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Abstract: Bitter gourd (Momordica charantia L.) is an important vine crop of the Cucurbitaceae family
and is well known for its high nutritional and medicinal values. However, the genetic variation
remains largely unknown. Herein, 96 diverse bitter gourd genotypes were undertaken for diversity
analysis using 10 quantitative traits, and 82 simple sequence repeat (SSR) markers. Out of 82 SSRs,
33 were polymorphic and the mean polymorphism information content (PIC) value was 0.38. Marker,
JY-003 revealed a maximum (0.81) PIC value and, the number of alleles per locus ranged from 2 to 7
(average 3.46). The value of gene diversity showed the presence of a significant level of polymorphism
among these genotypes. The unweighted pair group method (UPGMA) cluster analysis grouped
the genotypes into two major clusters of which Cluster I comprised mostly small and medium-
fruited genotypes of both M. charantia var. charantia and M. charantia var. muricata, whereas Cluster
II included mostly long and extra-long fruited genotypes. Furthermore, these genotypes were
divided into six distinct groups based on population structure analysis. The diversity analysis based
on 10 quantitative traits revealed that earliness and high-yielding ability were exhibited by the
predominantly gynoecious line DBGS-21-06 followed by DBGS-48-00. The principal component
analysis (PCA) revealed that the first two components exhibited more than 50% of the total genetic
variation. The present study deciphered a higher magnitude of agro-morphological and genetic
diversity in 96 bitter gourd genotypes. Therefore, trait-specific genotypes identified in this study
could be utilized in breeding programmes directed towards the development of improved cultivars
and hybrids of bitter gourd.

Keywords: bitter gourd; diversity; population structure; microsatellite markers; gene flow

1. Introduction

The bitter gourd (Momordica charantia L. 2n = 2x = 22) belongs to the family Cucur-
bitaceae. India is considered as the primary centre of origin of bitter gourd [1]. It was
domesticated in eastern Asia, most likely in eastern India or southern China [2,3]. Tender
fruits are used as vegetables and several processed products [4]. Predominantly, bitter
gourd is monoecious (presence of both pistillate and staminate flowers on the same plant)
however, gynoecious (presence of only pistillate flowers) sex form has also been reported
from Japan, India, and China [5–8]. The botanical group, M. charantia var. charantia pro-
duces large fruits, and M. charantia var. muricata, produces small and round fruits those are
used in curries, stuffed, fried, or pickled [1,9]. Fruits are an excellent source of nutrients
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such as carbohydrates, proteins, minerals, and vitamins, particularly ascorbic acid and iron,
and are the most nutritious vegetable among cucurbits [9]. Apart from these nutrients,
bitter gourd contains phenols, terpenes, saponins, and glucosinolates which contribute
to its bitter taste [10]. The fruits are believed to be beneficial for the treatment of blood
disorders, rheumatism, diabetes, and asthma [9].

Despite high nutritional and medicinal importance, the productivity of bitter gourd
crops is low across the globe. Globally, the area under bitter gourd cultivation is increasing
every year due to its high demand for consumption in various forms, such as cooked veg-
etables, juice, pickled, and processed products. The growth of traditional open-pollinated
monoecious varieties and susceptibility of these commercial bitter gourd cultivars to virus
complexes such as bitter gourd mosaic virus (BMV), tomato leaf curl virus (ToLCV), cu-
curbit aphid borne yellows virus (CABYV), and other devastating diseases such as downy
mildew and powdery mildew and fruit fly as well are the major factors responsible for low
productivity [11,12]. Thus, the evaluation, characterization, and utilization of a diverse set
of bitter gourd germplasm is essential to enhance the genetic potential of cultivars.

The Momordica genus contains 59 species of which Africa has 47 different species,
whereas Asia and Australia have only 12 different species [13]. Monoecious species are
M. charantia, M. charantia var. muricata, and M. balsamina, whereas dioecious species are
M. dioica, M. sahyadrica, M. cochhinchinensis, and M. subangulata [3,14–16]. Apart from M.
charantia var. charantia, the wild species M. charantia var. muricata is widely cultivated in
some parts of Asia [3]. Several morphological characters in these two species provide a
relatively wide range of phenotypic variation, such as sex expression [7], growth habit, fruit
shape, size, color, texture, and maturation [17–19]. In a nutshell, the presence of diverse
species and traits within the genus provides more opportunities to the bitter gourd breeders
for genetic improvement.

Genetic diversity has been an important factor and an essential pre-requisite for hy-
bridization programmes to obtain progenies with desirable traits such as disease resistance,
earliness, and quality traits [19,20]. Several researchers have evaluated the diversity in
bitter gourd only based on phenotypic traits which has its limitations because most of
the morphological characters are highly influenced by environmental factors and plant
developmental stages [7,21–23]. The DNA-based markers are unaffected by environmen-
tal factors and shows high polymorphism [24]. The earlier conducted experiments in
bitter gourd were based on the dominant marker system i.e., Randomly Amplified Poly-
morphic DNA (RAPD) [7,25], Inter Simples Sequence Repeats (ISSR) [22,25], Amplified
Fragment Length Polymorphism (AFLP) [26] and involved only a few genotypes which
do not provide sufficient information in the present context. SSR markers are ideal genetic
markers that have gained significant importance in plant genetics and breeding due to
desirable characteristics such as multi-allelic nature, co-dominant inheritance, abundance,
high reproducibility, and high polymorphic compared to other markers [27–29], However,
information on genetic diversity based on microsatellite markers is very limited in bitter
gourd [19,30,31]. India is the primary centre of origin of bitter gourd and shows high
genetic variation for fruit and growth types [19,23]. These important resources have hardly
been exploited at the molecular level so far [31]. Therefore, the present study was carried
out on genetic diversity and population structure analysis based on agro-morphological
and SSR markers among 96 bitter gourd genotypes including wild species, M. charantia var.
muricata collected from different regions of India and exotic collections.

