Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = bipolar pulse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2582 KB  
Article
Efficacy of Plasmid DNA Delivery into Mice by Intradermal Injections Alone and Facilitated by Sonoporation or Electroporation
by Daria Avdoshina, Vladimir Valuev-Elliston, Maria Belikova, Alla Zhitkevich, Anastasia Latanova, Galina Frolova, Oleg Latyshev, Ilya Gordeychuk and Ekaterina Bayurova
Vaccines 2026, 14(1), 82; https://doi.org/10.3390/vaccines14010082 - 12 Jan 2026
Viewed by 226
Abstract
Background/Objectives: A key disadvantage of DNA vaccines is ineffective uptake of plasmid DNA, resulting in low immunogenicity. A way to overcome it is forced DNA delivery, which requires specialized equipment and/or reagents. Effective delivery of plasmids without specialized devices or using commonly [...] Read more.
Background/Objectives: A key disadvantage of DNA vaccines is ineffective uptake of plasmid DNA, resulting in low immunogenicity. A way to overcome it is forced DNA delivery, which requires specialized equipment and/or reagents. Effective delivery of plasmids without specialized devices or using commonly available ones would significantly increase DNA vaccine applicability. Here, we delivered DNA by intradermal injections, facilitating them by optimized sonoporation (SP) or electroporation (EP), and we compared these methods by their capacity to support the production of foreign proteins in mice. Methods: DNA delivery was optimized using the plasmid encoding firefly luciferase (Luc) (pVaxLuc). Luc production was assessed by bioluminescence imaging (BLI) (IVIS, PerkinElmer, Shelton, CT, USA; LumoTrace Fluo, Abisense, Dolgoprudny, Russia). Female BALB/c mice were injected intradermally (id) with pVaxLuc in phosphate buffers of varying ionic strengths. Injection sites were subjected to SP (Intelect Mobile, Chattanooga, UK) or EP (CUY21EDITII, BEX Co., Tokyo, Japan) or left untreated. Optimal delivery protocols were selected based on the highest in vivo levels of photon flux according to BLI. Optimal protocols for id injections with/without EP were applied to DNA-immunized mice with HIV-1 clade A reverse transcriptase. Antibody response induced by DNA immunization was assessed by ELISA. Results: The optimal phosphate buffers for id delivery had ionic strengths from 81 to 163 mmol/L. The optimal SP regimen included an acoustic pressure of 2.4 W/cm2 applied in a duty cycle of 2%. The optimal EP regimen included bipolar driving pulses of 100 V, a pulse duration of 10 ms, and an interval between the pulses of 20 ms. Optimized DNA delivery by id/SP injection was inferior to both id/EP and id alone. DNA immunization with HIV-1 RT by id injections induced anti-RT antibodies in a titer of 104 and by id/EP in a titer of 105. Conclusions: Electroporation of the sites of id DNA injection provided the highest levels of production of luciferase reporters and induced a strong antibody response against HIV-1 RT. Full article
(This article belongs to the Special Issue Advances in DNA Vaccine Research)
Show Figures

Figure 1

15 pages, 4352 KB  
Article
Effects of the Hydrogen-to-Nitrogen Ratio in Plasma Nitriding on the Surface Properties of Cold Work Tool Steels
by Kodchaporn Chinnarat, Artit Chingsungnoen, Yasuharu Ohgoe and Toshiyuki Fukahori
Coatings 2025, 15(12), 1372; https://doi.org/10.3390/coatings15121372 - 24 Nov 2025
Viewed by 593
Abstract
This study systematically investigates the effect of hydrogen flow rate (100, 200, 300, and 400 sccm) on the properties of DC53 steel during a 4 h plasma nitriding process conducted at 400 °C in an asymmetric bipolar pulsed reactor. A comprehensive characterisation approach [...] Read more.
This study systematically investigates the effect of hydrogen flow rate (100, 200, 300, and 400 sccm) on the properties of DC53 steel during a 4 h plasma nitriding process conducted at 400 °C in an asymmetric bipolar pulsed reactor. A comprehensive characterisation approach was employed. X-ray diffraction (XRD) was used to identify the phase composition, revealing the formation of a compound layer consisting of ε-Fe2–3N (identified by its (100), (101), and (102) planes) and γ’-Fe4N (identified by its (220) plane). Mechanical properties were assessed using Vickers microhardness for surface measurements and nanoindentation for depth profiling. Glow discharge optical emission spectroscopy (GD-OES) provided elemental depth analysis, while a ball-on-disk tribometer evaluated the tribological performance. The optimal treatment was achieved at a hydrogen flow rate of 200 sccm. This condition yielded a peak surface hardness of 1121.5 ± 69.2 HV0.2. GD-OES analysis directly correlated this mechanical enhancement to a high surface nitrogen content of approximately 8.5% and an effective diffusion depth of about 50 µm. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

