Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,153)

Search Parameters:
Keywords = biomass unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2781 KiB  
Article
Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach
by Jessica Valeria Lugo, Norah Nadia Sánchez Torres, Renan Douglas Lopes da Silva Cavalcante, Taynara Geysa Silva do Lago, João Alves de Lima, Jorge Javier Gimenez Ledesma and Oswaldo Hideo Ando Junior
Energies 2025, 18(17), 4473; https://doi.org/10.3390/en18174473 - 22 Aug 2025
Abstract
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and [...] Read more.
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and natural gas hybridization, coal and biomass hybridization, electricity and hydrogen cogeneration, coal and solar energy hybridization, post-combustion carbon capture systems, and decommissioning with subsequent reuse. The analysis combined bibliographic data (26 scientific articles and 13 patents) with surveys from 14 energy experts, using Total Decision version 1.2.1041.0 and Visual PROMETHEE version 1.1.0.0 software tools. Based on six criteria (environmental, structural, technical, technological, economic, and social), the most viable option was full conversion to natural gas (ϕ = +0.0368), followed by coal and natural gas hybridization (ϕ = +0.0257), and coal and solar hybridization (ϕ = +0.0124). These alternatives emerged as the most balanced in terms of emissions reduction, infrastructure reuse, and cost efficiency. In contrast, decommissioning (ϕ = −0.0578) and carbon capture systems (ϕ = −0.0196) were less favorable. This study proposes a structured framework for strategic energy planning that supports a just energy transition and contributes to the United Nations Sustainable Development Goals (SDGs) 7 and 13, highlighting the need for public policies that enhance the competitiveness and scalability of sustainable alternatives. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

25 pages, 2365 KiB  
Article
Decentralized Model for Sustainable Aviation Fuel (SAF) Production from Residual Biomass Gasification in Spain
by Carolina Santamarta Ballesteros, David Bolonio, María-Pilar Martínez-Hernando, David León, Enrique García-Franco and María-Jesús García-Martínez
Resources 2025, 14(9), 133; https://doi.org/10.3390/resources14090133 - 22 Aug 2025
Abstract
Decarbonizing air transport is a major challenge in the global energy transition since electrification is not yet feasible. Sustainable aviation fuel (SAF) is a promising solution because it can reduce CO2 emissions without major infrastructure changes. This study proposes a decentralized model [...] Read more.
Decarbonizing air transport is a major challenge in the global energy transition since electrification is not yet feasible. Sustainable aviation fuel (SAF) is a promising solution because it can reduce CO2 emissions without major infrastructure changes. This study proposes a decentralized model for producing SAF in Spain through the gasification of residual lignocellulosic biomass followed by a refinement process using Fischer–Tropsch (FT) synthesis. The model uses underexploited agricultural residues such as cereal straw, vine pruning, and olive pruning, converting them into syngas in medium-scale facilities situated near biomass sources. The syngas is then transported to a central upgrading unit to produce SAF compliant with ASTM D7566 standards. The following two configurations were evaluated: one with a single gasification plant and upgrading unit and another with three gasification plants supplying one central FT facility. Energy yields, capital and operational expenditures (CAPEX and OPEX), logistic costs, and the levelized cost of fuel (LCOF) were assessed. Under a conservative scenario using one-third of the available certain types of biomass from three regions of Spain, annual SAF production could reach 517.6 million liters, with unit costs ranging from 1.63 to 1.24 EUR/L and up to 47,060 tonnes of CO2 emissions avoided per year. The findings support the model’s technical and economic viability and its alignment with circular economy principles and climate policy goals. This approach offers a scalable and replicable pathway for decarbonizing the aviation sector using local renewable resources. Full article
Show Figures