2. Results
2.1. Per Se Performance of the Genotypes Based on Quantitative Traits

Per se performance of ten quantitative traits among 96 bitter gourd genotypes are
presented in Table 1 and visually observed diversity for plant, flower, and fruit charac-
ters are shown in Figure 1. Significant variation was observed for the traits studied in
96 bitter gourd genotypes. In the present study, white flowers in genotype DBGS-54-18
were recorded which is a unique character in bitter gourd (Figure 1, 9). DBGS-54-18 was
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developed using single plant selection from a segregating material. Fruits of DBGS-54-18
are medium, 12–14 cm long, 5.0–5.5 cm diameter with discontinuous narrow ridges.
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(9.27). The earliest flowering i.e., days to first female flower opening (DFFFO) was ob-
served in predominantly gynoecious line DBGS-48-00 (38.62 days) which was at par with 
another predominantly gynoeciousline DBGS-21-06 (39.58) and Pusa Rasdar (40.20). DBG-
7 (60.30 days) was the latest flowering genotype among the 96 genotypes evaluated. The 
lowest mean value for days to first male flower opening (DFMFO) was observed in Pusa 
Rasdar (36.14 days) followed by IC-444212 (36.47) and G-48 (37.11). Genotype G-35 (53.28 
days) took the maximum number of DFMFO followed by G-22 (52.69 days). Significant 
variation was recorded for days to first fruit harvest (DFFH) which was found to vary 
from 45.68 days in genotype DBGS-48-00 to 73.40 days in DBG-7. Maximum fruit length 
(FL) at the edible maturity stage was recorded in Sel-2 (DBGS-2) (21.45 cm), whereas min-
imum FL was recorded in the genotype of M. charantia var. muricata, DBG-100 (4.65 cm). 
Maximum fruit diameter (FD) was observed in Pusa Rasdar (6.47 cm) whereas fruits of 
IC469518 recorded a minimum FD of 2.76 cm. The genotype IC-505638 had a maximum 
average fruit weight (AFW) of 88.63 g, and CBM-12 had a minimum AFW of 23.14 g. A 
maximum number of fruits per plant (NFPP) were recorded in IC68275 (44.40), followed 

Figure 1. Visual observations of representative of 96 bitter gourd genotypes on the basis of various
morphological traits; (A) Leaf shape: 1. Multified 2. Cordate 3. Reniform; (B) Ovary length: 4. Long,
5. Medium, 6. Small; (C) Flower colour: 7. Dark yellow, 8. Light yellow, 9. White (DBGS-54-
18); (D) Seed colour: 10. Dark brown, 11. Black, 18. Whitish-brown; (E) Fruit length: 12. Long,
13. Medium, 14. Small; (F) Fruit colour: 15. Dark green, 16. Light green, 17. White.

The mean value for earliness traits i.e., the node number of the first female flower
(NNFFF) was found to be lowest in Pusa Rasdar (9.14) followed by genotype DBGS-21-
06 (9.27). The earliest flowering i.e., days to first female flower opening (DFFFO) was
observed in predominantly gynoecious line DBGS-48-00 (38.62 days) which was at par
with another predominantly gynoeciousline DBGS-21-06 (39.58) and Pusa Rasdar (40.20).
DBG-7 (60.30 days) was the latest flowering genotype among the 96 genotypes evaluated.
The lowest mean value for days to first male flower opening (DFMFO) was observed
in Pusa Rasdar (36.14 days) followed by IC-444212 (36.47) and G-48 (37.11). Genotype
G-35 (53.28 days) took the maximum number of DFMFO followed by G-22 (52.69 days).
Significant variation was recorded for days to first fruit harvest (DFFH) which was found
to vary from 45.68 days in genotype DBGS-48-00 to 73.40 days in DBG-7. Maximum fruit
length (FL) at the edible maturity stage was recorded in Sel-2 (DBGS-2) (21.45 cm), whereas
minimum FL was recorded in the genotype of M. charantia var. muricata, DBG-100 (4.65 cm).
Maximum fruit diameter (FD) was observed in Pusa Rasdar (6.47 cm) whereas fruits of
IC469518 recorded a minimum FD of 2.76 cm. The genotype IC-505638 had a maximum
average fruit weight (AFW) of 88.63 g, and CBM-12 had a minimum AFW of 23.14 g. A
maximum number of fruits per plant (NFPP) were recorded in IC68275 (44.40), followed
by CBM-12 (42.36), IC858650 (42.15), and DBG-100-0 (41.36). Maximum yield per plant
(YPP) was observed in predominantly gynoecious line DBGS-21-06 (2354.51 g) followed
by DBGS-48-00 (2210.03 g). Genotype Sel-2 (DBGS-2) (193.20 cm) recorded maximum
vine length (VL). The range for NNFFF, DFFFO, DFMFO, DFFH, FL, FD, AFW, NFPP,
YPP and VL was 9.14–27.48, 38.62–60.30, 36.14–53.28, 45.68–73.40, 4.65–21.45, 2.76–6.23,
23.14–88.63, 12.36–44.40, 546.87–2354.51 and 118.63–171.28, respectively, which showed
that these genotypes are highly diverse for the traits studied.
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Table 1. Mean performance of 96 diverse bitter gourd genotypes for 10 quantitative characters.

S. No. GENOTYPES NNFFF DFFFO DFMFO DFFH FL (cm) FD (cm) AFW (g) NFPP YPP (g) VL (cm)

1 DBG-33 17.30 47.22 40.66 57.55 10.22 3.98 40.25 25.14 978.25 135.22

2 Sel-31 18.57 51.33 43.78 63.44 12.47 4.10 57.22 18.32 1002.30 152.33

3 IC-44419 11.06 42.36 37.52 53.64 13.22 4.31 58.63 30.14 1623.47 149.54

4 Sel-2 (DBGS-2) 13.14 50.36 42.60 62.47 21.45 3.81 57.84 25.47 1521.30 193.20

5 HABG-22 18.64 54.63 47.30 63.87 11.47 3.87 47.32 24.57 987.52 137.22

6 NDBT-7 18.20 54.64 48.32 62.38 12.33 4.33 52.38 20.45 1123.35 139.47

7 DBG-4 20.34 58.97 49.65 70.41 12.36 4.28 52.47 23.47 934.25 142.87

8 Sel-30-1 18.55 56.35 48.63 67.51 9.35 3.64 35.40 22.55 675.55 135.66

9 Pusa Rasdar 9.14 40.20 36.14 52.65 9.45 6.47 67.84 18.69 1244.60 132.44

10 IC-469512 15.75 41.27 38.55 51.63 9.54 4.35 48.75 25.40 1489.63 152.47

11 IC-444212 15.02 40.32 36.47 49.33 13.77 3.84 56.36 26.84 1542.36 161.47

12 IC-44423 15.78 42.65 37.66 53.25 12.87 3.33 52.47 23.37 1365.00 154.33

13 G-53 21.06 56.36 45.29 66.80 14.98 3.22 61.33 17.65 988.32 142.55

14 Phule Green Gold 20.35 58.90 45.24 67.88 15.22 3.45 72.33 22.00 1467.32 138.65

15 IC-44419 12.63 46.32 41.20 56.32 10.97 4.14 51.38 24.33 1235.47 153.39

16 CO-1 14.55 50.32 43.22 61.05 14.35 3.67 61.20 18.54 1142.33 146.67

17 IC-85643 19.87 50.33 46.35 58.44 12.10 3.47 51.37 22.63 1128.61 146.58

18 DBG-100-1 15.80 48.65 42.35 59.63 12.35 4.12 44.62 23.34 1023.25 134.74

19 IC-85649 10.14 43.60 39.54 51.28 11.30 3.24 42.50 39.50 1544.38 154.36

20 IC-505638 11.68 44.28 39.65 52.38 18.32 4.21 88.63 25.32 2136.54 163.24

21 NEH-3 13.71 50.24 47.65 63.35 9.54 3.87 42.67 18.61 865.32 127.63

22 IC-68295 17.48 45.36 40.30 47.19 16.87 3.47 45.56 17.45 1425.56 136.54

23 IC-85647 14.77 47.63 40.87 55.80 9.65 3.79 46.30 28.40 1241.28 159.87

24 Sel-1 17.15 54.30 47.50 62.17 10.42 4.25 51.33 28.63 1497.63 142.56

25 Pusa Vishesh 15.45 49.36 42.58 61.50 14.30 5.20 75.30 16.30 1210.20 140.20
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Table 1. Cont.