14 pages, 2402 KB  
Article
Characteristics of Nanosecond Bipolar Pulsed Water Electrode Dielectric Barrier Discharge for Ozone Generation
by Weitian Wu, Chenyang Jin, Yifan Wu, Xianyang Zeng, Linsheng Wei, Zhongqian Ling and Lijian Wang
Processes 2025, 13(11), 3619; https://doi.org/10.3390/pr13113619 - 8 Nov 2025
Viewed by 636
Abstract
This study investigates the ozone generation characteristics of a nanosecond bipolar pulse-excited single-water electrode (dielectric barrier discharge) DBD reactor, with a particular focus on the effects of pulse width (Tp) on discharge behavior, plasma parameters, and ozone generation efficiency. The [...] Read more.
This study investigates the ozone generation characteristics of a nanosecond bipolar pulse-excited single-water electrode (dielectric barrier discharge) DBD reactor, with a particular focus on the effects of pulse width (Tp) on discharge behavior, plasma parameters, and ozone generation efficiency. The results indicate that the bipolar pulse voltage displays a symmetric alternating waveform, and the reactor demonstrates excellent thermal stability. Rotation temperature (Trot) remains stable between 307 and 310 K (close to room temperature, which effectively suppresses O3 thermal decomposition), while vibrational temperature (Tvib) stabilizes at 3120 ± 50 K (sufficient to ensure the electron energy required for O2 dissociation). Electron excitation temperature (Texc) increases with both the specific input energy (SIE) and Tp. At SIE = 200 J/L, extending Tp from 200 ns to 1000 ns results in an increase in Texc from 2633 K to 2724 K. The ozone generation efficiency exhibits a “rise-then-decline” trend with increasing Tp. The optimal Tp is 500–600 ns, at which the maximum efficiency reaches 102 g/kWh (corresponding to SIE = 35.95 J/L), which is slightly higher than the peak efficiency of the unipolar pulse-driven water electrode reactor (99.64 ± 0.87 g/kWh, corresponding to SIE = 33.60 ± 1.53 J/L). This work innovatively applies nanosecond bipolar pulse excitation to a single-water electrode DBD reactor for ozone generation, an understudied configuration that integrates the discharge stability advantage of bipolar pulses and the superior cooling advantages of water electrodes. This study offers significant insights into the pulse power excitation of ozone generation. Full article
Show Figures

Figure 1

20 pages, 3859 KB  
Article
Pulsed Eddy Current Electromagnetic Signal Noise Suppression Method for Substation Grounding Grid Detection
by Su Xu, Yanjun Zhang, Ruiqiang Zhang, Xiaobao Hu, Bin Jia, Ming Ma and Jingang Wang
Energies 2025, 18(21), 5737; https://doi.org/10.3390/en18215737 - 31 Oct 2025
Viewed by 413
Abstract
As the primary discharge channel for fault currents, substation grounding grids are crucial for ensuring the safe and stable operation of power systems. Due to its non-destructive and efficient nature, the pulsed eddy current (PEC) method has become a research hotspot in grounding [...] Read more.
As the primary discharge channel for fault currents, substation grounding grids are crucial for ensuring the safe and stable operation of power systems. Due to its non-destructive and efficient nature, the pulsed eddy current (PEC) method has become a research hotspot in grounding grid detection in recent years. However, during the detection process, the signal is severely interfered with by substation noise, seriously affecting data quality and interpretation accuracy. To address the problem of suppressing both power frequency and random noise, this paper proposes a composite denoising method that combines bipolar cancellation, minimum noise fraction (MNF), and mask-guided self-supervised denoising. First, based on the periodic characteristics of power frequency noise, a bipolar pulse excitation and differential averaging process is designed to effectively filter out power frequency interference. Subsequently, an MNF algorithm is introduced to identify and reconstruct random noise, improving signal purity. Furthermore, a mask-guided self-supervised denoising model is constructed, using a segmentation convolutional neural network to extract signal-noise masks from noisy data, achieving refined suppression of residual noise. Comparative experiments with simulation and actual substation noise data show that the proposed method outperforms existing typical noise reduction algorithms in terms of signal-to-noise ratio improvement and waveform fidelity, significantly improving the availability and interpretation reliability of pulsed eddy current data. Full article
(This article belongs to the Special Issue Advanced in Modeling, Analysis and Control of Microgrids)
Show Figures

