Enhancing Growth, Yield, and Antioxidant Activity of Bitter Gourd (Momordica charantia L.) through Amino Acid Foliar Spray Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Soil Analysis
2.3. Experimental Design
2.4. Data Verified
2.4.1. Vegetative Parameters
2.4.2. Fruit Indicators
2.4.3. Chemical Composition
Preparation of the Fruit Extract for the Determination of Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and Radical–Scavenging Activity by 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
Estimation of the Overall Phenolic and Flavonoid Content
DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical-Scavenging Activity
High-Performance Liquid Chromatography (HPLC) Analysis
2.5. Statistical Analysis
3. Results
3.1. Vegetative Parameters
3.2. Fruit-Growth Parameters
3.2.1. Fresh Weight of the First Fruit
3.2.2. Length of the First Fruit
3.2.3. Diameter of the First Fruit
3.2.4. Number of Fruits/Plants
3.2.5. Fresh Weights of the Fruits/Plant (g)
3.2.6. Total Fruit Yield
3.3. Chemical Composition
3.3.1. TPC, TFC, and Antioxidant Effects
3.3.2. Identification of Antioxidant Components by HPLC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behera, T.K.; Staub, J.; Behera, S.; Simon, P.W. Bitter gourd and human health. Med. Aromat. Plant Sci. Biotechnol. 2008, 1, 224–226. [Google Scholar]
- Joseph, B.; Jini, D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific J. Trop. Dis. 2013, 3, 93–102. [Google Scholar] [CrossRef]
- Bortolotti, M.; Mercatelli, D.; Polito, L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front. Pharmacol. 2019, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, D. Medicinal Plants of Madhya Pradesh and Chhattisgarh; Daya Publishing House: Delhi, India, 2008; ISBN 10: 8170355672. [Google Scholar]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Fan, X.; Shen, Q.; Smith, S.J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J. Exp. Bot. 2008, 59, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.P. Amino Acid Catabolism in Plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef]
- Pillitteri, L.J.; Bertling, I.; Khuong, T.; Chao, C.T.; Lovatt, C.J. Foliar-applied tryptophan increases total yield and fruit size of navel orange and clementine mandarin. Acta Hortic. 2010, 884, 729–736. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.; Singh, N.B. Foliar application of amino acids modulates growth and biochemical parameters in wheat under drought stress conditions. Plants Physiol. Mol. Biol. 2019, 25, 215–226. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Aldhanhani, A.R.H.; Kaur, N.; Ahmed, Z.F.R. Antioxidant phytochemicals and antibacterial activities of sidr (Ziziphus spp.) leaf extracts. Acta Hortic. 2022, 1353, 323–331. [Google Scholar] [CrossRef]
- Cuong, D.M.; Kwon, S.J.; Jeon, J.; Park, Y.J.; Park, J.S.; Park, S.U. Identification and characterization of phenylpropanoid biosynthetic genes and their accumulation in bitter melon (Momordica charantia). Molecules 2018, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Gayathry, K.S.; John, J.A. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 2022, 4, 10. [Google Scholar] [CrossRef]
- Shan, B.; Xie, J.H.; Zhu, J.H.; Peng, Y. Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food Bioprod. Process. 2012, 90, 579–587. [Google Scholar] [CrossRef]
