Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = biomolecule conjugation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 271 KiB  
Review
Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules
by Marks Gorohovs and Yuri Dekhtyar
Molecules 2025, 30(15), 3206; https://doi.org/10.3390/molecules30153206 - 30 Jul 2025
Viewed by 192
Abstract
Electrostatic adsorption plays a crucial role in nanoparticle-based drug delivery, enabling the targeted and reversible loading of biomolecules onto nanoparticles. This review explores the fundamental mechanisms governing nanoparticle–biomolecule interactions, with a focus on electrostatics, van der Waals forces, hydrogen bonding, and protein corona [...] Read more.
Electrostatic adsorption plays a crucial role in nanoparticle-based drug delivery, enabling the targeted and reversible loading of biomolecules onto nanoparticles. This review explores the fundamental mechanisms governing nanoparticle–biomolecule interactions, with a focus on electrostatics, van der Waals forces, hydrogen bonding, and protein corona formation. Various functionalization strategies—including covalent modification, polymer coatings, and layer-by-layer assembly—have been employed to enhance electrostatic binding; however, each presents trade-offs in terms of stability, complexity, and specificity. Emerging irradiation-based techniques offer potential for direct modulation of surface charge without the addition of chemical groups, yet they remain underexplored. Accurate characterization of biomolecule adsorption is equally critical; however, the limitations of individual techniques also pose challenges to this endeavor. Spectroscopic, microscopic, and electrokinetic methods each contribute unique insights but require integration for a comprehensive understanding. Overall, a multimodal approach to both functionalization and characterization is essential for advancing nanoparticle systems toward clinical drug delivery applications. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Biomedical Applications, 2nd Edition)
19 pages, 2636 KiB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 348
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

67 pages, 5184 KiB  
Review
Recent Advances on the Analysis and Biological Functions of Cinnamaldehyde and Its Derivatives
by Roghayeh Karimirad, Baskaran Stephen Inbaraj and Bing-Huei Chen
Antioxidants 2025, 14(7), 765; https://doi.org/10.3390/antiox14070765 - 22 Jun 2025
Viewed by 1002
Abstract
Natural antioxidants isolated from fruits, vegetables, herbs and spices have drawn great attention owing to their numerous health-promoting effects. Cinnamaldehyde (CA), an abundant antioxidant in cinnamon spice, has been explored more intensely over the last decade as it has been demonstrated to be [...] Read more.
Natural antioxidants isolated from fruits, vegetables, herbs and spices have drawn great attention owing to their numerous health-promoting effects. Cinnamaldehyde (CA), an abundant antioxidant in cinnamon spice, has been explored more intensely over the last decade as it has been demonstrated to be effective and safe in the treatment of various diseases. Structurally, a substituted aldehyde group with an unsaturated carbon–carbon double bond with two electrophilic sites for reaction with receptors and enzymes can exert diverse biological effects. Although cinnamon has been traditionally used as a spice and herbal remedy, many studies investigating the most dominant functional compound, CA, and its biological activities have been reported in recent years. This review article intends to present an overview of recent advances in analytical methods and the application of cinnamon extract/oil, CA and its derivatives, CA-polymer/biomolecule conjugates and CA micro/nanosystems in alleviating various chronic diseases including cancer, diabetes, obesity, cardiovascular disease, neurological disorders, osteoarthritis and osteoporosis. Both in vitro and in vivo studies have demonstrated the improved pharmacological efficiency of CA and its derivatives as well as their polymer/drug/biomolecule conjugates and micro/nanoencapsulated forms, suggesting a possible alternative natural therapy and adjuvant therapy with conventional drugs via a synergistic process. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

18 pages, 14917 KiB  
Article
Preparation of Nanoparticle-Immobilized Gold Surfaces for the Reversible Conjugation of Neurotensin Peptide
by Hidayet Gok, Deniz Gol, Betul Zehra Temur, Nureddin Turkan, Ozge Can, Ceyhun Ekrem Kirimli, Gokcen Ozgun and Ozgul Gok
Biomolecules 2025, 15(6), 767; https://doi.org/10.3390/biom15060767 - 27 May 2025
Viewed by 2569
Abstract
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface [...] Read more.
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface modification. To this end, methacrylated tethered telechelic polyethylene glycol (PEG-diMA) chains of three different molecular weights (2, 6, and 10 kDa) were synthesized herein and used for obtaining thiolated nanoparticles (NPs) upon adding excess amounts of a tetra-thiol crosslinker. Characterized according to their size, surface charge, morphology, and thiol amounts, these nanoparticles were immobilized on gold surfaces that mimicked gold-coated mass sensor platforms. The PEG-based nanoparticles, prepared especially by PEG6K-diMA polymers, were shown to result in the preparation of a monolayer and smooth coating of 80–120 nm thickness. Cysteine-modified NTS(8–13) peptide (RRPYIL) was conjugated to thiolated NP with reversible disulfide bonds and it was demonstrated that its cleavage with a reducing agent such as dithiothreitol (DTT) restores the NP-immobilized gold surface for at least two cycles. Together with its binding studies to NTSR2 antibodies, it was revealed that the peptide-conjugated NP-modified gold surface could be employed as a model for a reusable sensor surface for the detection of biomarkers of same or different types. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

