Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules
Abstract
1. Introduction
2. Fundamentals of Nanoparticle–Biomolecule Interactions
2.1. Electrostatic Interactions
2.2. Van der Waals and Hydrophobic Interactions
2.3. Hydrogen Bonding and Specific Interactions
2.4. DLVO Theory and Colloidal Stability
2.5. Protein Corona Formation
3. Surface Functionalization Approaches to Enhance Electrostatic Adsorption
3.1. Direct Chemical Functionalization
3.2. Polymer Wrapping and Coating
3.3. Layer-by-Layer Assembly
3.4. Irradiation-Based Functionalization
4. Characterization Methods for Nanoparticle–Biomolecule Adsorption
4.1. Spectroscopic Methods
4.1.1. UV–VIS Spectroscopy
4.1.2. FTIR and Raman Spectroscopy
4.1.3. X-Ray Photoelectron Spectroscopy
4.2. Microscopic Methods
4.2.1. Transmission Electron Microscopy
4.2.2. Atomic Force Microscopy
4.3. Colloidal and Electrokinetic Methods
4.3.1. Dynamic Light Scattering
4.3.2. Zeta Potential Analysis
4.3.3. Differential Centrifugal Sedimentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Doane, T.; Burda, C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 607–621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weissberger, D.; Stenzel, M.H.; Hunter, L. Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs. Molecules 2024, 29, 4949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balkrishna, A.; Sinha, S.; Kumar, A.; Arya, V.; Kumar, D.; Dhansekhran, M. Nanoparticles as Drug Delivery Systems: Advances and Challenges. In Nanotechnology; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Nienhaus, K.; Wang, H.; Nienhaus, G. Nanoparticles for biomedical applications: Exploring and exploiting molecular interactions at the nano-bio interface. Mater. Today Adv. 2020, 5, 100036. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Corbo, C.; Molinaro, R.; Lakey, J.R.T. Biohybrid nanoparticles to negotiate with biological barriers. Small 2019, 15, e1902333. [Google Scholar] [CrossRef] [PubMed]
- Bychkova, A.V.; Lopukhova, M.V.; Wasserman, L.A.; Degtyarev, Y.N.; Kovarski, A.L.; Chakraborti, S.; Mitkevich, V.A. The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles. Int. J. Biol. Macromol. 2022, 194, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Brancolini, G.; Rotello, V.M.; Corni, S. Role of ionic strength in the formation of stable supramolecular nanoparticle–protein conjugates for biosensing. Int. J. Mol. Sci. 2022, 23, 2368. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Abdelmonem, A.M.; Behzadi, S.; Clement, J.H.; Dutz, S.; Ejtehadi, M.R.; Hartmann, R.; Kantner, K.; Linne, U.; Maffre, P.; et al. Temperature: The “ignored” factor at the NanoBio interface. ACS Nano 2013, 7, 6555–6562. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; Wu, P.; Lenhoff, A.M. Electrostatic and van der Waals Contributions to Protein Adsorption: 2. Modeling of Ordered Arrays. Langmuir 1994, 10, 3705–3713. [Google Scholar] [CrossRef]
- Zhdanov, V.P. Nanoparticles without and with protein corona: Van der Waals and hydration interaction. J. Biol. Phys. 2019, 45, 307–316. [Google Scholar] [CrossRef]
- Shahriari, S.; Sastry, M.; Panjikar, S.; Raman, R.S. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol. Sci. Appl. 2021, 14, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhao, L.; Guo, C.; Yan, B.; Su, G. Regulating Protein Corona Formation and Dynamic Protein Exchange by Controlling Na-Noparticle Hydrophobicity. Front. Bioeng. Biotechnol. 2020, 8, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dutta, S.; Corni, S.; Brancolini, G. Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications. Int. J. Mol. Sci. 2022, 23, 1484. [Google Scholar] [CrossRef]
- Rosero, W.A.A.; Barbezan, A.B.; de Souza, C.D.; Rostelato, M.E.C.M. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024, 16, 255. [Google Scholar] [CrossRef]
- Choi, J.; Kim, B.H. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Nanomaterials 2024, 14, 1685. [Google Scholar] [CrossRef]
