results revealed that the growth rate of fruit’s fresh weight, length, diameter, and flesh thickness during the first seven days was slow, and that it then rapidly increased after the seventh day, and finally slowed once more after 17 days, indicating that the overall process followed a “slow–fast–slow” pattern. Transcriptomic and metabolomic analyses identified several differentially expressed genes and metabolites, and joint analyses revealed that each of the glycolysis/gluconeogenesis, fructose and mannose metabolism and flavonoid biosynthesis pathways individually play significant roles in the dynamic regulation of fruit growth and development during the early, middle, and late stages. Among these, 53 differentially expressed genes (DEGs) and 12 differentially expressed metabolites (DEMs) were found in these pathways. A total of 12 randomly selected DEGs were analyzed using quantitative PCR, and the results showed that gene expression levels were generally consistent with transcriptomic sequencing results, exhibiting dynamic changes with varying expression levels. Correlation analysis revealed that 11 DEMs were positively correlated with four traits except for arbutin, while eight DEGs were related to all traits, including six significantly positive and two significantly negative correlations. These findings enhance our understanding of the regulatory network governing yield and quality and provide substantial evidence to support improvements in breeding programs. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 1935 KiB  
Article
Evaluation of Luffa Rootstocks to Improve Resistance in Bitter Gourd (Momordica charantia L.) Against Fusarium Wilt
by Ahmed Namisy, Shu-Yun Chen, Benjapon Sritongkam, Jintana Unartngam, Chinnapan Thanarut and Wen-Hsin Chung
Plants 2025, 14(8), 1168; https://doi.org/10.3390/plants14081168 - 9 Apr 2025
Viewed by 835
Abstract
Fusarium wilt in bitter gourd caused by Fusarium oxysporum f. sp. momordicae (Fomo) is a severe plant disease that affects the world’s bitter gourd (Momordica charantia L.) cultivation. This study evaluated nine luffa hybrids for their performance as rootstocks with bitter gourd [...] Read more.
Fusarium wilt in bitter gourd caused by Fusarium oxysporum f. sp. momordicae (Fomo) is a severe plant disease that affects the world’s bitter gourd (Momordica charantia L.) cultivation. This study evaluated nine luffa hybrids for their performance as rootstocks with bitter gourd to control Fusarium oxysporum f. sp. luffae (Folu) isolate Fomh16 and Fomo isolate Fomo33. In the first evaluation, five hybrids (LF1, LF2, LF3, LF15, and LF16) exhibited resistance to the Fomh16 isolate and showed no symptoms. One hybrid, LF10, was resistant with a mean disease rating (MDR) of 0.9 at 28 days post-inoculation (dpi). Seven luff hybrids that displayed resistant and moderate resistance in the first evaluation were used as rootstocks with susceptible bitter gourd cultivars. Five rootstocks exhibited high resistance to Fomh16 and Fomo33 isolates, with their MDR ranging from 0.0 to 0.7. In addition, the findings revealed that both isolates could colonize the vascular bundle of all resistant luffa rootstocks at 28 dpi. However, the Fomo33 isolate could extend and colonize the vascular bundle of bitter gourd scion when grafted only with rootstock LF5 and LF11. The quantitative PCR results indicated that there were significant differences in the amount of the Fomo33 DNA between the bitter gourd grafted onto LF15 and LF16 rootstocks and the self-grafted plants; however, the pathogen cannot be detected in the bitter gourd scions grafted with resistant rootstocks. These findings provide valuable resistant sources that can be used as rootstocks to manage Fusarium wilt disease in bitter gourd. Full article
Show Figures