19 pages, 6920 KiB  
Article
Covalent Functionalization of Layered Double Hydroxides to Generate Peptide-Based SARS-CoV-2 Nanovaccine
by Alejandra E. Liñán-González, Sayma A. Rodríguez-Montelongo, Mariano J. García-Soto, Daniela Gómez-Zarandona, Susan Farfán-Castro, Gabriela Palestino, Raúl Ocampo-Pérez, Erika Padilla-Ortega, Omar González-Ortega and Sergio Rosales-Mendoza
Materials 2025, 18(11), 2449; https://doi.org/10.3390/ma18112449 - 23 May 2025
Viewed by 517
Abstract
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind [...] Read more.
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind antigens covalently and generate subunit nanovaccines remains unexplored. In this study, we investigated the synthesis, functionalization, and active conjugation of LDH nanoparticles to produce subunit nanovaccines with peptides from SARS-CoV-2. The synthesis of Mg-Al LDHs via a coprecipitation and hydrothermal treatment rendered monodisperse particles averaging 100 nm. Their functionalization with (3-aminopropyl)triethoxysilane was better than it was with other organosilanes. Glutaraldehyde was used as a linker to bind lysine as a model biomolecule to establish the best conditions for reductive amination. Finally, two peptides, P2 and P5 (epitopes of the SARS-CoV-2 spike protein), were bound on the surface of the LDH to produce two subunit vaccine candidates, reaching peptide concentrations of 125 and 270 µg/mL, respectively. The particles were characterized using DLS, TEM, XRD, TGA, DSC, and FTIR. The cytotoxicity studies revealed that the conjugate with P2 was non-toxic up to 250 µg/mL, while the immunogenicity studies showed that this conjugate induced similar IgG titers to those reached when aluminum hydroxide was used as an adjuvant. Full article
Show Figures

Figure 1

47 pages, 2480 KiB  
Review
Advances in the Functionalization of Vaccine Delivery Systems: Innovative Strategies and Translational Perspectives
by Ingrid Andrêssa de Moura, Anna Jéssica Duarte Silva, Larissa Silva de Macêdo, Karina Mayumi Tani Bezerra de Melo, Lígia Rosa Sales Leal, Benigno Cristofer Flores Espinoza, Maria da Conceição Viana Invenção, Samara Sousa de Pinho and Antonio Carlos de Freitas
Pharmaceutics 2025, 17(5), 640; https://doi.org/10.3390/pharmaceutics17050640 - 12 May 2025
Cited by 1 | Viewed by 1404
Abstract
The development of effective vaccines requires a rational design that considers the interaction between antigens, their vectors, and the immune system in addition to the activation of pathways that induce a safe and specific immune response. The efficacy of a vaccine formulation depends [...] Read more.
The development of effective vaccines requires a rational design that considers the interaction between antigens, their vectors, and the immune system in addition to the activation of pathways that induce a safe and specific immune response. The efficacy of a vaccine formulation depends on the nature of the antigen, the protection offered by the delivery system, the ability to potentiate the immune response, and the precise release of the immunogen. Carrier systems such as lipid nanoparticles, polymers, exosomes, and microorganisms can be functionalized by chemical, physical, or biological methods to generate selective and improved biodistribution profiles. These methods enhance interaction with target cells, thereby improving immunological efficacy. The conjugation of specific ligands or the modification of parameters such as shape, charge, and size of vectors can enhance the specificity, stability, and efficiency of antigen transport to cellular compartments, thereby facilitating a robust immune response. This study examines modifications in vaccine delivery systems, focusing on biomolecules and physicochemical changes that enhance antigen presentation. Additionally, we examine innovative methods, including microneedles, electroporation, and needle-free systems that show potential for enhancing the immune response. Full article
Show Figures