Figure 1

19 pages, 1125 KiB  
Review
Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal
by Farabi Hossain, Md Enamul Hoque, Aftab Ahmad Khan and Md Arifuzzaman
Water 2025, 17(16), 2426; https://doi.org/10.3390/w17162426 - 17 Aug 2025
Viewed by 432
Abstract
Industrial wastewater pollution has reached acute levels in the environment; consequently, scientists are developing new sustainable treatment methods. Lignocellulosic biomass (LB) stands as a promising raw material because it originates from agricultural waste, forestry residues, and energy crop production. This review examines the [...] Read more.
Industrial wastewater pollution has reached acute levels in the environment; consequently, scientists are developing new sustainable treatment methods. Lignocellulosic biomass (LB) stands as a promising raw material because it originates from agricultural waste, forestry residues, and energy crop production. This review examines the application of nanomaterials derived from lignocellulosic resources in wastewater management, highlighting their distinctive physical and chemical properties, including a large surface area, adjustable porosity structure, and multifunctional group capability. The collection of nanomaterials incorporating cellulose nanocrystals (CNCs) with lignin nanoparticles, as well as biochar and carbon-based nanostructures, demonstrates high effectiveness in extracting heavy metals, dyes, and organic pollutants through adsorption, membrane filtration, and catalysis mechanisms. Nanomaterials have benefited from recent analytical breakthroughs that improve both their manufacturing potential and eco-friendly character through hybrid catalysis methods and functionalization procedures. This review demonstrates the ability of nanomaterials to simultaneously turn waste into valuable product while cleaning up the environment through their connection to circular bioeconomic principles and the United Nations Sustainable Development Goals (SDGs). This review addresses hurdles related to feedstock variability, production costs, and lifecycle impacts, demonstrating the capability of lignocellulosic nanomaterials to transform wastewater treatment operations while sustaining global sustainability. Full article
Show Figures

Figure 1

20 pages, 3131 KiB  
Article
Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye
by Semih Ediş
Forests 2025, 16(8), 1337; https://doi.org/10.3390/f16081337 - 16 Aug 2025
Viewed by 213
Abstract
Forest litter plays a critical role in regulating the water balance of forest ecosystems, particularly in semi-arid regions where hydrological stability is under pressure due to climate change. This study investigates the maximum water holding capacity (MWHC) of litter layers across three ecologically [...] Read more.
Forest litter plays a critical role in regulating the water balance of forest ecosystems, particularly in semi-arid regions where hydrological stability is under pressure due to climate change. This study investigates the maximum water holding capacity (MWHC) of litter layers across three ecologically distinct regions in Türkiye—Kastamonu, Kütahya, and Muğla—to evaluate how structural and physicochemical characteristics influence the maximum water holding capacity (MWHC) of litter layers. Litter samples classified into humus, fermenting debris, and needles were analyzed for MWHC, pH, electrical conductivity (EC), and total dissolved solids (TDSs). The results revealed that both the type of litter and regional ecological conditions significantly affect MWHC, with humus layers and moist environments exhibiting the highest water holding capacity. Additionally, MWHC showed moderate positive correlations with EC and TDS, highlighting the importance of chemical composition in water dynamics. The findings underscore that forest litter should be regarded as a dynamic and functional hydrological component, not merely residual biomass. This perspective is vital for sustainable watershed planning and adaptive forest management. The study supports the development of integrated management strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 6 (Clean Water and Sanitation), SDG 13 (Climate Action), and SDG 15 (Life on Land). Full article
Show Figures

Figure 1

28 pages, 1918 KiB  
Article
Environmental and Economic Optimisation of Single-Family Buildings Thermomodernisation
by Anna Sowiżdżał, Michał Kaczmarczyk, Leszek Pająk, Barbara Tomaszewska, Wojciech Luboń and Grzegorz Pełka
Energies 2025, 18(16), 4372; https://doi.org/10.3390/en18164372 - 16 Aug 2025
Viewed by 372
Abstract
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of [...] Read more.
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of building insulation, were analysed using energy performance certification methods. Results show that, from an energy perspective, the most advantageous scenarios are those utilising brine-to-water or air-to-water heat pumps supported by photovoltaic systems, reaching final energy demands as low as 43.5 kWh/m2year and primary energy demands of 41.1 kWh/m2year. Biomass boilers coupled with solar collectors delivered the highest renewable energy share (up to 99.2%); however, they resulted in less notable reductions in primary energy. Environmentally, all heat pump options removed local particulate emissions, with CO2 reductions of up to 87.5% compared to the baseline; biomass systems attained 100% CO2 reduction owing to renewable fuels. Economically, biomass boilers had the lowest unit energy production costs, while PV-assisted heat pumps faced the highest overall costs despite their superior environmental benefits. The findings highlight the trade-offs between ecological advantages, energy efficiency, and investment costs, offering a decision-making framework for the modernisation of sustainable residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