Figure 1

16 pages, 3474 KiB  
Article
Quantitative Trait Locus Mapping Combined with RNA Sequencing Identified Candidate Genes for Resistance to Powdery Mildew in Bitter Gourd (Momordica charantia L.)
by Rukui Huang, Jiazuo Liang, Xixi Ju, Yuhui Huang, Xiongjuan Huang, Xiaofeng Chen, Xinglian Liu and Chengcheng Feng
Int. J. Mol. Sci. 2024, 25(20), 11080; https://doi.org/10.3390/ijms252011080 - 15 Oct 2024
Viewed by 1301
Abstract
Improving the powdery mildew resistance of bitter gourd is highly important for achieving high yield and high quality. To better understand the genetic basis of powdery mildew resistance in bitter gourd, this study analyzed 300 lines of recombinant inbred lines (RILs) formed by [...] Read more.
Improving the powdery mildew resistance of bitter gourd is highly important for achieving high yield and high quality. To better understand the genetic basis of powdery mildew resistance in bitter gourd, this study analyzed 300 lines of recombinant inbred lines (RILs) formed by hybridizing the powdery mildew-resistant material MC18 and the powdery mildew-susceptible material MC402. A high-density genetic map of 1222.04 cM was constructed via incorporating 1,996,505 SNPs generated by resequencing data from 180 lines, and quantitative trait locus (QTL) positioning was performed using phenotypic data at different inoculation stages. A total of seven QTLs related to powdery mildew resistance were identified on four chromosomes, among which qPm-3-1 was detected multiple times and at multiple stages after inoculation. By selecting 18 KASP markers that were evenly distributed throughout the region, 250 lines and parents were genotyped, and the interval was narrowed to 207.22 kb, which explained 13.91% of the phenotypic variation. Through RNA-seq analysis of the parents, 11,868 differentially expressed genes (DEGs) were screened. By combining genetic analysis, gene coexpression, and sequence comparison analysis of extreme materials, two candidate genes controlling powdery mildew resistance in bitter gourd were identified (evm.TU.chr3.2934 (C3H) and evm.TU.chr3.2946 (F-box-LRR)). These results represent a step forward in understanding the genetic regulatory network of powdery mildew resistance in bitter gourd and lay a molecular foundation for the genetic improvement in powdery mildew resistance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 6037 KiB  
Article
Influence of Foliar Treatment with Suspensions Rich in Trichoderma Chlamydospores on Momordica charantia Physiology, Yield, and Quality
by Ioana-Alexandra Bala, Tatiana Eugenia Șesan, Anca Oancea, Oana Craciunescu, Marius Ghiurea, Iuliana Răut, Bogdan Trică, Cristian-Andi Nicolae, Diana Constantinescu-Aruxandei and Florin Oancea
Horticulturae 2024, 10(4), 371; https://doi.org/10.3390/horticulturae10040371 - 7 Apr 2024
Cited by 4 | Viewed by 1867
Abstract
Several strategies promote phyllosphere colonization by soil-born Trichoderma plant-beneficial strains. One of these strategies is foliar spraying with suspensions containing large amounts of chlamydospores—spores with thick cell wall structures that make them highly resistant to harsh environmental conditions. Trichoderma biomass was produced by [...] Read more.
Several strategies promote phyllosphere colonization by soil-born Trichoderma plant-beneficial strains. One of these strategies is foliar spraying with suspensions containing large amounts of chlamydospores—spores with thick cell wall structures that make them highly resistant to harsh environmental conditions. Trichoderma biomass was produced by cultivation on a cornmeal medium and compared with the biomass produced on potato dextrose broth by microscopic and thermogravimetric analyses. The analyses revealed increased chlamydospore content and thermostability in the fungal biomass produced on the corn meal medium. The Trichoderma suspension rich in chlamydospores was sprayed on bitter gourd (Momordica charantia) leaves at two inoculant concentrations, 106 and 108 ufc/mL. The effect of these treatments on the plant physiological parameters, leaf photosynthetic pigments, polyphenol and flavonoid contents, antioxidant activities of the leaves and fruits, and yield was compared to the control (plants sprayed with water) and to the experimental treatment involving spraying with 108 ufc/mL of propagules produced in potato dextrose broth. The effect of chlamydospore-rich suspensions on plant physiological parameters was more pronounced and long-lasting compared with the other treatments. The treatment with chlamydospore-rich suspension enhanced the accumulation of polyphenols and flavonoids in the leaves (by 17% and 50%, respectively) and fruits (by 18% and 31%, respectively) and increased the antioxidant activity. The Trichoderma treatment increased the yield by +25.33–53.07%. The application of the foliar treatment with Trichoderma suspensions did not modify the cytocompatibility of the extracts from the fruits determined on the L929 cells. Full article
(This article belongs to the Special Issue The Role of Biostimulants in Horticultural Crops)
Show Figures