Figure 1

20 pages, 8006 KiB  
Article
Early Development of an Innovative Nanoparticle-Based Multimodal Tool for Targeted Drug Delivery: A Step-by-Step Approach
by Chiara Barattini, Angela Volpe, Daniele Gori, Daniele Lopez, Alfredo Ventola, Stefano Papa, Mariele Montanari and Barbara Canonico
Cells 2025, 14(9), 670; https://doi.org/10.3390/cells14090670 - 3 May 2025
Viewed by 767
Abstract
Prostate cancer is the most common tumor in men in developed countries and it often responds poorly to conventional treatments. Monoclonal antibody (MoAb) therapy, for this pathology, has grown tremendously in the past decades, exploiting naked and conjugated antibodies to cytotoxic payloads to [...] Read more.
Prostate cancer is the most common tumor in men in developed countries and it often responds poorly to conventional treatments. Monoclonal antibody (MoAb) therapy, for this pathology, has grown tremendously in the past decades, exploiting naked and conjugated antibodies to cytotoxic payloads to form antibody drug conjugates (ADCs). Several studies have been carried out conjugating biomolecules against prostate-specific membrane antigen (PSMA), highly expressed in this tumor, to cytotoxic drugs. Nano-based formulations show high potential in targeted drug delivery to enhance the bioavailability of drugs. Our research aimed to evaluate the feasibility of setting up a nanoparticle-based multimodal tool for targeted drug delivery, describing the step-by-step approach and to perform a first screening of these fluorescent PEGylated silica nanoparticles employed in selective cancer cell targeting and killing. These nanoparticles featured a core–shell structure to contemporarily conjugate the antibody and the cytotoxic payload monomethyl auristatin E (MMAE) using a step-by-step approach. We compared the cytotoxic effect of this multimodal nanotool near the antibody-MMAE and free MMAE. We found a lower cytotoxicity effect of the nanoparticle-based construct compared to free drugs, likely because of the preservation of the previously observed receptor-mediated endocytosis. Nanomedicine is confirmed as a powerful alternative to organic drug delivery systems, even if some aspects, such as drug loading efficacy, release, scalable manufacturing and long-term stability, need to be deepened. Full article
Show Figures

Figure 1

61 pages, 23396 KiB  
Review
Porphyrins as Chiroptical Conformational Probes for Biomolecules
by Gabriele Travagliante, Massimiliano Gaeta, Roberto Purrello and Alessandro D’Urso
Molecules 2025, 30(7), 1512; https://doi.org/10.3390/molecules30071512 - 28 Mar 2025
Viewed by 733
Abstract
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The [...] Read more.
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The planar electron rich structure of porphyrin macrocycle that promote π–π interactions, their easy functionalization at the meso positions, and their capacity to coordinate metal ions enable their use in probing nucleic acid structures with high sensitivity. Emphasis is placed on their induced circular dichroism (ICD) signals in the Soret region, which provide precise diagnostic insights into binding mechanisms and molecular interactions. The review examines the interactions of porphyrins with various DNA structures, including B-, Z-, and A-DNA, single-stranded DNA, and G-quadruplex DNA, as well as less common structures like I-motif and E-motif DNA. The last part highlights recent advancements in the use of porphyrins to probe RNA structures, emphasizing binding behaviors and chiroptical signals observed with RNA G-quadruplexes, as well as the challenges in interpreting ICD signals with other RNA motifs due to their inherent structural complexity. Full article
Show Figures