S. No. GENOTYPES NNFFF DFFFO DFMFO DFFH FL (cm) FD (cm) AFW (g) NFPP YPP (g) VL (cm)

26 G-16-2 9.76 42.14 39.54 50.28 12.30 4.78 55.32 29.65 1698.66 156.34

27 DBGS-54-18 18.48 54.30 46.28 63.87 13.34 5.01 57.40 19.54 1147.26 132.84

28 DBG-100 13.56 45.32 40.22 52.66 4.65 3.02 28.54 24.69 932.15 118.63

29 DBG-46 23.29 47.60 41.20 61.84 9.45 4.21 36.44 24.50 863.00 146.52

30 Sel-30 18.60 53.47 45.60 66.84 8.53 4.31 42.10 17.50 702.30 152.30

31 DBG-100-0 9.94 41.36 38.22 48.36 6.33 2.89 25.30 41.36 1032.55 120.24

32 Sel-54-1 13.38 46.32 41.20 54.36 7.11 6.23 62.38 12.36 863.25 124.20

33 Sel-38 15.48 48.33 42.58 59.22 13.11 3.57 43.58 37.21 1387.22 138.42

34 G-16-1 24.88 52.80 46.32 60.28 15.20 4.23 66.35 18.63 1121.33 151.20

35 IC-85634 18.32 49.65 44.25 61.38 11.28 4.14 53.39 22.24 1078.68 158.61

36 Sel-32 9.88 44.65 38.95 52.62 16.84 4.21 78.69 27.68 1987.33 162.35

37 G-16 22.55 53.28 46.38 61.28 16.23 5.21 77.32 18.62 1236.30 138.44

38 IC-68275 16.82 47.36 39.47 58.63 8.65 3.21 35.68 44.40 1145.32 128.63

39 G-55 20.87 52.36 46.28 60.38 13.28 4.16 68.47 19.57 1340.20 130.25

40 G-41-1 18.33 54.32 49.18 65.38 13.98 3.21 54.32 16.34 947.33 124.87

41 G-12 13.44 43.25 39.25 50.14 15.48 4.87 74.25 28.36 2070.22 152.39

42 G-60 18.01 56.32 52.17 64.38 6.21 3.41 24.30 21.30 648.32 117.25

43 NDBT-9 20.36 54.87 48.65 67.32 14.21 6.11 70.78 16.24 1140.28 146.27

44 Sel-41 19.30 49.52 40.66 61.88 13.44 4.38 38.96 21.11 732.41 129.45

45 Sel-29 21.38 48.60 40.18 61.70 9.32 4.30 43.25 19.55 754.20 135.21

46 DBG-5 24.74 56.28 42.18 69.35 10.30 4.65 51.38 17.63 836.21 139.50

47 G-42 18.36 52.50 47.60 64.80 12.00 4.20 52.72 18.23 1250.56 143.25

48 G-70 18.87 54.68 49.60 65.33 14.20 3.79 56.34 19.43 1143.26 157.39
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Table 1. Cont.

S. No. GENOTYPES NNFFF DFFFO DFMFO DFFH FL (cm) FD (cm) AFW (g) NFPP YPP (g) VL (cm)

49 NEH-2 17.77 51.43 42.85 64.35 12.10 4.46 49.57 20.64 978.20 141.35

50 IC-44418 17.32 49.68 41.25 61.32 12.54 4.27 48.93 19.67 956.38 137.54

51 Sel-2-1 23.61 55.28 46.18 67.35 19.57 3.65 53.87 20.39 1241.28 171.28

52 G-7 18.81 49.63 44.35 63.22 12.54 4.21 52.11 21.11 1147.11 148.33

53 Sel-58 14.69 47.23 41.36 58.36 13.87 4.87 51.63 19.36 976.38 161.20

54 NL-39 16.61 51.30 46.88 63.22 13.98 4.02 56.54 23.54 1322.64 132.01

55 DBG-38 19.25 54.28 42.17 67.38 10.28 3.71 40.17 31.47 1347.50 142.10

56 G-12-1 14.44 56.32 51.34 67.98 14.25 3.62 62.32 20.31 1262.20 153.20

57 DBG-7 16.65 60.30 47.28 73.40 9.10 4.94 46.38 16.74 796.28 137.58

58 NEH-4 19.35 51.47 43.17 64.35 13.62 3.52 50.30 21.30 934.20 141.28

59 Sel-57 12.09 49.35 41.87 62.38 15.84 4.92 61.38 29.10 1698.30 162.47

60 IC-68294 12.04 44.36 39.33 52.30 11.36 3.14 62.31 26.30 1465.35 145.22

61 Sel-13 13.65 51.32 46.28 60.29 13.28 4.10 56.32 18.63 1036.38 157.68

62 G-23 14.50 44.50 40.32 51.32 9.54 3.89 42.30 34.25 1325.68 134.27

63 G-73 21.47 48.63 42.33 59.67 12.66 4.33 53.66 20.11 978.33 158.39

64 IC-39725 24.65 54.28 45.80 61.44 11.20 4.14 54.22 20.00 1024.30 135.28

65 G-22 24.46 57.65 52.69 69.54 11.14 5.14 61.32 16.35 932.30 143.67

66 IC-68314 19.82 56.28 44.20 65.30 14.00 4.12 66.41 17.32 1230.22 152.68

67 IC-85643 21.17 53.28 48.35 64.51 9.14 3.63 50.32 14.36 734.25 163.35

68 IC-315350 21.02 54.31 45.70 65.74 13.65 3.89 65.74 17.60 1134.50 142.66

69 G-35 25.57 57.68 53.28 67.35 14.20 3.64 57.39 18.33 1368.65 154.34

70 Sel-31-1 25.17 52.31 44.65 60.17 12.47 4.35 57.32 14.78 1104.36 142.14

71 IC-44413 14.55 44.36 38.74 53.68 14.57 4.10 70.21 23.30 1560.32 152.36

72 G-47 24.26 53.24 48.32 65.32 13.35 4.27 65.30 16.52 988.74 131.28
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Table 1. Cont.