Figure 1

17 pages, 2999 KiB  
Article
Enhancing Growth, Yield, and Antioxidant Activity of Bitter Gourd (Momordica charantia L.) through Amino Acid Foliar Spray Application
by Lamiaa El-Khayat, Mohssen Elbagory, Mohamed Elsadek, Nevin Ahmed, Ibrahim Mohamed, Alaa El-Dein Omara and Nesrein Salim
Horticulturae 2024, 10(1), 41; https://doi.org/10.3390/horticulturae10010041 - 31 Dec 2023
Cited by 2 | Viewed by 5262
Abstract
Bitter gourd has picked up noteworthy consideration for its pharmacological benefits. However, the impact of amino acids (AAs) dosage on growth, yield, and antioxidants is uncertain. In this study, we investigated the effects of foliar spraying bitter gourd with 100, 200, and 300 [...] Read more.
Bitter gourd has picked up noteworthy consideration for its pharmacological benefits. However, the impact of amino acids (AAs) dosage on growth, yield, and antioxidants is uncertain. In this study, we investigated the effects of foliar spraying bitter gourd with 100, 200, and 300 mg/L dosages of tryptophan (Trp), glutamine (Gln), and phenylalanine (Phe). The results revealed that Trp, at a dosage of 300 mg/L, produced the most substantial increase in plant length, followed by 300 mg/L Phe. Additionally, the highest values of the fresh dry weight of the plants, fresh weight of the first fruit, fruit number per plant, fresh weight of the fruits per plant, and total fruit output per hectare were seen at 300 mg/L of Trp, followed by 300 mg/L of Gln. Phe at 300 mg/L yielded the highest levels of total phenolics and total flavonoids, coupled with strong scavenging activity against 2,2-diphenyl-1-picrylhydrazyl. These outcomes show the potential of Trp and Gln foliar sprays to enhance bitter gourd growth, yield, and certain antioxidant compounds. These findings carry substantial implications for the enhancement of bitter gourd cultivation and quality. By revealing AA’s potential for improving bitter gourd, our research contributes to bolstering the agricultural sustainability of this remarkable crop. Full article
(This article belongs to the Special Issue Application of Plant Biostimulants in Horticultural Crops)
Show Figures

Figure 1

21 pages, 5287 KiB  
Article
Genetic Diversity and Population Structure Analyses in Bitter Gourd (Momordica charantia L.) Based on Agro-Morphological and Microsatellite Markers
by K. N. Mallikarjuna, Bhoopal Singh Tomar, Manisha Mangal, Naveen Singh, Deepak Singh, Sachin Kumar, Avinash Tomer, Balraj Singh and Gograj Singh Jat
Plants 2023, 12(19), 3512; https://doi.org/10.3390/plants12193512 - 9 Oct 2023
Cited by 3 | Viewed by 3571
Abstract
Bitter gourd (Momordica charantia L.) is an important vine crop of the Cucurbitaceae family and is well known for its high nutritional and medicinal values. However, the genetic variation remains largely unknown. Herein, 96 diverse bitter gourd genotypes were undertaken for diversity [...] Read more.
Bitter gourd (Momordica charantia L.) is an important vine crop of the Cucurbitaceae family and is well known for its high nutritional and medicinal values. However, the genetic variation remains largely unknown. Herein, 96 diverse bitter gourd genotypes were undertaken for diversity analysis using 10 quantitative traits, and 82 simple sequence repeat (SSR) markers. Out of 82 SSRs, 33 were polymorphic and the mean polymorphism information content (PIC) value was 0.38. Marker, JY-003 revealed a maximum (0.81) PIC value and, the number of alleles per locus ranged from 2 to 7 (average 3.46). The value of gene diversity showed the presence of a significant level of polymorphism among these genotypes. The unweighted pair group method (UPGMA) cluster analysis grouped the genotypes into two major clusters of which Cluster I comprised mostly small and medium-fruited genotypes of both M. charantia var. charantia and M. charantia var. muricata, whereas Cluster II included mostly long and extra-long fruited genotypes. Furthermore, these genotypes were divided into six distinct groups based on population structure analysis. The diversity analysis based on 10 quantitative traits revealed that earliness and high-yielding ability were exhibited by the predominantly gynoecious line DBGS-21-06 followed by DBGS-48-00. The principal component analysis (PCA) revealed that the first two components exhibited more than 50% of the total genetic variation. The present study deciphered a higher magnitude of agro-morphological and genetic diversity in 96 bitter gourd genotypes. Therefore, trait-specific genotypes identified in this study could be utilized in breeding programmes directed towards the development of improved cultivars and hybrids of bitter gourd. Full article
Show Figures