Graphical abstract

15 pages, 3033 KiB  
Article
Surface Functionalization of ITO for Dual-Mode Hypoxia-Associated Cancer Biomarker Detection
by Edmunds Zutis, Gunita Paidere, Rihards Ruska, Toms Freimanis, Janis Cipa, Raivis Zalubovskis, Maira Elksne, Kaspars Tars, Andris Kazaks, Janis Leitans, Anatolijs Sarakovskis and Andris Anspoks
Biosensors 2025, 15(3), 186; https://doi.org/10.3390/bios15030186 - 14 Mar 2025
Viewed by 893
Abstract
Indium tin oxide (ITO) is a transparent conducting material with exceptional electrical and optical properties, widely used in biosensing and bioelectronics. Functionalization of ITO with linker molecules enables covalent attachment of biomolecules, allowing for dual-mode optical and electrochemical detection. Carbonic anhydrase IX (CA [...] Read more.
Indium tin oxide (ITO) is a transparent conducting material with exceptional electrical and optical properties, widely used in biosensing and bioelectronics. Functionalization of ITO with linker molecules enables covalent attachment of biomolecules, allowing for dual-mode optical and electrochemical detection. Carbonic anhydrase IX (CA IX), a transmembrane enzyme overexpressed in hypoxic tumors, is a promising biomarker for cancer diagnostics due to its restricted expression in normal tissues. However, conventional detection methods are time-intensive and unsuitable for point-of-care applications. In this study, ITO surfaces were functionalized using silane-based chemistry to immobilize CA IX-specific antibodies, creating a novel biosensing platform. The biosensor utilized a secondary horseradish peroxidase (HRP)-conjugated antibody to catalyze the oxidation of luminol in the presence of hydrogen peroxide, producing a chemiluminescent and electrochemical signal. Characterization of the biosensor via a dual-mode optical and electrochemical approach revealed efficient antibody immobilization. Due to the high variation observed in the optical approach, limit of detection (LOD) experiments were conducted exclusively with electrochemistry, yielding an LOD of 266.4 ng/mL. These findings demonstrate the potential of ITO-based electrochemical biosensors for sensitive and selective CA IX detection, highlighting their applicability in cancer diagnostics and other biomedical fields. Full article
(This article belongs to the Special Issue Biosensors for Biomedical Diagnostics)
Show Figures

Figure 1

11 pages, 2180 KiB  
Article
Facile Synthesis of a Cholesterol–Doxorubicin Conjugate Using Cholesteryl-4-nitrophenolate as an Activated Ester and Biological Property Analysis
by Pedro Freitas, Dina Maciel, Jolanta Jaśkowska, Kamila Zeńczak-Tomera, Yanbiao Zhou, Guoyin Yin and Ruilong Sheng
Organics 2025, 6(1), 6; https://doi.org/10.3390/org6010006 - 9 Feb 2025
Viewed by 1372
Abstract
Developing new biomolecule–drug conjugates as prodrugs is a promising area for natural products and pharmaceutical chemistry. Herein, a cholesterol–doxorubicin (Chol-DOX) conjugate was synthesized using cholesteryl-4-nitrophenolate as a facile, stable, and controllable activated ester. This approach offers an alternative to the conventional HCl-emitting cholesteryl [...] Read more.
Developing new biomolecule–drug conjugates as prodrugs is a promising area for natural products and pharmaceutical chemistry. Herein, a cholesterol–doxorubicin (Chol-DOX) conjugate was synthesized using cholesteryl-4-nitrophenolate as a facile, stable, and controllable activated ester. This approach offers an alternative to the conventional HCl-emitting cholesteryl chloroformate method. Semi-empirical theoretical calculations showed that cholesteryl-4-nitrophenolate exhibits moderate reactivity, greater thermodynamic stability, a higher dipole moment, and a lower HOMO-LUMO energy gap compared to cholesteryl chloroformate, suggesting that cholesteryl-4-nitrophenolate could be used as a more controllable acylating agent. The structure of the synthesized Chol-DOX conjugate was characterized using NMR, MS, and FT-IR techniques. Biological properties of the Chol-DOX conjugate were analyzed with a comparison of theoretical and experimental data. This work provides a facile and controllable method to synthesize natural lipid–DOX prodrugs and offers an in-depth data analysis of the related biological properties. Full article
Show Figures

Graphical abstract

53 pages, 9820 KiB  
Review
Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting
by Alessandra Spada and Sandrine Gerber-Lemaire
Nanomaterials 2025, 15(3), 158; https://doi.org/10.3390/nano15030158 - 21 Jan 2025
Cited by 9 | Viewed by 2965
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area [...] Read more.
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Figure 1

17 pages, 12549 KiB  
Article
Indocarbocyanine–Indodicarbocyanine (sCy3–sCy5) Absorptive Interactions in Conjugates and DNA Duplexes
by Evgeny L. Gulyak, Vladimir A. Brylev, Mikhail Y. Zhitlov, Olga A. Komarova, Alexey V. Ustinov, Ksenia A. Sapozhnikova, Vera A. Alferova, Vladimir A. Korshun and Daniil A. Gvozdev
Molecules 2025, 30(1), 57; https://doi.org/10.3390/molecules30010057 - 27 Dec 2024
Viewed by 1011
Abstract
Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination [...] Read more.
Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination of the sCy3:sCy5 molar ratio in a conjugate from its optical absorption spectrum is not straightforward, as the sCy3:sCy5 absorbance ratio at the maxima tends to be larger than expected. In this work, we have investigated this phenomenon in detail by studying the spectral properties of a series of sCy3-sCy5 conjugates in which the dyes are separated by linkers of various lengths, including DNA duplexes. It was found that when sCy3 and sCy5 are located in close proximity, they consistently exhibit an “abnormal” absorbance ratio. However, when the two dyes are separated by long rigid DNA-based spacers, the absorbance ratio becomes consistent with their individual molar absorption coefficients. This phenomenon should be taken into account when assessing the molar ratio of the dyes by UV-Vis spectroscopy. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