S. No. GENOTYPES NNFFF DFFFO DFMFO DFFH FL (cm) FD (cm) AFW (g) NFPP YPP (g) VL (cm)

73 CBM-12 12.75 43.65 40.14 49.36 6.25 3.10 23.14 42.36 1020.36 132.04

74 Kalyanpur
Baramasi 17.70 45.87 39.64 57.84 13.74 3.12 62.38 24.67 1428.97 146.37

75 Pusa Do Mausami 15.43 46.58 37.14 57.68 16.10 5.02 75.68 19.30 1438.30 165.24

76 G-71 14.61 44.60 40.28 53.28 14.10 4.13 71.25 24.36 1467.58 153.27

77 DBGS-21-06 9.27 39.58 38.21 46.32 16.42 4.68 85.33 27.32 2354.51 152.39

78 DBGS-48-00 9.89 38.62 37.11 45.68 15.32 4.96 81.36 25.63 2210.03 146.37

79 Punjab-14 18.73 52.36 43.36 60.58 10.35 4.21 47.49 18.64 1032.44 126.58

80 DBG-52 17.38 51.28 42.88 60.74 8.11 3.17 53.24 16.24 834.11 142.45

81 Sel-30-2 21.12 55.87 46.17 63.41 9.32 3.58 40.21 21.47 874.20 139.14

82 IC-541249 17.37 52.32 50.66 64.22 8.30 2.88 28.33 23.05 546.87 128.63

83 IC-469518 23.95 56.38 49.27 68.32 7.98 2.76 31.20 23.22 678.58 125.56

84 G-5 18.48 50.30 44.60 57.63 16.35 5.84 69.36 16.32 1236.65 132.65

85 MC-84-1 18.83 45.39 38.47 53.98 12.32 3.41 52.36 18.47 1020.47 147.36

86 IC-47035 25.63 49.33 45.62 58.64 12.14 3.68 63.34 24.67 1432.68 151.29

87 S-53 21.68 45.18 37.65 56.17 12.04 4.88 50.27 19.67 932.74 129.54

88 Andhra Collection 17.87 53.20 42.36 63.47 15.13 3.82 56.74 26.32 1463.28 163.87

89 DBG-33-1 20.19 47.88 39.87 56.74 11.30 4.32 42.30 20.74 896.44 138.69

90 Nakhra Local 17.63 53.47 44.63 62.87 13.47 5.86 47.38 13.87 603.98 142.38

91 G-11 19.47 52.62 48.20 64.38 16.24 5.26 64.35 21.28 1235.62 138.56

92 IC-113875 23.27 50.32 46.32 63.35 11.20 3.68 57.32 16.39 921.05 154.32

93 G-43 16.56 47.65 43.29 59.81 12.34 3.04 53.27 21.36 1141.36 137.61

94 IC-505629 27.48 52.38 44.17 61.38 12.57 4.11 62.87 23.35 1314.25 135.29

95 IC-858650 26.84 49.65 42.87 57.33 6.47 3.52 25.63 42.15 963.35 126.41

96 G-39 16.36 51.67 43.66 64.68 8.33 3.10 46.94 19.32 985.66 143.68
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Table 1. Cont.

S. No. GENOTYPES NNFFF DFFFO DFMFO DFFH FL (cm) FD (cm) AFW (g) NFPP YPP (g) VL (cm)

Mean 17.77 50.00 43.54 60.13 12.27 4.09 54.03 22.66 1177.39 143.95

Minimum 9.14 38.62 36.14 45.68 4.65 2.76 23.14 12.36 546.87 118.63

Maximum 27.48 60.30 53.28 73.40 21.45 6.23 88.63 44.40 2354.51 171.28

SE (m) 0.663 1.806 0.880 1.049 0.747 0.299 1.275 1.145 18.719 2.083

SE(d) 0.938 2.553 1.244 1.483 1.056 0.423 1.804 1.619 26.473 2.949

CD0.05 1.84 5.00 2.44 2.91 2.07 0.83 3.54 3.17 51.89 5.78

CD0.01 2.42 6.58 3.20 3.82 2.72 1.09 4.65 4.17 68.19 7.59

CV% 6.46 6.26 3.50 3.02 10.55 12.68 4.09 8.75 2.75 2.51

NNFFF: Node number of first female flower; DFFFO: Days to first female flower opening; DFMFO: Days to first male flower opening; DFFH: Days to first fruit harvest; FL: Fruit length
(cm); FD: Fruit diameter (cm); AFW: Average fruit weight (g); NFPP: Number of fruits per plant (No.); YPP: Yield per plant(g); VL: vine length(cm).
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2.2. Cluster Analysis Based on Quantitative Traits

The entire linkage cluster analysis dendrogram constructed for ten quantitative traits
revealed diversity among the 96 bitter gourd genotypes and grouped all the genotypes
into seven clusters (Figure 2). Out of 96 bitter gourd genotypes, 18 genotypes were placed
in Cluster I which was further subdivided into sub-cluster-IA and IB. Sub-cluster IA had
11 genotypes whereas sub-cluster IB had 7 genotypes. Cluster II consisted of 14 genotypes
and was further subdivided into IIA, IIB, and IIC sub-clusters. Sub-cluster IIA had 8 geno-
types whereas sub-cluster IIB and IIC both had 3 genotypes in each sub-cluster. Cluster
III consisted of 26 genotypes which was the largest group among all seven major clusters.
Cluster III was further subdivided into IIIA, IIIB, and IIIC sub-clusters. Sub-cluster IIIA
had 14 genotypes, IIIB comprised 4 genotypes whereas IIIC had 8 genotypes. Cluster IV
contained 8 genotypes and was further subdivided into two sub-clusters; the first sub-
cluster (IVA) comprised of 2 genotypes whereas the second sub-cluster (IVB) contained
6 genotypes. There were 17 genotypes in cluster V which were further divided into two
sub-clusters first of which VA contained 14 genotypes and the second sub-cluster (VB) had
3 genotypes. Cluster VI had only 5 genotypes whereas Cluster VII comprised of 8 bitter
gourd genotypes.
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2.3. Correlation and Principal Component Analysis (PCA) for Phenotypic Traits