Figure 1

21 pages, 3585 KiB  
Article
Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices
by Tugce Ozsan Kilic, Ismail Boyar, Cuneyt Dincer, Can Ertekin and Ahmet Naci Onus
Agriculture 2023, 13(10), 1887; https://doi.org/10.3390/agriculture13101887 - 27 Sep 2023
Cited by 2 | Viewed by 1900
Abstract
A significant vegetable in the Cucurbitaceae family, the bitter gourd (Momordica charantia L.) is widely recognized for its beneficial health properties, including anti-diabetic, anti-carcinogenic, anti-inflammatory, anti-ulcer, antiviral activities. With a total of three Brix values (50, 60, and 70) and three different [...] Read more.
A significant vegetable in the Cucurbitaceae family, the bitter gourd (Momordica charantia L.) is widely recognized for its beneficial health properties, including anti-diabetic, anti-carcinogenic, anti-inflammatory, anti-ulcer, antiviral activities. With a total of three Brix values (50, 60, and 70) and three different dipping times (10, 20, and 30 h), the goal of the current study was to identify the proper sugar and grape molasses solutions (pekmez) and dipping times for osmotic pre-treatments of bitter gourd samples to make it sweet and widely consumed. In the present study, mathematical modeling of drying processes, moisture content and water activity, total color changes, total phenolic content-antioxidant activity, and carotenoid contents were assessed. As a result of 13 different mathematical modeling tests, “Diffusion Approach”, “Logarithmic” and “Midilli et al.” models were the best models, giving the highest R2 and lowest X2-RMSE values. There were samples that were dipped at 50 °Brix grape molasses, which decreased below the 10% wet basis (w.b.) limit in the shortest time with 180 min, in a 10 h dipping time. The samples were dipped in 60 °Brix sugar, which fell below the same limit in the shortest time with 135 and 165 min, respectively, at 20 and 30 h dipping times. The highest total phenolic and carotenoid contents were found in 30 h dipping time in 60 °Brix grape molasses with 8296.87 mg/kg and 10 h dipping time in 50 °Brix sugar solutions with 89.22 mg/kg, respectively. While the phenolic content was higher in all samples dipped in grape molasses, the carotenoid content was higher in all samples dipped in sugar, which was one of the most important results of the study. Full article
Show Figures

Graphical abstract

19 pages, 2422 KiB  
Article
Integrated Secondary Metabolomic and Antioxidant Ability Analysis Reveals the Accumulation Patterns of Metabolites in Momordica charantia L. of Different Cultivars
by Yongxue Zhang, Panling Lu, Haijun Jin, Jiawei Cui, Chen Miao, Lizhong He, Jizhu Yu, Xiaotao Ding and Hongmei Zhang
Int. J. Mol. Sci. 2023, 24(19), 14495; https://doi.org/10.3390/ijms241914495 - 24 Sep 2023
Cited by 5 | Viewed by 2584
Abstract
Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in [...] Read more.
Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance. Full article
Show Figures