39 pages, 10969 KiB  
Review
Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine
by Neyra Citlali Cabrera-Quiñones, Luis José López-Méndez, Carlos Cruz-Hernández and Patricia Guadarrama
Int. J. Mol. Sci. 2025, 26(1), 36; https://doi.org/10.3390/ijms26010036 - 24 Dec 2024
Cited by 2 | Viewed by 3083
Abstract
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, [...] Read more.
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols—such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms—can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), inverse electron-demand Diels–Alder (IEDDA) and thiol–ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities—all essential in the field of nanomedicine. Full article
Show Figures

Graphical abstract

16 pages, 1740 KiB  
Article
Novel Lipid-Based Carriers of Provitamin D3: Synthesis and Spectroscopic Characterization of Acylglycerol Conjugated with 7-Dehydrocholesterol Residue and Its Glycerophospholipid Analogue
by Witold Gładkowski, Susanna Ortlieb, Natalia Niezgoda, Anna Chojnacka, Paulina Fortuna and Paweł Wiercik
Molecules 2024, 29(23), 5805; https://doi.org/10.3390/molecules29235805 - 9 Dec 2024
Viewed by 1092
Abstract
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D3, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of [...] Read more.
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D3, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of vitamin D3 even during periods of sunlight deficiency. Acylglycerol and glycerophospholipid containing succinate-linked provitamin D3 at the sn-2 position of the glycerol backbone were synthesized from dihydroxyacetone (DHA) and sn-glycerophosphocholine (GPC), respectively. The three-step synthesis of 1,3-dipalmitoyl-2-(7-dehydrocholesterylsuccinoyl)glycerol involved the esterification of DHA with palmitic acid, reduction of the carbonyl group, and conjugation of the resulting 1,3-dipalmitoylglycerol with 7-dehydrocholesterol hemisuccinate (7-DHC HS). The use of NaBH3CN as a reducing agent was crucial to avoid acyl migration and achieve the final product with 100% regioisomeric purity. For the preparation of 1-palmitoyl-2-(7-dehydrocholesterylsuccinoyl)-sn-glycero-3-phosphocholine, a two-step process was applied, involving the esterification of GPC at the sn-1 position with palmitic acid, followed by the conjugation of 1-palmitoyl-sn-glycero-3-phosphocholine with 7-DHC HS. Alongside the main product, a small amount of its regioisomer with provitamin D3 linked at the sn-1 position and palmitic acid at the sn-2 position was detected, indicating acyl migration from the sn-1 to the sn-2 position in the intermediate 1-palmitoyl-sn-glycerophosphocholine. The synthesized novel lipids were fully characterized using spectroscopic methods. They can find applications as novel lipid-based prodrugs as additives to sunscreen creams. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Figure 1

14 pages, 3387 KiB  
Article
Real-Time and Ultrasensitive Prostate-Specific Antigen Sensing Using Love-Mode Surface Acoustic Wave Immunosensor Based on MoS2@Cu2O-Au Nanocomposites
by Yan Yu, Haiyu Xie, Tao Zhou, Haonan Zhang, Chenze Lu, Ran Tao, Zhaozhao Tang and Jingting Luo
Sensors 2024, 24(23), 7636; https://doi.org/10.3390/s24237636 - 29 Nov 2024
Cited by 2 | Viewed by 1197
Abstract
Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS2@Cu2O-Au nanocomposite conjugation. The MoS2@Cu [...] Read more.
Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS2@Cu2O-Au nanocomposite conjugation. The MoS2@Cu2O-Au nanocomposites were analyzed by SEM, XRD, and EDS. The experiments show a significant improvement in sensitivity and detection limit compared with the previous detection methods utilizing nanogold alone to detect PSA biomolecules. The experimental results show a good linear relationship when the range of PSA concentrations between 200 pg/mL and 5 ng/mL was tested. The experimental results also show good specificity against alpha 1 fetoprotein and L-tryptophan disruptors. Full article
(This article belongs to the Special Issue Exploring the Sensing Potential of Acoustic Wave Devices)
Show Figures

Figure 1

Back to TopTop