- Zhuang, W.-R.; Wang, Y.; Cui, P.-F.; Xing, L.; Lee, J.; Kim, D.; Jiang, H.-L.; Oh, Y.-K. Applications of π-π stacking interactions in the design of drug-delivery systems. J. Control. Release 2019, 294, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Bilardo, R.; Traldi, F.; Vdovchenko, A.; Resmini, M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdelfatah, E.R.; Kang, K.; Pournik, M.; Shiau, B.; Harwell, J.; Haroun, M.R.; Rahman, M.M. Study of Nanoparticle Adsorption and Release in Porous Media Based on The DLVO Theory. In Proceedings of the SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 17–19 May 2017. [Google Scholar] [CrossRef]
- Hernández, V.A. An overview of surface forces and the DLVO theory. ChemTexts 2023, 9, 10. [Google Scholar] [CrossRef]
- Pearson, R.M.; Juettner, V.V.; Hong, S. Biomolecular corona on nanoparticles: A survey of recent literature and its implications in targeted drug delivery. Front. Chem. 2014, 2, 108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, Y.; Zhou, Y.; Rehman, M.; Wang, Y.-F.; Guo, S. Protein Corona of Nanoparticles: Isolation and Analysis. Chem. Bio. Eng. 2024, 1, 757–772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gou, K.; Wang, Y.; Guo, X.; Wang, Y.; Bian, Y.; Zhao, H.; Guo, Y.; Pang, Y.; Xie, L.; Li, S.; et al. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs. Acta Biomater. 2021, 134, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Zhang, X. Chemical functionalization of graphene nanoplatelets with hydroxyl, amino, and carboxylic terminal groups. Chemistry 2021, 3, 873–888. [Google Scholar] [CrossRef]
- Ahmed, H.; Gomte, S.S.; Prathyusha, E.; Prabakaran, A.; Agrawal, M.; Alexander, A. Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J. Drug Deliv. Sci. Technol. 2022, 76, 103729. [Google Scholar] [CrossRef]
- Deinavizadeh, M.; Kiasat, A.R.; Shafiei, M.; Sabaeian, M.; Mirzajani, R.; Zahraei, S.M.; Khalili, F.; Shao, M.; Wu, A.; Makvandi, P.; et al. Synergistic chemo-photothermal therapy using gold nanorods supported on thiol-functionalized mesoporous silica for lung cancer treatment. Sci. Rep. 2024, 14, 4373. [Google Scholar] [CrossRef]
- Tabasi, H.; Mosavian, M.T.H.; Darroudi, M.; Khazaei, M.; Hashemzadeh, A.; Sabouri, Z. Synthesis and characterization of amine-functionalized Fe3O4/Mesoporous Silica Nanoparticles (MSNs) as potential nanocarriers in drug delivery systems. J. Porous Mater. 2022, 29, 1817–1828. [Google Scholar] [CrossRef]
- Ghobadi, M.; Salehi, S.; Ardestani, M.T.S.; Mousavi-Khattat, M.; Shakeran, Z.; Khosravi, A.; Cordani, M.; Zarrabi, A. Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells. Eur. J. Pharm. Biopharm. 2024, 201, 114349. [Google Scholar] [CrossRef]
- Du, B.; Chai, L.; Li, W.; Wang, X.; Chen, X.; Zhou, J.; Sun, R.-C. Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep. Purif. Technol. 2022, 297, 121509. [Google Scholar] [CrossRef]
- Qiu, C.; Jiang, L.; Gao, Y.; Sheng, L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Mater. Des. 2023, 230, 111952. [Google Scholar] [CrossRef]
- Beagan, A.; Alotaibi, K.; Almakhlafi, M.; Algarabli, W.; Alajmi, N.; Alanazi, M.; Alwaalah, H.; Alharbi, F.; Alshammari, R.; Alswieleh, A. Amine and sulfonic acid functionalized mesoporous silica as an effective adsorbent for removal of methylene blue from contaminated water. J. King Saud Univ. Sci. 2022, 34, 101762. [Google Scholar] [CrossRef]
- Testa, M.L.; La Parola, V. Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A minireview. Catalysts 2021, 11, 1143. [Google Scholar] [CrossRef]
- Abarca-Cabrera, L.; Fraga-García, P.; Berensmeier, S. Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater. Res. 2021, 25, 12. [Google Scholar] [CrossRef]
- Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and bioorthogonal chemistry: The future of active targeting of nanoparticles for nanomedicines? Chem. Rev. 2021, 122, 340–384. [Google Scholar] [CrossRef]