- Tan, S.P.; Stathopoulos, C.; Parks, S.; Roach, P. An optimised aqueous extract of phenolic compounds from bitter melon with high antioxidant capacity. Antioxidants 2014, 3, 814–829. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Chen, Y.; Ma, C.; Qin, J.; Hong, T.; Nguyen, N.; Liu, D.; Gan, H.; Ding, S.; Luo, Z.-B. Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens. Tree Physiol. 2017, 38, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Serrani-Yarce, J.C.; Chen, F.; Baxter, D.; Venables, B.J.; Dixon, R.A. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat. Plants 2016, 2, 16050. [Google Scholar] [CrossRef] [PubMed]
- Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer 2016, 16, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites). In Biochemistry and Molecular Biology of Plants; Buchanan, B., Gruissem, W., Joneas, R., Eds.; American Society of Plant Biologists: Rockville, MD, USA, 2000; pp. 1250–1319. [Google Scholar]
- Pascual, M.; El-Azaz, J.; de la Torre, F.; Cañas, R.; Avila, C.; Cánovas, F. Biosynthesis and metabolic fate of phenylalanine in conifers. Front. Plant Sci. 2016, 7, 1030. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Pentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 151–154. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of The Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Dieckow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kögel-Knabner, I. Comparison of carbon and nitrogen determination methods for samples of a Paleudult subjected to no-till cropping systems. Sci. Agric. 2007, 64, 532–540. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Method of Soil Analysis. Chemical and Biological Properties; Page, A.L., Miller, R.H., Keeneys, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Zafar-ul-hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, M.S.; El-esawi, M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Reham, M.S.; Khattab, M.E.; Ahmed, S.S.; Kandil, M.A.M. Influence of foliar spray with phenylalanine and nickel on growth, yield quality and chemical composition of genoveser basil plant. Afr. J. Agric. Res. 2016, 11, 1398–1410. [Google Scholar] [CrossRef]
- Farhan, T.; Sachet, K.; Al-Mohammad, M.H.S.; Abbass, J.A. Effect of Biofertilizer and Spraying Phenylalanine on Mineral Content and Antioxidant Compounds of Dill. Indian J. Forensic Med. Toxicol. 2021, 15, 5540–5545. [Google Scholar] [CrossRef]
- Salim, N.S.; Abdel-Alim, M.; Said, H.E.M.; Foda, M.F. Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study. Molecules 2023, 28, 6389. [Google Scholar] [CrossRef] [PubMed]
- Yawadio Nsimba, R.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Ordonez, A.A.; Gomez, J.D.; Vattuone, M.A. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [PubMed]
- Kuntic, V.; Pejic, N.; Ivkovic, B. Isocratic RP-HPLC method for rutin determinationin solid oral dosage forms. J. Pharm. Biomed. Anal. 2007, 43, 718–772. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, Y.; Liang, Y.; Lin, J. Composition of Polyphenols in fresh Tea Leaves and Associations of their Oxygen Radical Absorbing Capacity with Antiproliferative Actions in Fibroblast Cells. J. Agri. Food Chem. 1996, 44, 1387–1394. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- EL-Zefzafy, M.; Shahhat, I.M.; Yousef, R.S.; Elsharkawy, E.R. Influence of foliar application with amino acids and citric acid on physiological and phytochemical responses of Artemisia abrotanum produced by in vitro culture. Biosci. Biotech. Res. Commun. 2016, 9, 702–711. [Google Scholar] [CrossRef]