Pearson Correlation Matrix (Genotypic Correlations Matrix) among different quantita-
tive traits in the bitter gourd is presented in Supplementary Table S3. Analysis of correlation
revealed that YPP had a highly significant positive association with AFW (0.653), FL (0.591),
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VL (0.446), and NFPP (0.363) but had a highly significant negative correlation with DFFH
(−0.569), and DFFFO (−0.560). The correlation between YPP and FD was positive (0.137),
but it was not significant. Similarly, FL demonstrated a positive and statistically signifi-
cant relationship with VL (0.611) and AFW (0.441). FD had a highly significant negative
association with the NFPP (−0.408) and a positive correlation with AFW (0.520). The AFW
displayed a highly significant positive relationship with the FL (0.754), FD (0.520), VL
(0.441), and a negative association with the NFPP (−348). DFFFO had a highly significant
negative correlation with the NFPP (−0.490), but it had a significant positive correlation
with DFMFO (0.930), DFFH (0.801), and NNFFF (0.706). DFFH had a negative correlation
(−0.475) with the NFPP, but a significant positive correlation with DFMFO (0.816) and
NNFFF (0.614). DFFFO (−0.490), DFFH (−0.475), DFMFO (−0.413), FD (−408), and AFW
(−0.348) all had a highly significant negative relationship. The correlation of the NFPP
with VL was non-significant. The use of a simple correlation coefficient to assess character
association may not provide an accurate picture of the relationship between yield and
its components.

Path coefficient analysis was used to divide the genotypic correlations into direct and
indirect effects to determine the relative relevance of ten characteristics. Estimates of the
direct and indirect effects of different quantitative traits on YPP in the bitter gourd are
presented in Supplementary Table S4. AFW had a maximum positive correlation (0.653)
with YPP followed by FL (0.591) whereas DFFH (0.569) showed a highly significant but
negative correlation. The direct effect of AFW (0.660) was also positive on YPP. Furthermore,
it also contributed indirectly to a positive direction through FL (0.141), DFFFO (0.026), and
VL (0.025). The negative indirect effect of AFW was also observed through NFPP (−0.167)
and FD (−0.040). NFPP also had a positive direct effect (0.480) on YPP. It also contributed
indirectly to a positive direction through DFFFO (0.104), FD (0.032), and DFFH (0.063)
towards YPP. A negative indirect effect was recorded for AFW (−0.230) and FL (−0.015) on
fruit YPP.

The PCA analysis based on the Correlation matrix showed that the Eigenvalue of the
first three PCs was >1 which explained 78.76% of the total variation (Supplementary Table S5).
Further, the first two components (PC1 and PC2), based on summary plot analysis revealed
>50% of the total variation i.e., 40.53% and 26.56%, respectively (Figure 3A). Additionally,
variables such as DFFFO, DFFH, DFMFO, and NNFFF had a positive correlation with PC1
with a total variation of 40.53% and Eigenvalue 4.05 and these characters were found associated
very closely with each other. DFFFO revealed the highest positive and NNFFF the lowest
positive correlation with PC1. However, negatively correlated variables such as FL, FD, AFW,
NF/P, YPP, and VL clustered together in the opposite direction. Two variables viz., AFW and
FL, which had a positive correlation with PC2 but had a negative association with PC1 were
plotted distantly from other variables (Figure 3C and Supplementary Table S5). VL and NFPP
were positively correlated, whereas FD and AFW were negatively correlated with PC3. The
major traits contributing to genetic diversity in PC4 were YPP and NFPP. Concurrently, among
PC1, PC2, and PC3, analysis of the correlation of individual traits with principal components
revealed that AFW had the highest positive correlation with PC2.

2.4. Diversity Statistics and Cluster Analysis Based on Microsatellite Markers

Out of 82 SSRs screened in 96 bitter gourd genotypes, only 33 (41%) were found
polymorphic and highly informative (Figure 4A and Table 2). The range of the alleles for
polymorphic SSR markers were 50 to 290 bp. Marker, JY-003 showed the maximum varia-
tion for allele size (50–140 bp). A total of 112 alleles were detected based on 33 polymorphic
SSR markers. The mean value was 3.46 alleles per locus (Table 2). The maximum number of
alleles per locus was 7.0 alleles for JY-003, while the lowest (i.e., two alleles) for CMBR-57,
CMBR-30, CMBR-31, JY-005, JY-008, McSSR-18, McSSR-11, McSSR-22, McSSR-47, McSSR-54,
and S-33. The range of major allele frequency varied from 0.22 (JY003) to 0.94 (McSSR-54)
with a mean of 0.68 at each locus. The frequencies of alleles were low, particularly for the
loci with the higher number of alleles. Maximum heterozygosity (0.71) was recorded in
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marker, CMBR-57 and lowest (0.00) in CMBR-30, CMBR-31, JY-005, and McSSR-54 with
an average value of 0.12 (Table 2). The number of genotypes obtained per locus ranged
from 2 for CMBR-30, CMBR-31, JY-005, JY-008, McSSR-18, McSSR-11, McSSR-22, McSSR-47,
and McSSR-54 to 17 for JY-003. Moreover, the polymorphic information content (PIC) value
was used to measure the level of genetic diversity, which varied from 0.06 (S-33) to 0.81
(JY-003) with a mean value of 0.38. The value of gene diversity varied from 0.12 (McSSR-54)
to 0.83 (JY-003), with an average value of 0.43 showing the presence of a high level of poly-
morphism among the 96 genotypes of bitter gourd (Table 2). In this study eight markers
namely AVRDC_BG-66, AVRDC_BG-1, JY-003, JY-004, S-9, S-12, S-24,’ and S-32 showed PIC
values >0.5 and were found highly informative in establishing genetic relationship among
bitter gourd genotypes. Further, Hierarchical clustering grouped 96 bitter gourd genotypes
using 33 SSR markers into two major clusters and further sub-clusters (Figure 4B).
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Cluster I consisted of 52 genotypes and was divided into seven sub-clusters (1–7)
having the majority of the M. charantia var. charantia genotypes. Out of seven sub-clusters,
the first sub-cluster consisted of 9 genotypes including one M. charantia var. muricata (CBM-
12) genotype and one released variety (Pusa Do Mausami). Sub-cluster II consisted of five
advance and selection lines. Sub-cluster III consisted of 10 genotypes (G-11, IC-113875, G-43,
DBG-52, Sel-30-2, G-21, Sel-13, NDBT-9, G-55, and IC-44419) having mostly medium-long
fruited genotypes and showed superiority for earliness traits. Sub-cluster VI comprised
eight genotypes with dark green fruit colour except NEH-4 having creamy white coloured
fruit. Sub-cluster V also consisted of 10 genotypes which had mostly green coloured fruits
with prominent spines on fruit surfaces. Sub-cluster VI consisted of only five genotypes
having medium-long and light-green coloured fruits. Sub-cluster VII consisted of only
four advanced breeding lines with a higher female: male (2:1) sex ratio. Major cluster II
comprised 44 genotypes including M. charantia var. charantia, M. charantia var. muricata,
and released varieties. This cluster was further divided into six sub-clusters (1–6). In
sub-cluster I, out of nine genotypes, four genotypes (Sel-2 (DBGS-2), IC-44419, Pusa Rasdar,
and IC-505638) were clustered together and showed superiority for all earliness and yield
traits due to high female: male flower (2:1) ratio. In addition, Sel-2 (DBGS-2) present in
this subcluster is also resistant to virus complex including Tomato Leaf Curl New Delhi
Virus (ToLCNDV), and have extra-long (21.45 cm), dark green fruits with continuous sharp
ridges and large long vine (Figure 1, 12). The other five genotypes produced light green to
creamy white-coloured fruits except for DBG-38 which possesses dark green coloured fruits.
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Sub-cluster II consisted of seven genotypes mostly of indigenous collections. Sub-cluster III
consisted of eight dark green coloured fruited genotypes having prominent tubercles except
for DBG-5 which is having creamy white coloured fruits. Sub-cluster IV consisted of five
genotypes of green and light-green colored fruits. Sub-cluster V comprised nine genotypes
including one released variety Pusa Vishesh with light-green to glossy green coloured fruits
and discontinuous ridges. In sub-cluster VI, a total of six genotypes represented extra small
and medium size fruited genotypes.
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2.5. Population Structure Analysis