- Liu, W.; Pei, W.; Moradi, M.; Zhao, D.; Li, Z.; Zhang, M.; Xu, D.; Wang, F. Polyethyleneimine functionalized mesoporous magnetic nanoparticles with enhanced antibacterial and antibiofilm activity in an alternating magnetic field. ACS Appl. Mater. Interfaces 2022, 14, 18794–18805. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, B. Polyethyleneimine-based drug delivery systems for cancer theranostics. J. Funct. Biomater. 2022, 14, 12. [Google Scholar] [CrossRef]
- Shahidi, M.; Abazari, O.; Dayati, P.; Bakhshi, A.; Rasti, A.; Haghiralsadat, F.; Naghib, S.M.; Tofighi, D. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. Nanotechnol. Rev. 2022, 11, 2875–2890. [Google Scholar] [CrossRef]
- Arshad, R.; Tabish, T.A.; Naseem, A.A.; Hassan, M.R.U.; Hussain, I.; Hussain, S.S.; Shahnaz, G. Development of poly-L-lysine multi-functionalized muco-penetrating self-emulsifying drug delivery system (SEDDS) for improved solubilization and targeted delivery of ciprofloxacin against intracellular Salmonella typhi. J. Mol. Liq. 2021, 333, 115972. [Google Scholar] [CrossRef]
- Ahmed, A.; Sarwar, S.; Hu, Y.; Munir, M.U.; Nisar, M.F.; Ikram, F.; Asif, A.; Rahman, S.U.; Chaudhry, A.A.; Rehman, I.U. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin. Drug Deliv. 2020, 18, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Arkaban, H.; Ebrahimi, A.K.; Yarahmadi, A.; Zarrintaj, P.; Barani, M. Development of a multifunctional system based on CoFe2O4@ polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology 2021, 32, 305101. [Google Scholar] [CrossRef]
- Khabibullin, V.R.; Chetyrkina, M.R.; Obydennyy, S.I.; Maksimov, S.V.; Stepanov, G.V.; Shtykov, S.N. Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: Implica-tions for controlled drug-delivery application. Int. J. Mol. Sci. 2023, 24, 4480. [Google Scholar] [CrossRef]
- Patil, A.; Gadad, A.; Dandagi, P.M. Mono and multi-stimuli responsive polymers: Application as intelligent nano-drug delivery systems. Nanopharmaceutical Adv. Deliv. Syst. 2021, 11, 237–265. [Google Scholar]
- Kahveci, E.L.S.; Kahveci, M.U.; Celebi, A.; Avsar, T.; Derman, S. Glycopolymer and poly (β-amino ester)-based amphiphilic block copolymer as a drug carrier. Biomacromolecules 2022, 23, 4896–4908. [Google Scholar] [CrossRef]
- de Paula, M.C.; Carvalho, S.G.; Silvestre, A.L.P.; Santos, A.M.D.; Meneguin, A.B.; Chorilli, M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr. Polym. 2023, 320, 121257. [Google Scholar] [CrossRef]
- Li, K.; Tang, B.; Chai, X.; Ping, Y.; Wang, L.; Su, J. Sialic acid-functionalized targeted drug delivery systems: Advances in tumor and inflammation therapy by binding to Siglecs or selectin receptors. J. Chin. Pharm. Sci. 2023, 32, 773. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, T.; Ma, Q. Layer-by-Layer assembled nano-drug delivery systems for cancer treatment. Drug Deliv. 2021, 28, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Rahdar, A. LbL Nano-assemblies: A versatile tool for biomedical and healthcare applications. Nanomaterials 2022, 12, 949. [Google Scholar] [CrossRef] [PubMed]
- Yazan, A.T.; Abdelghany, S.; Abulateefeh, S.R. pH-responsive LBL coated silica nanocarriers for controlled release of chlorhexidine. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132671. [Google Scholar]
- Bai, X.; Zhang, H.; Lin, J.; Zhang, G. UV-ozone contributions towards facile self-assembly and high performance of silicon-carbon fiber materials as lithium-ion battery anodes. J. Colloid. Interface Sci. 2021, 598, 339–347. [Google Scholar] [CrossRef]
- Azman, M.N.A.; Nor, Y.A.; Samsudin, N.; Alkhatib, M.F.R.; Yeow, T.K. Surface functionalization of mesoporous hollow carbon nanoparticles using uv/ozone treatment. Chem. Nat. Resour. Eng. J. (Formally Known Biol. Nat. Resour. Eng. J.) 2020, 3, 35–45. [Google Scholar] [CrossRef]
- Zhang, D.; Du, Y.; Yang, C.; Zeng, P.; Yu, Y.; Xie, Y.; Liang, R.; Ou, Q.; Zhang, S. Tuning plasmonic nanostructures in graphene-based nano-sandwiches using ultraviolet/ozone functionalization. J. Mater. Sci. 2020, 56, 1359–1372. [Google Scholar] [CrossRef]