17 pages, 1029 KiB  
Article
Fertilisation Potential of Combined Use of Wood Biomass Ash and Digestate in Maize Cultivation
by Elżbieta Rolka, Mirosław Wyszkowski, Anna Skorwider-Namiotko and Radosław Szostek
Agronomy 2025, 15(8), 1968; https://doi.org/10.3390/agronomy15081968 - 15 Aug 2025
Viewed by 232
Abstract
In recent years, there has been growing interest in using wood biomass for energy production, which has led to an increase in post-processing waste in the form of wood biomass ash (WBA). Due to the rich composition of WBA, its fertilising potential should [...] Read more.
In recent years, there has been growing interest in using wood biomass for energy production, which has led to an increase in post-processing waste in the form of wood biomass ash (WBA). Due to the rich composition of WBA, its fertilising potential should be considered. In the conducted studies, WBA was used both alone and in combination with digestate (DG). The WBA was obtained from the Municipal Heat Energy Company and the DG from the Agricultural Biogas Plant in the form of unseparated liquid digestate (ULD), separated solid digestate (SSD) and separated liquid digestate (SLD). The studies included four series: (1) WBA, (2) WBA + ULD, (3) WBA + SSD and (4) WBA + SLD. In each series, WBA was introduced in three increasing doses (0.5, 1.0 and 1.5, expressed in hydrolytic acidity units (HACs) and determined based on the general alkalinity of the material). The digestates (DGs) were applied in fixed doses, which were balanced with respect to the nitrogen introduced into the soil. The test plant was the maize (Zea mays L.) variety Garantio, which was grown in a vegetation hall. The obtained results indicate that the combined use of WBA and DGs (especially ULD and SLD) had a positive effect on the plant height, leaf greenness index (SPAD), and thus, maize yield and dry matter content. In the series with DG addition, the maize yield ranged from 615.5 g (WBA + SSD) to 729.6 g pot−1 (WBA + SLD), which was 28–52% higher than in the series with WBA alone. In turn, the application of increasing doses of WBA alone did not significantly affect the biomass yield but significantly increased the content of N (34%), K (60%), Mg (56%), Ca (60%) and Na (4%). In the series with WBA and DGs, the increase in the content of the above-mentioned macronutrients depended on the type of DG and the dose of WBA. The exception among the macronutrients was P, whose content generally decreased (by 4–23%) with an increasing WBA dose, regardless of the test series. The most favourable results in terms of the chemical composition, excluding the P content, were observed following the combined application of WBA and liquid forms of DG (ULD and SLD). Full article
Show Figures