STRUCTURE HARVESTER v.0.6.94 revealed six populations as ∆Kvalue reached
a peak at K = 6 (Figure 5). Population I included 18 genotypes of which most of the
genotypes have medium-long fruit sizes and are late harvesting types. Population II & III
comprised 16 genotypes each. Population II has mostly long-fruited genotypes but few
genotypes recorded medium to long fruits with prominent tubercles, green, light green, and
creamy colored fruits. Population III comprised mostly medium-long fruited genotypes
with earliness character. Population IV included 19 genotypes comprising small, small
to medium, and extra small-fruited types with prominent spines on the fruit surfaces.
Population V included only 10 genotypes and was the smallest group comprising long to
extra-long fruited genotypes. Population VI possessed 17 genotypes of mostly medium
size fruits with vigorous vine and spiny fruit surfaces. Overall proportions of membership
of the samples in each of the six populations were 0.19, 0.17, 0.17, 0.20, 0.10, and 0.18. The
population structure analysis and the results specify that all the samples have an almost
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equal membership in their specific cluster. This result suggests that there has been a lot of
gene flow in these genotypes.

Table 2. Genetic diversity, heterozygosity, polymorphic information content (PIC), major allele
frequency, and number of alleles from analysis of polymorphic SSR markers obtained through Power
Marker analysis.

Marker Major Allele Frequency Allele No. Gene Diversity Heterozygosity PIC

AVRDC_BG-83 0.79 5 0.35 0.14 0.33
AVRDC_BG-66 0.55 5 0.62 0.18 0.57
AVRDC_BG-74 0.78 4 0.37 0.12 0.34
AVRDC_BG-1 0.40 4 0.66 0.14 0.60
AVRDC_BG-2 0.87 4 0.24 0.04 0.23
AVRDC_BG-95 0.53 4 0.52 0.01 0.41

BGSSR-08 0.48 3 0.56 0.03 0.47
CMBR-57 0.64 2 0.46 0.71 0.36
CMBR-22 0.69 4 0.48 0.17 0.43
CMBR-30 0.92 2 0.15 0.00 0.14
CMBR-31 0.84 2 0.26 0.00 0.23

JY003 0.22 7 0.83 0.36 0.81
JY-004 0.48 4 0.66 0.05 0.61
JY-005 0.73 2 0.39 0.00 0.31
JY-008 0.83 2 0.28 0.01 0.24
JY-009 0.62 3 0.54 0.06 0.48
JY-011 0.68 3 0.46 0.06 0.39

McSSR-18 0.90 2 0.18 0.03 0.16
McSSR-11 0.87 2 0.23 0.07 0.20
McSSR-22 0.92 2 0.14 0.09 0.13
McSSR-47 0.71 2 0.41 0.49 0.33
McSSR-54 0.94 2 0.12 0.00 0.11

N-1 0.72 3 0.43 0.10 0.38
N-6 0.84 5 0.28 0.08 0.26
N-9 0.79 5 0.35 0.02 0.33
S-9 0.57 4 0.57 0.15 0.51
S-12 0.51 4 0.64 0.25 0.58
S-13 0.79 4 0.35 0.14 0.33
S-20 0.49 3 0.556 0.02 0.46
S-24 0.35 6 0.72 0.13 0.66
S-32 0.43 4 0.69 0.27 0.64
S-33 0.97 2 0.06 0.02 0.06
S-26 0.76 4 0.40 0.06 0.34

Mean 0.68 3.45 0.43 0.12 0.38

2.6. Analysis of Molecular Variance (AMOVA) and Principal Component Analysis (PCA)

AMOVA and permutation test based on 999 permutations, states that there was 13%
variation among the population whereas, individuals within the population showed 26%
of the total variation (Table 3). Further, PCA also showed the genetic relationships among
the bitter gourd genotypes studied. Percentages of variation of the top three PCs with their
eigenvalues are presented in Table 4. Cumulatively, 20.24% of the variation was reported by
the first three PCs with maximum variation in the first PC (9.30%) followed by the second
PC (5.72%). The grouping of 96 bitter gourd genotypes into two major clusters based on
UPGMA clustering was also supported by a PCA biplot (Figure 6). Group I (red circle)
comprised all the genotypes of M. charantia except one genotype i.e., CBM-12; Group II
(blue circle) comprised a mixture of M. charantia var. charantia, M. charantia var. muricata,
released varieties, and advance breeding lines.
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Figure 5. Population structure analysis using STRUCTURE v.2.3.4 and STRUCTURE HARVESTER
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Table 3. Summary of Analysis of molecular variance (AMOVA).

Source df SS MS Est. Var. Var.% Statistic Value Probability

Among Population 5 214.77 42.95 1.01 13 Fst 0.13 0.001
Among Individuals 90 990.85 11.01 4.52 60 Fis 0.70 0.001
Within Individuals 96 189.00 1.97 1.97 26 Fit 0.74 0.001
Total 191 1394.62 - 7.49 100 - - -

Table 4. Percentage of variation explained by principal components through analysis of PCA biplot
on the basis of molecular markers.