Figure 1

30 pages, 5764 KB  
Article
Control and Modeling Framework for Balanced Operation and Electro-Thermal Analysis in Three-Level T-Type Neutral Point Clamped Inverters
by Ahmed H. Okilly, Cheolgyu Kim, Do-Wan Kim and Jeihoon Baek
Energies 2025, 18(21), 5587; https://doi.org/10.3390/en18215587 - 24 Oct 2025
Viewed by 526
Abstract
Reliable multilevel inverter IGBT modules require precise loss and heat management, particularly in severe traction applications. This paper presents a comprehensive modeling framework for three-level T-type neutral-point clamped (TNPC) inverters using a high-power Insulated Gate Bipolar Transistor (IGBT) module that combines model predictive [...] Read more.
Reliable multilevel inverter IGBT modules require precise loss and heat management, particularly in severe traction applications. This paper presents a comprehensive modeling framework for three-level T-type neutral-point clamped (TNPC) inverters using a high-power Insulated Gate Bipolar Transistor (IGBT) module that combines model predictive control (MPC) with space vector pulse width modulation (SVPWM). The particle swarm optimization (PSO) algorithm is used to methodically tune the MPC cost function weights for minimization, while achieving a balance between output current tracking, stabilization of the neutral-point voltage, and, consequently, a uniform distribution of thermal stress. The proposed SVPWM-MPC algorithm selects optimal switching states, which are then utilized in a chip-level loss model coupled with a Cauer RC thermal network to predict transient chip-level junction temperatures dynamically. The proposed framework is executed in MATLAB R2024b and validated with experiments, and the SemiSel industrial thermal simulation tool, demonstrating both control effectiveness and accuracy of the electro-thermal model. The results demonstrate that the proposed control method can sustain neutral-point voltage imbalance of less than 0.45% when operating at 25% load and approximately 1% under full load working conditions, while accomplishing a uniform junction temperature profile in all inverter legs across different working conditions. Moreover, the results indicate that the proposed control and modeling structure is an effective and common-sense way to perform coordinated electrical and thermal management, effectively allowing for predesign and reliability testing of high-power TNPC inverters. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

11 pages, 4970 KB  
Article
Pioneering Endoscopic Calcium-Electroporation in Gastric Cancer: A Case Series of an Emerging Therapeutic Approach
by Giuliano Francesco Bonura, Noemi Gualandi, Paola Soriani, Pablo Cortegoso Valdivia, Tommaso Gabbani, Valentina Zadro, Federica Indulti, Gabriella Frassanito, Germana de Nucci and Mauro Manno
Diseases 2025, 13(10), 340; https://doi.org/10.3390/diseases13100340 - 15 Oct 2025
Viewed by 663
Abstract
Background/Objectives: Gastric cancer often presents at advanced stages with complications such as iron-deficiency anemia (IDA) due to chronic bleeding, representing a significant global health burden. Palliative management of bleeding tumors in frail patients remains challenging. This study evaluates the feasibility, safety, and efficacy [...] Read more.
Background/Objectives: Gastric cancer often presents at advanced stages with complications such as iron-deficiency anemia (IDA) due to chronic bleeding, representing a significant global health burden. Palliative management of bleeding tumors in frail patients remains challenging. This study evaluates the feasibility, safety, and efficacy of endoscopic calcium-electroporation (Ca-EP), a novel non-thermal ablation technique, for controlling bleeding in end-stage gastric cancer. Methods: Retrospective case series including consecutive patients with end-stage, bleeding gastric cancer and IDA requiring transfusions. Ca-EP was performed using the EndoVE system, which delivers bipolar electrical pulses (250 kHz) to induce reversible electroporation, enabling calcium influx and tumor cell apoptosis. Primary endpoints were clinical success (hemoglobin stabilization/reduced transfusions) and safety. Secondary endpoints included tumor regression, procedural time, and hospital stay. Results: Five patients (median age 81 years) were included. Clinical success was achieved in 80% (4/5) of patients, with reduced transfusion needs and stable hemoglobin levels. One patient required adjunctive hemostatic radiotherapy. No major or minor adverse events were reported, and all patients were discharged within 24 h. Procedural median time was 38 min (range: 22–65). Endoscopic follow-up in three patients showed mild tumor regression or stability. Three patients required repeat Ca-EP sessions due to recurrent bleeding. Conclusions: Endoscopic Ca-EP is a safe, minimally invasive palliative option for bleeding gastric cancer, offering sustained hemostasis and potential antitumor effects without systemic toxicity. Its feasibility in frail patients underscores its clinical relevance, though larger prospective studies are needed to optimize parameters and validate long-term outcomes. Full article
Show Figures