- Dekhtyar, Y.; Gorohovs, M.; Dimitrova, T.; Sorokins, H. UV Irradiated SiO2 Nanoparticles as Insulin and Immunoglobulin Molecule Carriers. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2024, 78, 127–132. [Google Scholar] [CrossRef]
- Le, G.T.; Lerkprasertkun, P.; Sano, N.; Wu, K.C.-W.; Charinpanitkul, T. Carbon nanohorns with surface functionalized by plasma treatment and their applications in drug delivery systems. J. Sci. Adv. Mater. Devices 2023, 8, 100616. [Google Scholar] [CrossRef]
- Sattari, S.; Adeli, M.; Beyranvand, S.; Nemati, M. Functionalized graphene platforms for anticancer drug delivery. Int. J. Nanomed. 2021, 16, 5955–5980. [Google Scholar] [CrossRef]
- Mokhtar, A.K.; Hidzir, N.M.; Rahman, I.A.; Mohamed, F.; Radzali, N.A.M. Synthesis of polymer-grafted gold nanoparticles via gamma radiation. Polimery 2021, 66, 584–588. [Google Scholar] [CrossRef]
- Ordoyo-Pascual, J.; Ruiz-Alonso, S.; Gallego, I.; Saenz-Del-Burgo, L.; Pedraz, J.L. Effects of beta and gamma radiation sterilization on growth factor-loaded nanoparticles: An in-novative approach for osteoarticular disorders treatment. Drug Deliv. Transl. Res. 2025, 1–21. [Google Scholar] [CrossRef]
- Boka, G.; Dekhtyar, Y.; Gorohovs, M.; Khrustalyova, G. High Energy Electron Irradiated Diamond Nanoparticles Influence on Yeast Cells’ Viability. In Countering Hybrid Threats Against Critical Infrastructures; Springer: Dordrecht, The Netherlands, 2025; pp. 265–273. [Google Scholar]
- Boka, G.; Dekhtyar, Y.; Rocca, M.; Sokolov, A.; Sorokins, H. Weak Electron Emission of Nanodiamond Irradiated with High Energy Electrons. In Nordic-Baltic Conference on Biomedical Engineering and Medical Physics; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Khanam, B.R.; Manjunatha, T.; Angadi, B.; Kumar, P.; Singh, B.; Khadke, U. Gamma radiation-induced modifications in the physiochemical features of ZnO nanoparticles synthesized using microwave technique. Ceram. Int. 2023, 50, 5552–5561. [Google Scholar] [CrossRef]
- Baltac, A.S.; Mitran, R.-A. Gamma Radiation in the Synthesis of Inorganic Silica-Based Nanomaterials: A Review. Nanomaterials 2025, 15, 218. [Google Scholar] [CrossRef]
- Delfino, I.; Cannistraro, S. Optical investigation of the electron transfer protein azurin-gold nanoparticle system. Biophys. Chem. 2009, 139, 1–7. [Google Scholar] [CrossRef]
- de Macedo, E.F.; Santos, N.S.; Nascimento, L.S.; Mathey, R.; Brenet, S.; de Moura, M.S.; Hou, Y.; Tada, D.B. Membranes and Proteins: A Surface Plasmon Resonance Study. Int. J. Mol. Sci. 2022, 24, 591. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y. New insight into protein-nanomaterial interactions with UV-visible spectroscopy and chemometrics: Human serum albumin and silver nanoparticles. Analyst 2013, 139, 416–424. [Google Scholar] [CrossRef]
- Li, Y.; Lee, J.-S. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. Materials 2020, 13, 3093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dheeraj, S.; Manik, P.; Arnulf, M. Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications; Springer: Tucson, AZ, USA, 2021; pp. 22–24. [Google Scholar] [CrossRef]
- Deepak, T.; Harpreet, K.; Harsharan, K.; Bhawna, R.; Krutika, T.; Vivek, M.; Kailash, J. ATR-FTIR Spectroscopy and Its Relevance to Probe the Molecular-Level Interactions Between Amino Acids and Metal-Oxide Nanoparticles at Solid/Aqueous Interface. In Advances in Spectroscopy: Molecules to Materials; Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar] [CrossRef]
- Xu, M.; Grassian, V.H. BSA Adsorption on TiO2 Nanoparticles: Effects of pH and Phosphate. Langmuir 2017, 33, 11003–11011. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, T.; Wu, Z.; Zhang, F.; Wang, Y.; Wang, X.; Zhang, Z.; Li, C.; Lv, X.; Chen, D.; et al. Universal Method for La-bel-Free Detection of Pathogens and Biomolecules by Surface-Enhanced Raman Spectroscopy Based on Gold Nanoparticles. Anal. Chem. 2023, 95, 4050–4405. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, Z.; Li, G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology. Biosensors 2022, 13, 30. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Zhou, G.; Wu, N. Molecular hot spots in surface-enhanced Raman scattering. Nanoscale 2020, 12, 22036–22041. [Google Scholar] [CrossRef]