Figure 1

21 pages, 2059 KiB  
Article
The Effects of UV-C Irradiation and Low Temperature Treatment on Microbial Growth and Oxidative Damage in Fresh-Cut Bitter Gourd (Momordica charantia L.)
by John Louie Baligad, Pung-Ling Huang and Yi-Yin Do
Horticulturae 2023, 9(10), 1068; https://doi.org/10.3390/horticulturae9101068 - 23 Sep 2023
Cited by 2 | Viewed by 3158
Abstract
Fresh-cut fruits and vegetables are convenient and retain maximum nutrients. However, even minimal processing accelerates product deterioration and reduces food safety due to microbial infection. In this study, the effects of UV-C irradiation, low temperature treatment, and their combination on the microbial risk [...] Read more.
Fresh-cut fruits and vegetables are convenient and retain maximum nutrients. However, even minimal processing accelerates product deterioration and reduces food safety due to microbial infection. In this study, the effects of UV-C irradiation, low temperature treatment, and their combination on the microbial risk of fresh-cut bitter gourd were evaluated. Firstly, next-generation sequencing technology was utilized to identify microorganisms on the surface of fresh-cut bitter gourd after 12 h of exposure to room temperature, and a total of 34 bacterial species were identified. Subsequently, fresh-cut bitter gourd treated with UV-C or/and 4 °C and then kept at room temperature for 6 h was assessed for its viable bacterial count. The results showed that both 0.5 and 1.5 kJ·m−2 UV-C irradiation significantly inhibited microbial growth compared to 4 °C and the no treatment control. Meanwhile, no significant differences were observed between UV-C and the combined treatments. Lower doses of UV-C irradiation reduced hydrogen peroxide and malondialdehyde content, increased the proline level, and improved the activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, and critical enzymes involved in the phenylpropanoid pathway, such as phenylalanine ammonia-lyase and polyphenol oxidase. This suggests that UV-C irradiation alone can effectively reduce bacterial contamination in fresh-cut bitter gourd to an acceptable level. Full article
(This article belongs to the Special Issue Postharvest Biology and Molecular Research of Horticulture Crops)
Show Figures

Graphical abstract

16 pages, 2566 KiB  
Article
Improvement of Hot Air Dried Bitter Gourd (Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design
by Tugce Ozsan Kilic, Ismail Boyar, Keziban Kubra Gungor, Mehmet Torun, Nuriye Altınay Perendeci, Can Ertekin and Ahmet Naci Onus
Agriculture 2023, 13(9), 1849; https://doi.org/10.3390/agriculture13091849 - 21 Sep 2023
Cited by 7 | Viewed by 4379
Abstract
Bitter gourd (Momordica charantia L.) is a plant species belonging to the Cucurbitaceae family, growing in tropical regions and containing health-promoting beneficial compounds. In the current study, bitter gourds prepared for drying were sliced in three different thicknesses (6, 8 and 10 [...] Read more.
Bitter gourd (Momordica charantia L.) is a plant species belonging to the Cucurbitaceae family, growing in tropical regions and containing health-promoting beneficial compounds. In the current study, bitter gourds prepared for drying were sliced in three different thicknesses (6, 8 and 10 mm) and dried in a hot-air dryer at three different temperatures (60, 70 and 80 °C) to preserve their medicinal efficacy. In the experiments, the samples were subjected to blanching at 93.5 °C and 2% salt water for 0, 2.5 and 5 min, and drying processes were conducted. After the drying process, drying time, total color change (∆E), total phenolic content (TPC), total antioxidant activity (TAA), and vitamin C properties were examined. The highest levels of TPC and TAA were found at lower drying air temperatures (DATs), and while these values increased with longer blanching times at lower DATs, they decreased with longer blanching times at higher DATs. According to the different drying temperatures used, it was discovered that the total color change peaked at 70 °C and that vitamin C levels declined as DAT rose. The optimal drying conditions for the 3D response surface methodology include 60 °C DAT, a slice thickness of 10 mm, and without blanching to maximize TPC, TAA and vitamin C content and minimize drying time and ∆E. Full article
Show Figures

Figure 1

13 pages, 7114 KiB  
Article
Analysis of the Complete Mitochondrial Genome of the Bitter Gourd (Momordica charantia)
by Yu Niu, Ting Zhang, Muxi Chen, Guoju Chen, Zhaohua Liu, Renbo Yu, Xu Han, Kunhao Chen, Aizheng Huang, Changming Chen and Yan Yang
Plants 2023, 12(8), 1686; https://doi.org/10.3390/plants12081686 - 17 Apr 2023
Cited by 13 | Viewed by 2546
Abstract
Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd’s mitochondrial and [...] Read more.
Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd’s mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