Figure 1

18 pages, 5552 KB  
Article
Development of a Low-Cost Measurement System for Soil Electrical Conductivity and Water Content
by Emmanouil Teletos, Kyriakos Tsiakmakis, Argyrios T. Hatzopoulos and Stefanos Stefanou
AgriEngineering 2025, 7(10), 329; https://doi.org/10.3390/agriengineering7100329 - 1 Oct 2025
Viewed by 1834
Abstract
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field [...] Read more.
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field conditions. The aim of this study was to develop and validate a low-cost, portable system for simultaneous measurement of soil EC, water content, and temperature, while maintaining accuracy comparable to laboratory-grade instruments. The system was designed with four electrodes arranged in two pairs and employed an AC bipolar pulse method with a constant-current circuit, precision rectifier, and peak detector to minimize electrode polarization. Experiments were carried out in sandy loam soil at water contents of 13%, 18%, and 22% and KNO3 concentrations of 0, 0.1, 0.2, and 0.4 M. Measurements from the developed system were benchmarked against a professional impedance analyzer (E4990A). The findings demonstrated that EC increased with both frequency and water content. At 100 Hz, the mean error compared with the analyzer was 8.95%, rising slightly to 9.98% at 10 kHz. A strong linear relationship was observed between EC and KNO3 concentration at 100 Hz (R2 = 0.9898), and for the same salt concentration (0.1 M KNO3) at 100 Hz, EC increased from ~0.26 mS/cm at 13% water content to ~0.43 mS/cm at 22%. In conclusion, the developed system consistently achieved <10% error while maintaining a cost of ~€55, significantly lower than commercial devices. These results confirm its potential as an affordable and reliable tool for soil salinity and water content monitoring in precision agriculture. Full article
Show Figures