- Abdel-Kareem, A.A.; El-Shamy, H.A.; Dawh, A.K.; Gwiefel, S.G. Milk thistle growth, productivity and chemical constituents as affected by foliar application of phenylalanine and tryptophan. Zagazig J. Agric. Res. 2017, 44, 117–127. [Google Scholar] [CrossRef]
- Noroozlo, Y.A.; Souri, M.K.; Delshad, M. Effects of foliar application of glycine and glutamine amino acids on growth and quality of sweet basil. Adv. Hortic. Sci. 2019, 33, 495–502. [Google Scholar]
- Zahir, A.Z.; Malik, M.A.; Arshad, M. Improving crop yield by the application of an auxin precursor L-TRP. Pak. J. Biol. Sci. 2000, 3, 133–135. [Google Scholar]
- Hussein, M.M.; Faham, S.Y.; Alva, A.K. Role of Foliar Application of Nicotinic Acid and Tryptophan on Onion Plants Response to Salinity Stress. J. Agric. Sci. 2014, 68, 41–51. [Google Scholar] [CrossRef]
- Idris, E.; Iglesias, D.; Manuel, T.; Rainer, B. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact. 2007, 20, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Tarasevičienė, Z.; Aloyzas, V.; Aurelija, P. Impact of Foliar Application of Amino Acids on Total Phenols, Phenolic Acids Content of Different Mints Varieties under the Field Condition. Plants 2021, 10, 599. [Google Scholar] [CrossRef]
- Velička, A.; Tarasevičienė, Ž.; Hallmann, E.K.-D. Impact of Foliar Application of Amino Acids on Essential Oil Content, Odor Profile, and Flavonoid Content of Different Mint Varieties in Field Conditions. Plants 2022, 11, 2938. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Amin, A.; Gharib, F.; El-Awadia, M.; Rashad, E.S. Physiological response of onion plants to foliar application of putrescine and glutamine. Sci. Hortic. 2011, 129, 353–360. [Google Scholar] [CrossRef]
- Amira, K.; Aminah, A.; Zuhair, A. Evaluation of bitter melon (Momordica charantia) extract administration in the antioxidant and free radical scavenging activities of plasma and liver in male rat. Int. Food Res. J. 2013, 20, 1. [Google Scholar]
- Cao, Y.P.; Gao, Z.K.; Li, J.T.; Xu, G.H.; Wang, M. Effects of extraneous glutamic acid on nitrate contents and quality of Chinese chive. Acta Hortic. 2010, 856, 91–98. [Google Scholar] [CrossRef]
- Feduraev, P.; Skrypnik, L.; Riabova, A.; Pungin, A.; Tokupova, E.; Maslennikov, P.; Chupakhina, G. Phenylalanine and Tyrosine as Exogenous Precursors of Wheat (Triticum aestivum L.) Secondary Metabolism through PAL-Associated Pathways. Plants 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Gendy, A.S.; Nosir, W.S. Improving productivity and chemical constituents of Roselle plant (Hibiscus sabdariffa L.) as affected by phenylalanine, L-tryptophan and peptone acids foliar application. Middle East J. Agric. 2016, 5, 701–708. [Google Scholar]
- Khalifa, A.M.; Abd-ElShafy, E.; Abu-Khudir, R.; Gaafar, R.M. Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.). J. Genet. Eng. Biotechnol. 2022, 20, 166. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, Y.A.; El-Naem, A.; Gamal, F.; Mahmoud, M.A. Effect of tryptophan and ascorbic acid on yield and some chemical constituents of lupine (Lupines termis L.) plants. Egypt. J. Agron. 2020, 42, 47–61. [Google Scholar]