Axis 1 2 3

Variation % 9.30 5.72 5.22
Cumulative variation % 9.30 15.02 20.24
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3. Discussion

Genetic diversity in bitter gourd based on morphological characters has been reported
by several workers [21,25,30]. However, it has been observed that morphological characters
are highly influenced by environmental factors [32–34]. Therefore, genetic diversity analysis
based on SSR markers along with agro-morphological traits provides accurate information
to detect closer relationships among the bitter gourd genotypes. Phenotypic variations for
sex forms (gynoecious, predominantly gynoecious, and monoecious), and fruit characters
(FL, diameter, weight, color, ridginess, etc.) could establish distinctness among the bitter
gourd genotypes. Cluster analysis based on these traits revealed seven distinct clusters
among the bitter gourd genotypes wherein these genotypes were differentiated based
on flower characters, fruit size, shape, color, weight, length, diameter, sex forms, and
earliness characters. DBGS-54-18 was a unique germplasm due to the presence of white
flowers in the bitter gourd. This constitutes the first report of the occurrence of white
flowers in bitter gourd which may be useful as a morphological marker in future breeding
programmes. Variations for morphological characters among the clusters were also reported
by [19,21,23,31]. However, some genotypes of M. charantia var. muricata were clustered
together with cultivated M. charantia var. charantia which might be due to similarity in
fruit types. Similarly, two predominantly gynoecious lines, DBGS-48-00 and DBGS-21-06
were clustered together with some monoecious genotypes which might be due to the
similarity in earliness, sex ratio, and fruit traits of these two predominantly gynoecious
lines with other monoecious genotypes. The grouping of gynoecious lines within the same
cluster along with other monoecious genotypes was also reported by [19] and clear-cut
differentiation within the wild species M. charantia var. muricata and other wild species
were also reported by [16]. PCA biplot result showed that 78.76% of the total variation was
reported by the first three PCs and this variation was higher than [19]. DFFFO revealed the
highest positive correlation with PC1 whereas AFW had the highest positive correlation
with PC2. Furthermore, analysis of Pearson’s correlation coefficient revealed that fruit YPP
had a highly significant positive association with AFW, FL, VL, and NFPP, which was in
accordance with [35,36].

Morphological markers alone are not sufficient to represent genetic diversity, but due
to co-dominant inheritance, highly polymorphic, and high reproducibility nature of SSR
markers, these were used in our study [27]. Out of 82 SSR markers, only 33 (41%) markers
showed polymorphism, which was similar to the results of [19] but much higher than the
value (24%) recorded by [30]. However, the average number of alleles per locus in our study
was 3.46 alleles, which was higher than 2.80 alleles per locus as reported by [31], 3.1 alleles
per locus for the Luoyang population and 2.6 alleles per locus for Guanzhou population as
reported by [30] and 3.30 alleles per locus as reported by [19]. On the basis of PIC value,
these 96 genotypes were divided into highly informative, reasonably informative, and
slightly informative with their PIC value, >0.5, <0.5, >0.25, and <0.25, respectively. The
present study showed that 15 SSRs (46%) were considered reasonably informative, and 6
(18%) were highly informative (Table 2). However, the PIC value ranged from 0.06 to 0.81
(mean 0.38); slightly higher than the PIC value (3.69) reported by [31] and 0.17 reported
by [37], and lower than the PIC value (4.29) reported by [19]. The presence of a slightly
high level of PIC in 96 bitter gourd genotypes of the present study might be due to high
cross-pollination behaviour and similar findings were reported in other cross-pollinated
crops such as cucumber [38,39].

The clustering analysis based on UPGMA grouped the 96 bitter gourd genotypes into
two major clusters (cluster I and II), of which Cluster I comprised mostly M. charantia var.
charantia. However, Cluster II comprised both M. charantia var. charantia and M. charantia
var. muricata along with advanced breeding lines and released varieties which might be
due to variation within the species concerning their adaptation and similarity for various
traits [19]. The present finding is in accordance with the [19] as these genotypes were highly
distinct from each other for growth, yield, and other quantitative traits and thus, designated
into separate clusters [26]. Although, the genotypes of M. charantia var. muricata diverged
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from the M. charantia var. charantia based on agro-morphological and molecular markers
clustering, due to a large number of sub-clusters (I-VII) on the basis of SSRs showed
that environmental factors influence the development of genotypic variation. Further,
the formation of major clusters and sub-clusters based on agro-morphological and SSR
markers together was also reported by [31,37]. [21] grouped 38 bitter gourd genotypes into
two major clusters using RAPD markers. [23,25] also grouped 38 bitter gourd genotypes
into two major clusters using RAPD, ISSR, and AFLP markers. [31] grouped 26 bitter
gourd genotypes into three major clusters using SSR markers. Recently, [19] grouped
51 bitter gourd genotypes into three clusters using SSR markers. No clear-cut correlation
was established between phenotypic traits and SSR marker analysis. The reason behind
this might be environmental effects on phenotypic traits and developmental stages of the
plant. Furthermore, the SSR markers used in our study were random SSR markers, not
EST-based markers.

Genetic diversity analysis, population structure patterns, genetic differentiation, and
the level of admixture that exist between the populations or among the species are important
for germplasm management and sustainable development [40]. In the present study,
population structure analysis revealed the existence of six population groups (mixture
of both M. charantia var. muricata and M. charantia var. charantia genotypes), exhibited
more gene flow (admixture) from M. charantia var. charantia to M. charantia var. muricata,
which enabled large scale cultivation of M. charantia var. muricata in several regions of India
particularly eastern part of the country [19]. From population structure, it is well proved
that M. charantia var. muricata was intermediate between cultivated and wild species, but it
had a close relationship with the cultivated M. charantia var. charantia genotypes. Moreover,
it might be one of the reasons that M. charantia var. muricata might be one of the parents
in the evolution of M. charantia var. charantia [16]. Further, the divergence value of allele
frequency >0.05 showed that the six groups of 96 genotypes were highly diverse which was
also reported by [19]. AMOVA showed a significant variation in 96 bitter gourd genotypes,
which was similar to the findings of [19].

PCA is used to find the best summary of the data using a limited number of PCs.
PCA biplot formed two groups similar to the UPGMA cluster using SSR markers where
bitter gourd genotypes were clearly distinguished from each other based on earliness and
fruit characters. Such type of grouping pattern contradicts the grouping executed in the
analysis of population structure which might be possible due to the implementation of the
different algorithms in the STRUCTURE programme. Therefore, the grouping of 96 bitter
gourd genotypes through UPGMA clustering, model-based analysis, and PCA was variable,
showing the genetic variation in 96 genotypes at the DNA level [41,42].

Bitter gourd exhibits a high degree of cross-pollination [3] which may lead to ad-
mixtures in the population. High gene flow in the population opens the way for the
development of new recombination events within the chromosomal level which favours
further evaluation and development of new genetic variation [43]. From the present study,
the genotypes such as DBGS-21-06, DBGS-48-00, Pusa Rasdar, and Sel-2 (DBGS-2) showed
superior performance for most of the earliness and yield traits. Hence, these genotypes
could be conserved in gene banks for their utilization in the development of early and
high-yielding cultivars in bitter gourd. The polymorphic SSR markers identified in the
present study will help in the genetic mapping and characterization of a large number of
bitter gourd genotypes in the future.