Figure 1

7 pages, 206 KiB  
Brief Report
A Library of Microsatellite Markers for Efficiently Characterizing the Aquatic Macrophyte Myriophyllum heterophyllum
by Lucas E. Bernacki
Hydrobiology 2025, 4(3), 21; https://doi.org/10.3390/hydrobiology4030021 - 15 Aug 2025
Viewed by 204
Abstract
Myriophyllum heterophyllum is an aquatic macrophyte that is invasive to the northeastern United States and several western European countries. Spreading by vegetative clonal propagation, especially fragmentation, extensive resources are devoted to limiting its growth and spread; however, genetic assessments are not typically included [...] Read more.
Myriophyllum heterophyllum is an aquatic macrophyte that is invasive to the northeastern United States and several western European countries. Spreading by vegetative clonal propagation, especially fragmentation, extensive resources are devoted to limiting its growth and spread; however, genetic assessments are not typically included in management strategies. Reduction in genetic (clonal) diversity should accompany biomass reduction, yet without genetic assessment, the efficacy of plant removal remains unclear. This paper is the first to describe a microsatellite marker library and its use in the characterization of Myriophyllum heterophyllum. Eighty-seven tissue samples were collected across the invasive distribution of Myriophyllum heterophyllum in Maine, USA. DNA was extracted, and PCR amplification was employed to screen 13 published microsatellites. Sequencing of the amplified loci was performed to characterize repeat motifs and confirm primer binding sites. Fragment sizing of PCR amplicons was employed to determine microsatellite lengths across the 87 samples. A total of 7 of the 13 tested markers were amplified, with six of those seven found to be variable. Polyploidy was evident from allelic diversity within individuals, although precise ploidy could not be determined. Observed heterozygosity ranged from 0.16 to 1.00 across variable markers. This seven-marker library was effective in characterizing the genetic diversity of both newly discovered (<5 years) and older (>50 years) infestations and is expected to be suitable for assessment of genetic diversity in populations within the native range of M. heterophyllum. The marker library also shows potential for use in several other Myriophyllum species. Full article
16 pages, 3173 KiB  
Article
A Quantitative Approach to Prior Setting for Relative Biomass (B/k) in CMSY++: Application to Snow Crabs (Chionoecetes opilio) in Korean Waters
by Ji-Hyun Eom, Sung-Il Lee and Sang-Chul Yoon
Fishes 2025, 10(8), 400; https://doi.org/10.3390/fishes10080400 - 11 Aug 2025
Viewed by 257
Abstract
Snow crabs (Chionoecetes opilio), a commercially valuable species in Korean waters, have been managed under the Total Allowable Catch (TAC) system since 2002. However, stock assessment has been limited due to difficulties in estimating key ecological traits such as growth, maturity, [...] Read more.
Snow crabs (Chionoecetes opilio), a commercially valuable species in Korean waters, have been managed under the Total Allowable Catch (TAC) system since 2002. However, stock assessment has been limited due to difficulties in estimating key ecological traits such as growth, maturity, and mortality. In this study, the Bayesian Schaefer Model (BSM), implemented within CMSY++ framework, was applied to assess the stock status of snow crabs in Korean waters. BSM requires catch and abundance index data, such as catch per unit effort (CPUE) or biomass, as well as prior information on species resilience and relative biomass (B/k). To improve the reliability of B/k priors, we developed a method to calculate them quantitatively using fishery data, sales amounts, and biological information, unlike the qualitative assumptions on stock and fishing conditions proposed in previous research. Two standardized CPUE indices with differing temporal trends in recent years were used as abundance indices. To address the structural uncertainty associated with these divergent trends, we applied a grid-based approach by treating each CPUE index as an independent model scenario and integrating the posterior distributions. A total of 12,000 posterior estimates (6000 per index) were generated through the BSM and used to construct a Kobe plot. Results indicate that the current biomass is slightly above the level supporting maximum sustainable yield, and fishing mortality slightly below the optimal level, suggesting that the stock is healthy and sustainably exploited. Future research should aim to establish a systematic framework for developing quantitative B/k priors to enhance stock assessment accuracy. Full article
(This article belongs to the Special Issue Modeling Approach for Fish Stock Assessment)
Show Figures

Figure 1

15 pages, 1544 KiB  
Article
Optimizing Scaled up Production and Purification of Recombinant Hydrophobin HFBI in Pichia pastoris
by Mason A. Kinkeade, Aurora L. Pagan and Bryan W. Berger
Microorganisms 2025, 13(8), 1845; https://doi.org/10.3390/microorganisms13081845 - 7 Aug 2025
Viewed by 379
Abstract
Hydrophobins are small, surface-active protein biosurfactants secreted by filamentous fungi with potential applications in industries such as pharmaceuticals, sanitation, and biomaterials. Additionally, hydrophobins are known to stabilize enzymatic processing of biomass for improved catalytic efficiency. In this study, Pichia pastoris was used to [...] Read more.
Hydrophobins are small, surface-active protein biosurfactants secreted by filamentous fungi with potential applications in industries such as pharmaceuticals, sanitation, and biomaterials. Additionally, hydrophobins are known to stabilize enzymatic processing of biomass for improved catalytic efficiency. In this study, Pichia pastoris was used to recombinantly express hydrophobin HFBI from Trichoderma reesei, a well-characterized fungal system used industrially for bioethanol production. Iterative optimization was performed on both the induction and purification of HFBI, ultimately producing yields of 86.6 mg/L HFBI and elution concentrations of 48 μM HFBI determined pure by SDS-PAGE, over a five-day methanol-fed batch shake flask induction regiment followed by a single unit operation multimodal cation exchange purification. This final purified material represents an improvement over prior approaches to enable a wider range of potential applications for biosurfactants. Full article
Show Figures