Figure 1

17 pages, 836 KB  
Article
The Time Delays in Reaction of the Ionosphere and the Earth’s Magnetic Field to the Solar Flares on 8 May and Geomagnetic Superstorm on 10 May 2024
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Serik Nurakynov, Vladimir Ryabov, Zhumabek Zhantayev and Valery Zhukov
Atmosphere 2025, 16(9), 1106; https://doi.org/10.3390/atmos16091106 - 20 Sep 2025
Viewed by 884
Abstract
In the paper we consider the pulsed disturbances caused in the ionosphere by an extreme G5-level geomagnetic superstorm on 10 May 2024, and by the X1.0 and M-class solar flares on 8 May 2024, which preceded the storm. Particular attention is [...] Read more.
In the paper we consider the pulsed disturbances caused in the ionosphere by an extreme G5-level geomagnetic superstorm on 10 May 2024, and by the X1.0 and M-class solar flares on 8 May 2024, which preceded the storm. Particular attention is paid to the short-term delays and the sequence of disturbance appearance in the ionosphere and geomagnetic field during these extreme events. The results of a continuous Doppler sounding of the ionosphere on an inclined radio path with a sampling frequency of 25 Hz were used, as well as the data of a ground-based mid-latitude fluxgate magnetometer LEMI-008, and an induction magnetometer IMS-008, which operated with a sampling frequency of 66.6 Hz. Ionization of the ionosphere by the intense X-ray and extreme ultraviolet radiation of solar flares was accompanied by the equally sudden and similarly timed disturbances in the Doppler frequency shift (DFS) of the ionospheric signal, which had an amplitude of 2.0–5.8 Hz. The largest pulsed burst in DFS was registered 68 s after an X1.0 flare on 8 May 2024 at the time when the change of the X-ray flux was at its maximum. Following onto the effect in the ionosphere, a disturbance in the geomagnetic field appeared with a time delay of 35 s. This disturbance is a secondary one that arose as a consequence of the ionosphere response to the solar flare. It was likely driven by the contribution of ionospheric currents and electric fields, which modified the Earth’s magnetic field. On 10 May 2024, a G5-level geomagnetic superstorm with a sudden commencement triggered an impulsive reaction in the ionosphere. A response in DFS at the calculated reflection altitude of the sounding radio wave of 267.5 km was detected 58 s after the commencement of the storm. The sudden impulsive changes in Doppler frequencies showed a bipolar character, reflecting complex dynamic transformations in the ionosphere at the geomagnetic storm. Consequently, the DFS amplitude initially rose to 5.5 Hz over 86 s, and then its sharp drop to 3.2 Hz followed. Using the instruments that operated in a mode with a high temporal resolution allowed us to identify for the first time the impulsive nature of the ionospheric reaction, the time delays, and the sequence of disturbance appearances in the ionosphere and geomagnetic field in response to the X1.0 solar flare on 8 May 2024 as well as to the sudden commencement of the extreme G5-level geomagnetic storm on 10 May 2024. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

14 pages, 2878 KB  
Article
A Peak Current Mode Boost DC-DC Converter with Hybrid Spread Spectrum
by Xing Zhong, Jianhai Yu, Yongkang Shen and Jinghu Li
Micromachines 2025, 16(8), 862; https://doi.org/10.3390/mi16080862 - 26 Jul 2025
Viewed by 3171
Abstract
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. [...] Read more.
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. This paper proposes a boost converter utilizing Pulse Width Modulation (PWM) with peak current mode control to address the EMI issues inherent in the switching operation of DC-DC converters. The converter incorporates a Hybrid Spread Spectrum (HSS) technique to effectively mitigate EMI noise. The HSS combines a 1.2 MHz pseudo-random spread spectrum with a 9.4 kHz triangular periodic spread spectrum. At a standard switching frequency of 2 MHz, the spread spectrum range is set to ±7.8%. Simulations conducted using a 0.5 μm Bipolar Complementary Metal-Oxide-Semiconductor Double-diffused Metal-Oxide-Semiconductor (BCD) process demonstrate that the HSS technique reduces EMI around the switching frequency by 12.29 dBμV, while the converter’s efficiency decreases by less than 1%. Full article
Show Figures

Figure 1

27 pages, 6456 KB  
Article
An Open Multifunctional FPGA-Based Pulser/Receiver System for Intravascular Ultrasound (IVUS) Imaging and Therapy
by Amauri A. Assef, Paula L. S. de Moura, Joaquim M. Maia, Phuong Vu, Adeoye O. Olomodosi, Stephan Strassle Rojas and Brooks D. Lindsey
Sensors 2025, 25(15), 4599; https://doi.org/10.3390/s25154599 - 25 Jul 2025
Viewed by 2289
Abstract
Coronary artery disease (CAD) is the third leading cause of disability and death globally. Intravascular ultrasound (IVUS) is the most commonly used imaging modality for the characterization of vulnerable plaques. The development of novel intravascular imaging and therapy devices requires dedicated open systems [...] Read more.
Coronary artery disease (CAD) is the third leading cause of disability and death globally. Intravascular ultrasound (IVUS) is the most commonly used imaging modality for the characterization of vulnerable plaques. The development of novel intravascular imaging and therapy devices requires dedicated open systems (e.g., for pulse sequences for imaging or thrombolysis), which are not currently available. This paper presents the development of a novel multifunctional FPGA-based pulser/receiver system for intravascular ultrasound imaging and therapy research. The open platform consists of a host PC with a Matlab-based software interface, an FPGA board, and a proprietary analog front-end board with state-of-the-art electronics for highly flexible transmission and reception schemes. The main features of the system include the capability to convert arbitrary waveforms into tristate bipolar pulses by using the PWM technique and by the direct acquisition of raw radiofrequency (RF) echo data. The results of a multicycle excitation pulse applied to a custom 550 kHz therapy transducer for acoustic characterization and a pulse-echo experiment conducted with a high-voltage, short-pulse excitation for a 19.48 MHz transducer are reported. Testing results show that the proposed system can be easily controlled to match the frequency and bandwidth required for different IVUS transducers across a broad class of applications. Full article
(This article belongs to the Special Issue Ultrasonic Imaging and Sensors II)
Show Figures