4. Materials and Methods
4.1. Plant Material and Experimental Design

In this study, 96 morphologically and geographically diverse M. charantia var. charantia
and M. charantia var. muricata genotypes were used including commercially released
varieties and genotypes of exotic origin (Supplementary Table S1). These genotypes were
maintained through continuous self-pollination at the research farm of the Division of
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Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi. The field
experiment was conducted in a Randomized Block Design (RBD) with three replications.

4.2. Field Experimental Conditions

Seeds were sown on both sides of the channel, with 3 m spacing between channels
and 60 cm between plants, with 90 cm wide irrigation channels. The soil of the experiment
was sandy loam inceptisol. The crop was sown on the third week of February 2022. To raise
a healthy crop, the recommended dose of fertilizers, cultural practices, and proper plant
protection measures were followed. The doses of fertilizers were 80 kg Nitrogen, 60 kg
Phosphorus, and 60 kg Potash per hectare. The full dose of Phosphorus and Potash and
half dose of Nitrogen were applied at the time of the last ploughing. The remaining half
dose of Nitrogen was applied into two split doses through top-dressing at 30 and 45 days
after sowing of the seeds. The plants on the border of the channels were excluded and
discarded and five competitive and random plants were taken for recording phenotypic
observations on 10 important quantitative traits. To record data on fruit traits, fruits were
harvested at the marketable stage.

4.3. Morphological Characterization and Cluster Analysis

Observations were recorded on 96 bitter gourd genotypes for different agro-morphological
traits at different developmental stages from flowering to fruit maturity. Ten quantitative traits
viz., NNFFF, DFFFO, DFMFO, DFFH, FL, FD, AFW, NFP, YP, and VL were undertaken for
observations (Table 1). A phylogenetic dendrogram was constructed based on the hierarchical
clustering of D2 values [44].

4.4. PCA for Phenotypic Traits

The genotypic and phenotypic correlations were determined using an analysis of
variance and covariance matrix where total variability was split into replications, genotypes,
and errors [45]. Statistical significance was also determined at p < 0.05 and p < 0.01. The
measured correlation coefficients were compared [46] and tabulated values at (n-2) degree
of freedom, where “n” denotes the number of genotypes to confirm their significance. A
PCA biplot was constructed for 10 quantitative traits studied in 96 genotypes using the
SAS package [47] to reduce the dimensionality of a data set and the estimation of the
contribution of each quantitative trait. PCA biplot revealed the schematic representation of
both individual genotypes and different variables in a two-dimensional chart. Additionally,
a summary plot was also constructed to represent the percentage of variation explained by
individual components [48].

4.5. DNA Extraction and PCR Amplification

Leaf samples were collected from 30 days old plants of each genotype for DNA
extraction using the modified CTAB method [49] with slight modifications. The quality
and quantity of extracted DNA samples were determined using 2% agarose gel. The
concentration of DNA was adjusted to 20–50 ng/µL and then stored at −20 ◦C for further
usage. The PCR reaction mixture consisted of 1 µL diluted DNA sample, 0.5 µL of each
forward and reverse primer, 3 µL nuclease-free water, and 5 µL master mix (one PCRTM of
Genedirex, Inc. Germany) in 10 µL reaction volume. For PCR amplification, Eppendorf
Mastercycler was used following the PCR steps of; initial denaturation at 95 ◦C for 5 min
followed by 35 cycles at three conditions (i) 95 ◦C for 30 s, (ii) at an annealing temperature
for a particular primer (Supplementary Table S2) for 45 s, (iii) 70 ◦C for 60 s and a final
extension at 72 ◦C for 10 min followed by 4 ◦C cooling at an infinite time. Amplified PCR
products were separated on 3% agarose gel electrophoresis in 1X TAE buffer (pH 8.0). The
gel was run at 120 mA voltage for 2.5 h and gel pictures were visualized and captured
under a gel documentation system (Alpha imager HP, ProteinsimpleTM, Santa Clara, CA,
USA) using 50 bp DNA ladder (GeNieTM) to compare the fragment sizes. A total of
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82 SSRs markers were screened, out of these, 33 polymorphic markers were used for genetic
diversity and population structure analysis [19,31] (Supplementary Table S2).

4.6. Genetic Diversity and Population Structure Analysis

The amplified polymorphic bands of each primer were used for the scoring and
analysis. The scored markers were represented by a binomial (0/1) matrix, which was the
basic data structure. PIC was calculated using the software Power Marker v.3.5 [50] using
the following formula as suggested by [51].

Genetic diversity parameters such as gene diversity, heterozygosity, number of alleles,
and major allele frequency were calculated using the tool Power Marker v3.5 and pairwise
genetic similarity between the genotypes using Jaccard’s similarity coefficient was developed
using NTSYSpc v.2.02 [52]. AMOVA and PCoA were analyzed using GenAlEx v6.5 [53].
Population structure was analyzed using the Bayesian model-based clustering approach im-
plemented in STRUCTURE v2.3.4 software [54]. The software programme burn-in period was
set at 10,000 lengths followed by 100,000 Markov Chain Monte Carlo (MCMC) repetitions and
a range of putative k value was kept from k = 1 to k = 10, each having 15 iterations/replications
for running each k independently. The optimum value of k for the entire population was
determined according to the simulation method of delta K (∆K) value [55] using the web-based
software programme STRUCTURE HARVESTER v.0.6.94 [56].

5. Conclusions

A considerable amount of variation was present among 96 bitter gourd genotypes as
evident from morphological and microsatellite markers-based diversity analyses. Geno-
types of the present study were quite distinct from each other as indicated by a broad range
of similarity coefficients. Grouping genotypes into two major clusters and further into
sub-clusters will be highly informative for the bitter gourd breeders for genetic enhance-
ment and to setup its core collections. Thus, diversity analyses based on morphological
and molecular markers have identified superior genotypes and highly polymorphic SSR
markers which will be useful for mapping or tagging the economically important traits.
The present study has also provided excellent information on the population structure
and genetic diversity of 96 bitter gourd genotypes which will be highly useful in the bitter
gourd improvement programme for the development of trait-specific cultivars for earliness,
yield, and other economic traits.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12193512/s1, Table S1: List of 96 bitter gourd (Momordica charantia
L.) genotypes, sources and salient features; Table S2: Forward and reverse sequence of 33 SSR markers
used in the study; Table S3: Pearson Correlation Matrix (Genotypic Correlations Matrix) among different
quantitative traits in 96 bitter gourd genotypes; Table S4: Estimates of direct and indirect effects of
different quantitative traits on fruit YPP in bitter gourd genotypes; Table S5: Corresponding Eigen
vectors for different principal components (PCs) based on analysis of phenotypic traits.
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