Graphical abstract

23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Viewed by 342
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

26 pages, 6044 KiB  
Article
Mapping Tradeoffs and Synergies in Ecosystem Services as a Function of Forest Management
by Hazhir Karimi, Christina L. Staudhammer, Matthew D. Therrell, William J. Kleindl, Leah M. Mungai, Amobichukwu C. Amanambu and C. Nathan Jones
Land 2025, 14(8), 1591; https://doi.org/10.3390/land14081591 - 4 Aug 2025
Viewed by 663
Abstract
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots [...] Read more.
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots in the Southeastern United States (SEUS) and the Pacific Northwest (PNW) forests. We used the InVEST suite of tools and GIS to quantify carbon storage and water yield. Carbon storage was estimated, stratified by forest group and age class, and literature-based biomass pool values were applied. Average annual water yield and its temporal changes (2001–2020) were modeled using the annual water yield model, incorporating precipitation, potential evapotranspiration, vegetation type, and soil characteristics. Ecosystem service outputs were classified to identify hotspot zones (top 20%) and to evaluate the synergies and tradeoffs between these services. Hotspots were then overlaid with forest management maps to examine their distribution across management types. We found that only 2% of the SEUS and 11% of the PNW region were simultaneous hotspots for both services. In the SEUS, ecological and preservation forest management types showed higher efficiency in hotspot allocation, while in PNW, production forestry contributed relatively more to hotspot areas. These findings offer valuable insights for decision-makers and forest managers seeking to preserve the multiple benefits that forests provide at regional scales. Full article
Show Figures

Figure 1

20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 618
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 562
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

19 pages, 2232 KiB  
Article
Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264
by Jonathan Uriel Hernández-Alonso, María Alejandra Pichardo-Sánchez, Sergio Huerta-Ochoa, Angélica Román-Guerrero, Oliverio Rodríguez-Fernández, Humberto Vázquez-Torres, Roberto Olayo-González, Roberto Olayo-Valles, Luis Víctor Rodríguez-Durán and Lilia Arely Prado-Barragán
Materials 2025, 18(15), 3577; https://doi.org/10.3390/ma18153577 - 30 Jul 2025
Viewed by 289
Abstract
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the [...] Read more.
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the synthesis of 3-hydroxy valerate (3HV) and co-polymerization of PHBV by Burkholderia thailandensis E264 (BtE264) was assessed. Thermogravimetric, XRD, NMR, and mechanical characterization were performed on the homopolymer (PHB) and co-polymer (PHBV), and compared to the PHBV-STD. BtE264 produced the co-polymer PHBV when adding any of the three co-substrates. LA showed a higher positive effect on microbial growth (8.4 g∙L−1) and PHBV production (3.91 g∙L−1), representing 78 and 22 mol % of 3HB and 3HV, respectively. The PHBV obtained with LA had a melting temperature (Tm) lower than the PHB homopolymer and presented lower values for melting enthalpies (ΔHf); the degree of crystallization and TGA values indicated that PHBV had better thermal stability. Additionally, FTIR and NMR revealed that BtE264 synthesizes PHBV with an organization in monomeric units (3HB-3HV), suggesting differentiated incorporation of the monomers, improving 3.4 times the break elongation the co-polymer’s tensile properties. This study highlights the co-substrates’ relevance in PHBV synthesis using BtE264 for the first time. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 234
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

Back to TopTop