Figure 1

18 pages, 1996 KB  
Article
Lifetime Behavior of Turn Insulation in Rotating Machines Under Repetitive Pulsed Stress
by Ousama Zidane, Rainer Haller, Pavel Trnka and Hans Bärnklau
Energies 2025, 18(14), 3826; https://doi.org/10.3390/en18143826 - 18 Jul 2025
Viewed by 857
Abstract
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight [...] Read more.
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight winding sections, despite evidence indicating that failures frequently occur in the bending regions of turn insulation. This study explores the influence of high-frequency pulsed electrical stress on the lifetime behavior of Type II insulation systems used in high-voltage rotating machines. Practical samples, designed with geometric configurations and technology akin to that in rotating machines, were tested under conditions characterized by voltage slew rates (dv/dt) exceeding 10 kV/μs, with variations in frequency and waveform shape. The findings reveal that the rate of electrical aging remains consistent across differing pulse widths, risetimes, and polarities, displaying a similar lifetime exponent. Nonetheless, insulation durability is markedly more compromised under pulsed conditions. At the identical times-to-failure, the sinusoidal waveform necessitated nearly twice the applied peak voltage as the bipolar pulse waveform. This finding clearly suggests that pulsed excitation exacerbates insulation degradation more effectively due to the sharp rise times and high (dv/dt) rates imposing substantial electrical stress on dielectric materials. Full article
Show Figures

Figure 1

13 pages, 2517 KB  
Article
Study on the Wear Resistance of 6061 Aluminum Alloy Bipolar Plasma Electrolytic Oxidation Ceramic Coating by the Addition of K2ZrF6
by Rui Tong, Shiquan Zhou, Hongtao Li, Xiang Tao and Jian Chen
Materials 2025, 18(13), 2962; https://doi.org/10.3390/ma18132962 - 23 Jun 2025
Viewed by 899
Abstract
A plasma electrolytic oxidation (PEO) coating was produced on 6061 aluminum alloy within a silicate-containing electrolyte using a bipolar pulsed power supply. The impact of K2ZrF6 addition on the wear resistance of the coating was investigated. The phase composition, surface [...] Read more.
A plasma electrolytic oxidation (PEO) coating was produced on 6061 aluminum alloy within a silicate-containing electrolyte using a bipolar pulsed power supply. The impact of K2ZrF6 addition on the wear resistance of the coating was investigated. The phase composition, surface morphology, and elemental distribution of the coatings were assessed by means of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Experimental data revealed that the growth rate of the coating increased by 37.3% compared to that without K2ZrF6; the addition of K2ZrF6 favored the formation of mullite and enhanced the coating densification; it also improved the breakdown voltage of the coating, which increased by 46.0% compared to that without K2ZrF6; and it also demonstrated excellent abrasion resistance, with a reduction of 41.8% in the weight of the abrasion. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Figure 1