16 pages, 2890 KiB  
Article
Seed Transmission of Begomoviruses: A Potential Threat for Bitter Gourd Cultivation
by Ravisankar Gomathi Devi, Chinnaraj Jothika, Arjunan Sankari, Sethuraman Lakshmi, Varagur Ganesan Malathi and Perumal Renukadevi
Plants 2023, 12(6), 1396; https://doi.org/10.3390/plants12061396 - 21 Mar 2023
Cited by 11 | Viewed by 4205
Abstract
Bitter gourd (Momordica charantia L.), one of the valued vegetable crops in India, is severely affected by yellow mosaic disease caused by two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV). The symptoms are yellowing, [...] Read more.
Bitter gourd (Momordica charantia L.), one of the valued vegetable crops in India, is severely affected by yellow mosaic disease caused by two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV). The symptoms are yellowing, distortion of leaf, puckering, and malformed fruits. Increased incidence of the disease and appearance of symptoms even in young emerging seedling stage were suggestive of seed transmission of the viruses, which was examined in detail. To study the seed transmission, two sources—seeds of elite hybrids H1, H2, H3, H4, and Co1 procured from a seed market; and seeds from infected plants in the farmer’s field were tested. Detection of the virus by DAS-ELISA using polyclonal antibody indicated embryo infection up to 63%, 26%, 20%, and 10% in hybrids H1, H2, H3, and H4, respectively, for market-procured seeds. In PCR analysis with primers specific for ToLCNDV and BgYMV, infection by ToLCNDV was as high as 76% and mixed infection was 24%. In contrast, in seeds derived from field-infected plants, the percentage detection was less. Grow-out tests with market-procured seeds revealed no transmission for BgYMV compared with 5% transmission for ToLCNDV. Whether seed-borne inocula could serve as an inoculum for new infection in a field and further progress of the disease was investigated in a microplot study. The study clearly revealed variation in seed transmission between different sources, lots, cultivars, and viruses. The virus present in symptomatic and asymptomatic plants was easily transmitted by whitefly. In another microplot experiment, the potential of seed-borne virus as inoculum was proved. There was 43.3% initial seed transmission in the microplot, increasing to 70% after release of 60 whiteflies. Full article
(This article belongs to the Topic Plant Virus)
Show Figures

Figure 1

11 pages, 1526 KiB  
Article
Epidermal Patterning Factor 2-like (McEPFL2): A Putative Candidate for the Continuous Ridge (cr) Fruit Skin Locus in Bitter Gourd (Momordica charantia L.)
by Jing Yang, Yiqun Weng, Huihong Li, Qiusheng Kong, Weiluan Wang, Chenghuan Yan and Liping Wang
Genes 2022, 13(7), 1148; https://doi.org/10.3390/genes13071148 - 25 Jun 2022
Cited by 4 | Viewed by 2723
Abstract
Bitter gourd (Momordica charantia L.) is an economically important vegetable and medicinal crop in many Asian countries. Limited work has been conducted in understanding the genetic basis of horticulturally important traits in bitter gourd. Bitter gourd is consumed primarily for its young, [...] Read more.
Bitter gourd (Momordica charantia L.) is an economically important vegetable and medicinal crop in many Asian countries. Limited work has been conducted in understanding the genetic basis of horticulturally important traits in bitter gourd. Bitter gourd is consumed primarily for its young, immature fruit, and fruit appearance plays an important role in market acceptability. One such trait is the ridges on the fruit skin. In the present study, molecular mapping of a locus underlying fruit ridge continuity was conducted. Genetic analysis in segregating populations, derived from the crosses between two inbred lines Y1 with continuous ridges (CR) and Z-1-4 with discontinuous ridges (DCR), suggested that CR was controlled by a single recessive gene (cr). High-throughput genome sequencing of CR and DCR bulks combined with high-resolution genetic mapping in an F2 population delimited cr into a 108 kb region with 16 predicted genes. Sequence variation analysis and expression profiling supported the epidermal patterning factor 2-like (McEPFL2) gene as the best candidate of the cr locus. A 1 bp deletion in the first exon of McEPFL2 in Y1 which would result in a truncated McEPFL2 protein may be the causal polymorphism for the phenotypic difference between Y1 and Z-1-4. The association of this 1 bp deletion with CR was further supported by gDNA sequencing of McEPFL2 among 31 bitter gourd accessions. This work provides a foundation for understanding the genetic and molecular control of fruit epidermal pattering and development, which also facilitates marker-assisted selection in bitter melon breeding. Full article
Show Figures