- Lee, D.; Hussain, S.; Yeo, J.; Pang, Y. Adsorption of dipeptide L-alanyl-L-tryptophan on gold colloidal nanoparticles studied by surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119064. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, N.; Sil, S.; Umapathy, S. Potential of Raman spectroscopic techniques to study proteins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119712. [Google Scholar] [CrossRef] [PubMed]
- Chusuei, C.C. X-ray Photoelectron Spectroscopy as an Effective Biomolecular Binding Site Probe. J. Phys. Chem. Biophys. 2015, 5, 1000e130. [Google Scholar] [CrossRef]
- Saoudi, B.; Jammul, N.; Chehimi, M.M.; Jaubert, A.-S.; Arkam, C.; Delamar, M. XPS study of the adsorption mechanisms of DNA onto polypyrrole particles. Spectroscopy 2004, 18, 519–535. [Google Scholar] [CrossRef]
- Nunney, T.; Mack, P.; Simpson, R.; Passey, R.; Oppong-Mensah, H.; Baker, M.A. Extending XPS Surface Analysis with Correlative Spectroscopy and Microscopy. Microsc. Microanal. 2020, 26, 1016. [Google Scholar] [CrossRef]
- Vanea, E.; Simon, V. XPS study of protein adsorption onto nanocrystalline aluminosilicate microparticles. Appl. Surf. Sci. 2011, 257, 2346–2352. [Google Scholar] [CrossRef]
- Malatesta, M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int. J. Mol. Sci. 2021, 22, 12789. [Google Scholar] [CrossRef]
- Figueroa, V.; Velasco, B.; Arellano, L.G.; Domínguez-Arca, V.; Cambón, A.; Pardo, A.; Topete, A.; Rosales-Rivera, L.C.; Soltero, J.A.; Barbosa, S.; et al. Role of surface functionali-zation and biomolecule structure on protein corona adsorption and conformation onto anisotropic metallic nanoparticles. J. Mol. Liq. 2024, 398, 124240. [Google Scholar] [CrossRef]
- Asadi, J.; Ferguson, S.; Raja, H.; Hacker, C.; Marius, P.; Ward, R.; Pliotas, C.; Naismith, J.; Lucocq, J. Enhanced imaging of lipid rich na-noparticles embedded in methylcellulose films for transmission electron microscopy using mixtures of heavy metals. Micron 2017, 99, 40–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheibani, S.; Basu, K.; Farnudi, A.; Ashkarran, A.; Ichikawa, M.; Presley, J.F.; Bui, K.H.; Ejtehadi, M.R.; Vali, H.; Mahmoudi, M. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy. Nat. Commun. 2021, 12, 573. [Google Scholar] [CrossRef] [PubMed]
- Lostao, A.; Lim, K.; Pallarés, M.C.; Ptak, A.; Marcuello, C. Recent advances in sensing the inter-biomolecular interactions at the na-noscale—A comprehensive review of AFM-based force spectroscopy. Int. J. Biol. Macromol. 2023, 238, 124089. [Google Scholar] [CrossRef] [PubMed]
- Dubrovin, E.V.; Schächtele, M.; Klinov, D.V.; Schäffer, T.E. Time-Lapse Single-Biomolecule Atomic Force Microscopy Investigation on Modified Graphite in Solution. Langmuir 2017, 33, 10027–10034. [Google Scholar] [CrossRef] [PubMed]
- Clemente, E.; Martinez-Moro, M.; Trinh, D.N.; Soliman, M.G.; Spencer, D.I.R.; Gardner, R.A.; Kotsias, M.; Iglesias, A.S.; Moya, S.; Monopoli, M.P. Probing the glycans accessibility in the nanoparticle biomolecular corona. J. Colloid. Interface Sci. 2022, 613, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, B.; Shang, J. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin. Sci. Total Environ. 2022, 833, 155148. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Loya, J.; Lerma, M.; Gardea-Torresdey, J.L. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. Micromachines 2024, 15, 24. [Google Scholar] [CrossRef]
- Bélteky, P.; Rónavári, A.; Zakupszky, D.; Boka, E.; Igaz, N.; Szerencsés, B.; Pfeiffer, I.; Vágvölgyi, C.; Kiricsi, M.; Kónya, Z. Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions. Int. J. Nanomed. 2021, 16, 3021–3040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filippov, S.K.; Khusnutdinov, R.; Murmiliuk, A.; Inam, W.; Zakharova, L.Y.; Zhang, H.; Khutoryanskiy, V.V. Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results. Mater. Horiz. 2023, 10, 5354–5370. [Google Scholar] [CrossRef]