13 pages, 2867 KB  
Article
Characterization of Space Charge Accumulations in Alternative Gas-to-Liquid Oil-Immersed Paper Insulation Under Polarity Reversal Voltage Scenarios
by Ya Wang, Yifei Xiong, Zheming Wang and Wu Lu
Energies 2025, 18(12), 3152; https://doi.org/10.3390/en18123152 - 16 Jun 2025
Viewed by 746
Abstract
Due to its advantages, such as its corrosive sulfur-free property and high purity, gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic mineral oil in the oil/paper composite insulation of UHV converter transformers. In such application scenarios, under the condition [...] Read more.
Due to its advantages, such as its corrosive sulfur-free property and high purity, gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic mineral oil in the oil/paper composite insulation of UHV converter transformers. In such application scenarios, under the condition of voltage polarity reversal, charge accumulation is likely to occur along the liquid/solid interface, which leads to the distortion of the electric field, consequently reducing the breakdown voltage of the insulating material, and leading to flashover in the worst case. Therefore, understanding such space charge characteristics under polarity-reversed voltage is key for the insulation optimization of GTL oil-filled converter transformers. In this paper, a typical GTL oil is taken as the research object with naphthenic oil as the benchmark. Electroacoustic pulse measurement technology is used to study the space charge accumulation characteristics and electric field distribution of different oil-impregnated paper insulations under polarity-reversed conditions. The experimental results show that under positive–negative–positive polarity reversal voltage, the gas-impregnated pressboard exhibits significantly higher rates of space charge density variation and electric field distortion compared with mineral oil-impregnated paper. In stage B, the dissipation rate of negative charges at the grounded electrode in GTL oil-impregnated paper is 140% faster than that in mineral oil-impregnated paper. In stage C, the electric field distortion rate near the electrode of GTL oil-impregnated paper reaches 54.15%. Finally, based on the bipolar charge transport model, the microscopic processes responsible for the differences in two types of oil-immersed papers are discussed. Full article
Show Figures

Figure 1

23 pages, 6234 KB  
Article
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis
by Si-Wa Chan, Chun-An Lin, Yen-Chieh Ouyang, Guan-Yuan Chen, Chein-I Chang, Chin-Yao Lin, Chih-Chiang Hung, Chih-Yean Lum, Kuo-Chung Wang and Ming-Cheng Liu
Diagnostics 2025, 15(12), 1499; https://doi.org/10.3390/diagnostics15121499 - 12 Jun 2025
Cited by 1 | Viewed by 2842
Abstract
Background/Objectives: This research presents a novel analytical method for breast tumor characterization and tissue classification by leveraging intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with hyperspectral imaging techniques and deep learning. Traditionally, dynamic contrast-enhanced MRI (DCE-MRI) is employed for breast tumor diagnosis, but [...] Read more.
Background/Objectives: This research presents a novel analytical method for breast tumor characterization and tissue classification by leveraging intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with hyperspectral imaging techniques and deep learning. Traditionally, dynamic contrast-enhanced MRI (DCE-MRI) is employed for breast tumor diagnosis, but it involves gadolinium-based contrast agents, which carry potential health risks. IVIM imaging extends conventional diffusion-weighted imaging (DWI) by explicitly separating the signal decay into components representing true molecular diffusion (D) and microcirculation of capillary blood (pseudo-diffusion or D*). This separation allows for a more comprehensive, non-invasive assessment of tissue characteristics without the need for contrast agents, thereby offering a safer alternative for breast cancer diagnosis. The primary purpose of this study was to evaluate different methods for breast tumor characterization using IVIM-DWI data treated as hyperspectral image stacks. Dice similarity coefficients and Jaccard indices were specifically used to evaluate the spatial segmentation accuracy of tumor boundaries, confirmed by experienced physicians on dynamic contrast-enhanced MRI (DCE-MRI), emphasizing detailed tumor characterization rather than binary diagnosis of cancer. Methods: The data source for this study consisted of breast MRI scans obtained from 22 patients diagnosed with mass-type breast cancer, resulting in 22 distinct mass tumor cases analyzed. MR images were acquired using a 3T MRI system (Discovery MR750 3.0 Tesla, GE Healthcare, Chicago, IL, USA) with axial IVIM sequences and a bipolar pulsed gradient spin echo sequence. Multiple b-values ranging from 0 to 2500 s/mm2 were utilized, specifically thirteen original b-values (0, 15, 30, 45, 60, 100, 200, 400, 600, 1000, 1500, 2000, and 2500 s/mm2), with the last four b-value images replicated once for a total of 17 bands used in the analysis. The methodology involved several steps: acquisition of multi-b-value IVIM-DWI images, image pre-processing, including correction for motion and intensity inhomogeneity, treating the multi-b-value data as hyperspectral image stacks, applying hyperspectral techniques like band expansion, and evaluating three tumor detection methods: kernel-based constrained energy minimization (KCEM), iterative KCEM (I-KCEM), and deep neural networks (DNNs). The comparisons were assessed by evaluating the similarity of the detection results from each method to ground truth tumor areas, which were manually drawn on DCE-MRI images and confirmed by experienced physicians. Similarity was quantitatively measured using the Dice similarity coefficient and the Jaccard index. Additionally, the performance of the detectors was evaluated using 3D-ROC analysis and its derived criteria (AUCOD, AUCTD, AUCBS, AUCTDBS, AUCODP, AUCSNPR). Results: The findings objectively demonstrated that the DNN method achieved superior performance in breast tumor detection compared to KCEM and I-KCEM. Specifically, the DNN yielded a Dice similarity coefficient of 86.56% and a Jaccard index of 76.30%, whereas KCEM achieved 78.49% (Dice) and 64.60% (Jaccard), and I-KCEM achieved 78.55% (Dice) and 61.37% (Jaccard). Evaluation using 3D-ROC analysis also indicated that the DNN was the best detector based on metrics like target detection rate and overall effectiveness. The DNN model further exhibited the capability to identify tumor heterogeneity, differentiating high- and low-cellularity regions. Quantitative parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (PF), were calculated and analyzed, providing insights into the diffusion characteristics of different breast tissues. Analysis of signal intensity decay curves generated from these parameters further illustrated distinct diffusion patterns and confirmed that high cellularity tumor regions showed greater water molecule confinement compared to low cellularity regions. Conclusions: This study highlights the potential of combining IVIM-DWI, hyperspectral imaging techniques, and deep learning as a robust, safe, and effective non-invasive diagnostic tool for breast cancer, offering a valuable alternative to contrast-enhanced methods by providing detailed information about tissue microstructure and heterogeneity without the need for contrast agents. Full article
(This article belongs to the Special Issue Recent Advances in Breast Cancer Imaging)
Show Figures