Figure 1

11 pages, 3913 KiB  
Article
Hot Air-Assisted Radio Frequency (HARF) Drying on Wild Bitter Gourd Extract
by Chang-Yi Huang, Yu-Huang Cheng and Su-Der Chen
Foods 2022, 11(8), 1173; https://doi.org/10.3390/foods11081173 - 18 Apr 2022
Cited by 6 | Viewed by 2943
Abstract
Wild bitter gourd (Momordica charantia L. var. abbreviata S.) is a kind of Chinese herbal medicine and is also a vegetable and fruit that people eat daily. Wild bitter gourd has many bioactive components, such as saponin, polysaccharide, and protein, and the [...] Read more.
Wild bitter gourd (Momordica charantia L. var. abbreviata S.) is a kind of Chinese herbal medicine and is also a vegetable and fruit that people eat daily. Wild bitter gourd has many bioactive components, such as saponin, polysaccharide, and protein, and the extract is used to adjust blood sugar in patients with diabetes. The objective of this study was to investigate simultaneous hot air-assisted radio frequency (HARF) drying and pasteurization for bitter gourd extract, and then to evaluate its effects on blood sugar of type II diabetic mice. The results showed that the solid–liquid ratio of the wild bitter gourd powder to water was 1:10 and it was extracted using focused ultrasonic extraction (FUE) for only 10 min with 70 °C water. Then, 1 kg of concentrated bitter gourd extract was mixed with soybean fiber powder at a ratio of 2:1.1. It was dried by HARF, and the temperature of the sample could reach above 80 °C in only 12 min to simultaneously reduce moisture content (wet basis) from 58% to 15% and achieve a pasteurization effect to significantly reduce the total bacterial and mold counts. Type II diabetic mice induced by nicotinamide and streptozocin (STZ) for two weeks and then were fed four-week feeds containing 5% RF-dried wild gourd extract did not raise fasting blood glucose. Therefore, the dried powder of wild bitter gourd extracts by HARF drying had a hypoglycemic effect. Full article
(This article belongs to the Special Issue Applications of Radio Frequency Heating in Food Processing)
Show Figures

Figure 1

14 pages, 1744 KiB  
Article
Isolation and Characterization of Endophytes Bacterial Strains of Momordica charantia L. and Their Possible Approach in Stress Management
by Ritu Singh, Kapil Deo Pandey, Monika Singh, Sandeep Kumar Singh, Abeer Hashem, Al-Bandari Fahad Al-Arjani, Elsayed Fathi Abd_Allah, Prashant Kumar Singh and Ajay Kumar
Microorganisms 2022, 10(2), 290; https://doi.org/10.3390/microorganisms10020290 - 26 Jan 2022
Cited by 49 | Viewed by 6563
Abstract
In the present study, eight endophytic bacterial strains, namely Bacillus licheniformis R1, Bacillus sp. R2, Agrobacterium tumefaciens R6, uncultured bacterium R11, Bacillus subtilis RS3, Bacillus subtilis RS6, uncultured bacterium RS8 and Lysinibacillus fusiformis RS9, were isolated from the root of Momordica charantia L. [...] Read more.
In the present study, eight endophytic bacterial strains, namely Bacillus licheniformis R1, Bacillus sp. R2, Agrobacterium tumefaciens R6, uncultured bacterium R11, Bacillus subtilis RS3, Bacillus subtilis RS6, uncultured bacterium RS8 and Lysinibacillus fusiformis RS9, were isolated from the root of Momordica charantia L. All the strains, except R6 exhibited positive for IAA production, siderophore production, and phosphate solubilization during plant growth-promoting traits analysis. Strains invariably utilized glucose and sucrose as a carbon source during substrate utilization, while yeast extract, ammonium sulphate, ammonium chloride, glycine, glutamine, and isoleucine as nitrogen sources. In addition, Spectinomycin was found as the most effective during antibiotic sensitivity TEST, followed by Chloramphenicol, Erythromycin, Rifampicin and Kanamycin, while Polymixin B was found least effective, while strains R1, R6, and RS8 were sensitive to all the antibiotics. Strains R1 and RS6 were able to withstand tolerance up to 10% of NaCl. The strains showing resistance against broad-spectrum antibiotics, especially chloramphenicol, can be used in hospital waste management. In addition, strains with a tolerance of 10 % of NaCl can improve plant growth in the saline affected area. Full article
(This article belongs to the Special Issue Microbial Endophytes: Functional Biology and Applications)
Show Figures

Figure 1

Back to TopTop