- Yang, H.; Hao, C.; Nan, Z.; Sun, R. Bovine hemoglobin adsorption onto modified silica nanoparticles: Multi-spectroscopic meas-urements based on kinetics and protein conformation. Int. J. Biol. Macromol. 2020, 155, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Kopaç, T.; Kulaç, E. Investigation of the interactions and adsorption of ovalbumin with titanium dioxide and zirconia surfaces. J. Fac. Eng. Arch. Gazi Univ. 2017, 32, 489–497. [Google Scholar] [CrossRef]
- Kopac, T.; Bozgeyik, K.; Flahaut, E. Adsorption and interactions of the bovine serum albu-min-double walled carbon nanotube system. J. Mol. Liq. 2018, 252, 1–8. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, H.; Li, D.; Xiao, Y.; Zhang, X. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Perez-Potti, A.; Lopez, H.; Pelaz, B.; Abdelmonem, A.; Soliman, M.G.; Schoen, I.; Kelly, P.M.; Dawson, K.A.; Parak, W.J.; Krpetic, Z.; et al. In depth characterisation of the biomolecular coronas of polymer coated inorganic nanoparticles with differential centrifugal sedimentation. Sci. Rep. 2021, 11, 6443. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ji, Y.; Wu, X.; Liu, R.; Chen, L.; Ge, G. Experimental determination and analysis of gold nanorod settlement by differential centrifugal sedimentation. RSC Adv. 2016, 6, 43496–43500. [Google Scholar] [CrossRef]
- Davidson, A.M.; Brust, M.; Cooper, D.L.; Volk, M. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Cen-trifugal Sedimentation. Anal. Chem. 2017, 89, 6807–6814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characterization Technique | Information Provided | Advantages | Limitations |
---|---|---|---|
UV–VIS Spectroscopy | Optical properties, concentration, hints on agglomeration state | Fast, simple | Low specificity; indirect for binding |
FTIR and Raman Spectroscopy | Chemical composition, functional group identification | Detects specific groups and conformational changes; high chemical specificity | Sample heating can be affected by aggregation |
X-Ray Photoelectron Spectroscopy (XPS) | Elemental composition and chemical states at the nanoparticle surface | High surface sensitivity; distinguishes functional groups | Surface only |
Transmission Electron Microscopy (TEM) | Morphology, size, and corona thickness of nanoparticles | High spatial resolution; can visualize corona formation | Drying may distort structure |
Atomic Force Microscopy (AFM) | Surface morphology, roughness, and interaction forces | Nanoscale resolution; detects topographical and mechanical changes | Requires immobilization; possible tip-sample artifacts |
Dynamic Light Scattering (DLS) | Hydrodynamic size and distribution of nanoparticles in suspension | Sensitive to size shifts from biomolecule binding. | Affected by aggregation and polydispersity |
Zeta Potential Analysis | Surface charge (zeta potential) of nanoparticles in suspensions | Sensitive to surface charge; fast and label-free | Affected by medium properties; indirect for binding |
Differential Centrifugal Sedimentation (DCS) | High-resolution particle size distribution and corona layer thickness | High resolution; detects small changes in surface mass | Less effective below ~5 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorohovs, M.; Dekhtyar, Y. Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules. Molecules 2025, 30, 3206. https://doi.org/10.3390/molecules30153206
Gorohovs M, Dekhtyar Y. Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules. Molecules. 2025; 30(15):3206. https://doi.org/10.3390/molecules30153206
Chicago/Turabian StyleGorohovs, Marks, and Yuri Dekhtyar. 2025. "Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules" Molecules 30, no. 15: 3206. https://doi.org/10.3390/molecules30153206
APA StyleGorohovs, M., & Dekhtyar, Y. (2025). Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules. Molecules, 30(15), 3206. https://doi.org/10.3390/molecules30153206