Figure 1

17 pages, 5125 KB  
Article
Impacts of Bipolar Impulse Parameters on the PDIV of Random-Wound Inverted-Fed Motor Insulation
by Junsheng Chen and Peng Wang
Energies 2025, 18(11), 2932; https://doi.org/10.3390/en18112932 - 3 Jun 2025
Viewed by 868
Abstract
The detection of Partial Discharge Inception Voltage (PDIV) is vital for evaluating the insulation performance of random-wound inverter-fed motor stators. However, existing research on the impact of impulse parameters on PDIV patterns and their underlying mechanisms is limited, leading to inadequate guidelines for [...] Read more.
The detection of Partial Discharge Inception Voltage (PDIV) is vital for evaluating the insulation performance of random-wound inverter-fed motor stators. However, existing research on the impact of impulse parameters on PDIV patterns and their underlying mechanisms is limited, leading to inadequate guidelines for choosing suitable impulse parameters during PDIV tests of stator insulation under impulsive conditions. This lack of understanding significantly affects the precision of the accuracy of insulation test results for inverter-fed motors. To bridge this gap, this study systematically investigated the influence of key impulse parameters, such as pulse width, dead time, and impulse frequency, on the PDIV test outcomes in enameled wire samples (enameled twisted pairs and pig-tail wires) and random-wound inverter-fed motor stators. A differential bipolar repetitive impulse voltage and a sinusoidal voltage were applied to simulate the pulse-width modulation electrical stress typically experienced by these motors. Results reveal a negative correlation between PDIV test results and pulse width, a positive correlation with dead time, and a weak correlation with impulse frequency. Furthermore, the potential fundamental mechanisms are proposed for the influence of impulse voltage parameters on PDIV characteristics by analyzing the electric field distribution and discharge processes within insulating materials when subjected to impulsive voltages. Based on the experimental conclusion, this study proposes targeted recommendations for revising the current IEC testing standards. These improvements are anticipated to refine stator insulation testing methodologies for inverter-fed motors, ultimately contributing to enhanced insulation reliability in such electric motors. Full article
Show Figures

Figure 1

Back to TopTop