- Klimek-Szczykutowicz, M.; Dziurka, M.; Blažević, I.; Đulović, A.; Miazga-Karska, M.; Klimek, K.; Ekiert, H.; Szopa, A. Precursor-Boosted Production of Metabolites in Nasturtium officinale Microshoots Grown in Plantform Bioreactors, and Antioxidant and Antimicrobial Activities of Biomass Extracts. Molecules 2021, 26, 4660. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Thomas, J. Flavonoids from cell suspension culture of Ocimum tenuiflorum and its enhancement using response surface methodology. Drug Inven. Today 2019, 11, 2188–2193. [Google Scholar]
- Roy, D.; Mallick, B.; Samanta, D. Augmentation of antioxidative potential of in vitro propagated Mentha piperita L. Indian J. Exp. Biol. 2020, 58, 131–137. [Google Scholar]
- Alper, M.; Özay, C. Antioxidant Activity and Phenolic Composition of Ethanol Extracts of Momordica charantia and Datura stramonium. J. Agric. Nat. 2022, 25, 1–9. [Google Scholar] [CrossRef]
- Poorghadir, M.; Torkashvand, A.M.; Mirjalili, S.A.; Moradi, P. Interactions of amino acids (proline and phenylalanine) and biostimulants (salicylic acid and chitosan) on the growth and essential oil components of savory (Satureja hortensis L.). Biocatal. Agric. Biotechnol. 2020, 30, 101815. [Google Scholar] [CrossRef]
Parameters | Unit | Seasons | |
---|---|---|---|
2020 | 2021 | ||
Coarse sand | % | 3.78 | 4.21 |
Fine sand | % | 16.73 | 16.37 |
Silt | % | 25.06 | 25.57 |
Clay | % | 54.43 | 53.85 |
Textural class | Clay | Clay |
Parameters | Unit | Seasons | |
---|---|---|---|
2020 | 2021 | ||
CaCO3 | % | 1.02 | 1.05 |
Organic matter | % | 1.69 | 1.77 |
Total nitrogen | % | 0.45 | 0.50 |
Total phosphorus | % | 0.15 | 0.21 |
Total potassium | % | 0.22 | 0.25 |
Electrical conductivity (EC) | dS m−1 | 0.76 | 0.69 |
pH | 7.38 | 7.53 |
Parameters | Plant Height (cm) | Number of Branches/Plant | Fresh Weight of Herb/Plant | Dry Weight of Herb/Plant | ||||
---|---|---|---|---|---|---|---|---|
Treatments | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd |
Control | 195 F | 205 F | 10.3 C | 10.3 D | 197 H | 210 H | 77 F | 80 F |
Trp at 100 mg/L | 273 D | 272 D | 11.0 C | 12.7 CD | 300 E | 357 F | 103 DEF | 110 DEF |
Trp at 200 mg/L | 297 C | 297 C | 13.3 BC | 13.7 BC | 417 F | 400 E | 130 CD | 120 CD |
Trp at 300 mg/L | 343 A | 323 A | 21.3 A | 18.3 AB | 717 A | 717 A | 217 A | 233 A |
Gln at 100 mg/L | 247 E | 275 D | 12.0 BC | 11.7 D | 427 E | 350 F | 117 CDE | 117 CDE |
Gln at 200 mg/L | 300 C | 277 D | 12.3 BC | 12.7 CD | 467 D | 433 D | 153 BC | 115 CDE |
Gln at 300 mg/L | 303 C | 303 BC | 23.0 A | 22.3 A | 650 B | 517 B | 177 B | 170 B |
Phe at 100mg/L | 237 E | 253 E | 13.7 BC | 13.0 CD | 213 H | 290 G | 82 EF | 87 EF |
Phe at 200mg/L | 300 C | 283 D | 14.0 BC | 15.0 BCD | 263 G | 350 F | 83 EF | 100 DEF |
Phe at 300mg/L | 322 B | 310 B | 15.3 B | 17.0 BC | 617 C | 483 C | 117 CDE | 143 BC |
LSD 5% | 11.80 | 11.89 | 4.20 | 4.94 | 24.77 | 25.29 | 37.67 | 30.27 |
Parameters | Fresh Weight of First Fruit (g) | Length of First Fruit (cm) | Diameter of First Fruit (cm) | |||
---|---|---|---|---|---|---|
Treatments | 1st | 2nd | 1st | 2nd | 1st | 2nd |
Control | 112.0 H | 123.7 I | 11.3 G | 11.9 E | 6.14 D | 6.36 D |
Trp 100 mg/L | 126.7 FG | 137.4 F | 12.6 E | 12.4 D | 6.16 D | 6.43 D |
Trp 200 mg/L | 140.7 C | 150.9 B | 14.7 B | 15.1 B | 6.32 C | 6.94 B |
Trp 300 mg/L | 154.5 A | 160.2 A | 15.0 A | 15.6 A | 6.28 CD | 6.37 D |
Gln 100 mg/L | 128.6 F | 131.0 H | 12.3 F | 12.2 D | 6.24 CD | 6.51 D |
Gln 200 mg/L | 137.5 D | 145.3 D | 14.1 C | 14.6 C | 6.94 B | 6.91 B |
Gln 300 mg/L | 140.6 C | 150.8 B | 14.5 B | 15.3 A B | 7.14 A | 7.24 A |
Phe 100 mg/L | 125.4 G | 133.0 G | 12.2 F | 12.4 D | 6.23 CD | 6.42 D |
Phe 200 mg/L | 133.9 E | 144.0 E | 13.7 D | 14.6 C | 6.82 B | 6.71 C |
Phe 300 mg/L | 144.0 B | 149.6 C | 14.2 C | 15.1 B | 6.87 B | 6.74 C |
LSD 5% | 2.216 | 0.9077 | 0.2365 | 0.3163 | 0.1627 | 0.1627 |
Parameters | Number of Fruits/Plant | Fresh Weight of Fruits/Plant (g) | Total Fruit Yield/ha (ton) | |||
---|---|---|---|---|---|---|
Treatments | 1st | 2nd | 1st | 2nd | 1st | 2nd |
Control | 3.33 B | 4.33 B | 372.86 J | 535.50 J | 2.49 F | 3.57 G |
Trp 100 mg/L | 4.33 AB | 4.00 AB | 548.60 H | 549.70 I | 3.66 D | 3.66 G |
Trp 200 mg/L | 4.67 AB | 4.33 B | 656.47 D | 652.75 E | 4.38 C | 4.36 D |
Trp 300 mg/L | 5.67 A | 6.67 A | 876.20 A | 1068.27 A | 5.85 A | 7.13 A |
Gln 100 mg/L | 3.33 B | 4.67 AB | 428.20 I | 611.68 H | 2.86 E | 4.07 F |
Gln 200 mg/L | 4.67 AB | 5.00 AB | 642.11 E | 726.65 C | 4.29 C | 4.28 DE |
Gln 300 mg/L | 5.00 AB | 5.33 AB | 703.84 C | 804.37 B | 4.82 B | 5.39 B |
Phe 100 mg/L | 5.00 AB | 4.67 AB | 626.75 F | 621.26 G | 4.18 C | 4.14 EF |
Phe 200 mg/L | 4.33 AB | 4.33 AB | 579.62 G | 643.13 F | 3.86 D | 4.80 C |
Phe 300 mg/L | 5.00 B | 5.00 AB | 720.03 B | 719.79 D | 4.69 B | 4.82 C |
LSD 5% | 2.053 | 2.207 | 1.241 | 1.934 | 0.2486 | 0.1715 |
Parameters | DPPH (%) | TFC | TPC | |||
---|---|---|---|---|---|---|
Treatments | 1st | 2nd | 1st | 2nd | 1st | 2nd |
Control | 18.5 G | 19.6 G | 99 I | 99 I | 4.54 I | 4.77 I |
Trp 100 mg/L | 31.0 F | 31.2 F | 119 FG | 119 FG | 11.17 H | 11.23 H |
Trp 200 mg/L | 29.9 F | 30.9 F | 102 HI | 102 HI | 12.50 H | 12.27 H |
Trp 300 mg/L | 44.6 C | 44.0 C | 212 C | 216 C | 15.30 G | 15.40 G |
Gln 100 mg/L | 37.8 DE | 38.1 DE | 143 E | 142 E | 19.80 F | 23.83 F |
Gln 200 mg/L | 31.6 F | 31.8 F | 170 D | 171 D | 29.53 E | 34.20 E |
Gln 300 mg/L | 51.4 B | 52.5 B | 256 B | 246 B | 31.83 D | 40.73 C |
Phe 100 mg/L | 39.3 D | 39.5 D | 125 F | 125 F | 33.63 C | 36.10 D |
Phe 200 mg/L | 35.7 E | 36.0 E | 111 GH | 112 GH | 48.83 B | 51.30 B |
Phe 300 mg/L | 59.0 A | 59.6 A | 316 A | 324 A | 55.07 A | 56.27 A |
LSD 5% | 2.895 | 2.277 | 9.527 | 9.568 | 1.537 | 1.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Khayat, L.; Elbagory, M.; Elsadek, M.; Ahmed, N.; Mohamed, I.; Omara, A.E.-D.; Salim, N. Enhancing Growth, Yield, and Antioxidant Activity of Bitter Gourd (Momordica charantia L.) through Amino Acid Foliar Spray Application. Horticulturae 2024, 10, 41. https://doi.org/10.3390/horticulturae10010041
El-Khayat L, Elbagory M, Elsadek M, Ahmed N, Mohamed I, Omara AE-D, Salim N. Enhancing Growth, Yield, and Antioxidant Activity of Bitter Gourd (Momordica charantia L.) through Amino Acid Foliar Spray Application. Horticulturae. 2024; 10(1):41. https://doi.org/10.3390/horticulturae10010041
Chicago/Turabian StyleEl-Khayat, Lamiaa, Mohssen Elbagory, Mohamed Elsadek, Nevin Ahmed, Ibrahim Mohamed, Alaa El-Dein Omara, and Nesrein Salim. 2024. "Enhancing Growth, Yield, and Antioxidant Activity of Bitter Gourd (Momordica charantia L.) through Amino Acid Foliar Spray Application" Horticulturae 10, no. 1: 41. https://doi.org/10.3390/horticulturae10010041
APA StyleEl-Khayat, L., Elbagory, M., Elsadek, M., Ahmed, N., Mohamed, I., Omara, A. E. -D., & Salim, N. (2024). Enhancing Growth, Yield, and Antioxidant Activity of Bitter Gourd (Momordica charantia L.) through Amino Acid Foliar Spray Application. Horticulturae, 10(1), 41. https://doi.org/10.3390/horticulturae10010041