Optimizing Scaled up Production and Purification of Recombinant Hydrophobin HFBI in Pichia pastoris
Abstract
1. Introduction
2. Materials and Methods
2.1. Four-Copy HFBI Yeast Transformation
2.2. Strain Selection
2.3. Chaperone Yeast Transformation
2.4. Induction Optimization
2.5. Purification Optimization
2.5.1. Harvesting
2.5.2. PTFE Wettability Test
2.5.3. Immobilized Metal Affinity Chromatography (IMAC)
2.5.4. Size Exclusion Chromatography
2.5.5. Multi-Modal Cation Exchange Chromatography
3. Results
3.1. Optimizing Induction
3.2. Optimizing Purification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPTG | Isopropyl β-D-1-thiogalactopyranoside |
His6 | Hexahistidine |
HA | Hemaglutinnin |
YNB | Yeast Nitrogen Base |
PERS | Pichia Electroporation Recovery Solution |
HRP | Horseradish peroxidase |
TBS-T | Tris-buffered saline with Tween 20 |
SDS | Sodium dodecyl sulfate |
NEB | New England Biolabs |
AOXI | Alcohol Oxidase 1 |
PTFE | Polytetrafluoroethylene |
IMAC | Immobilized Metal Affinity Chromatography |
CV | Column Volume |
MMC | Multimodal Chromatography |
REU | Research Experience(s) for Undergraduates |
References
- Berger, B.W.; Sallada, N.D. Hydrophobins: Multifunctional Biosurfactants for Interface Engineering. J. Biol. Eng. 2019, 13, 10. [Google Scholar] [CrossRef]
- Zong, Z.; He, R.; Fu, H.; Zhao, T.; Chen, S.; Shao, X.; Zhang, D.; Cai, W. Pretreating Cellulases with Hydrophobins for Improving Bioconversion of Cellulose: An Experimental and Computational Study. Green Chem. 2016, 18, 6666–6674. [Google Scholar] [CrossRef]
- Delmas, S.; Pullan, S.T.; Gaddipati, S.; Kokolski, M.; Malla, S.; Blythe, M.J.; Ibbett, R.; Campbell, M.; Liddell, S.; Aboobaker, A.; et al. Uncovering the Genome- Wide Transcriptional Responses of the Filamentous Fungus Aspergillus Niger to Lignocellulose Using RNA Sequencing. PLoS Genet. 2012, 8, e1002875. [Google Scholar] [CrossRef]
- Goldian, I.; Jahn, S.; Laaksonen, P.; Linder, M.; Kampf, N.; Klein, J. Modification of Interfacial Forces by Hydrophobin HFBI. Soft Matter 2013, 9, 10627–10639. [Google Scholar] [CrossRef]
- Badino, S.F.; Kari, J.; Christensen, S.J.; Borch, K.; Westh, P. Direct Kinetic Comparison of the Two Cellobiohydrolases Cel6A and Cel7A from Hypocrea Jecorina. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2017, 1865, 1739–1745. [Google Scholar] [CrossRef]
- Nevalainen, H.; Suominen, P.; Taimisto, K. On the Safety of Trichoderma Reesei. J. Biotechnol. 1994, 37, 193–200. [Google Scholar] [CrossRef]
- Bischof, R.H.; Ramoni, J.; Seiboth, B. Cellulases and beyond: The First 70 Years of the Enzyme Producer Trichoderma Reesei. Microb. Cell Factories 2016, 15, 106. [Google Scholar] [CrossRef]
- Schmoll, M. Trichoderma Reesei. Trends Microbiol. 2022, 30, 403–404. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC. Available online: https://www.pymol.org (accessed on 28 July 2025).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Eisenberg, D.; Schwarz, E.; Komaromy, M.; Wall, R. Analysis of Membrane and Surface Protein Sequences with the Hydrophobic Moment Plot. J. Mol. Biol. 1984, 179, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Vigil, T.N.; Felton, S.M.; Fahy, W.E.; Kinkeade, M.A.; Visek, A.M.; Janiga, A.R.; Jacob, S.G.; Berger, B.W. Biosurfactants as Templates to Inspire New Environmental and Health Applications. Front. Synth. Biol. 2024, 2. [Google Scholar] [CrossRef]
- Sallada, N.; Li, Y.; Berger, B.; Lamm, M.S. Engineered hydrophobin as a crystallization inhibitor for flufenamic acid. ACS Appl. Bio Mater. 2021, 4, 6441–6450. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, J.; Chen, Y.; Song, D.; Gao, Z.; Zhang, X.; Bai, Y.; Saris, P.E.J.; Feng, H.; Xu, H.; et al. Design of Antibacterial Biointerfaces by Surface Modification of Poly (ε-Caprolactone) with Fusion Protein Containing Hydrophobin and PA-1. Colloids Surf. B Biointerfaces 2017, 151, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Han, Y.; Yang, F.; Guan, L.; Lu, F.; Mao, S.; Tian, K.; Yao, M.; Qin, H.-M. A Customized Self-Assembled Synergistic Biocatalyst for Plastic Depolymerization. J. Hazard. Mater. 2024, 477, 135380. [Google Scholar] [CrossRef]
- Al-Terke, H.H.; Beaune, G.; Junaid, M.; Seitsonen, J.; Paananen, A.; Metrangolo, P.; Timonen, J.V.I.; Joensuu, J.; Ras, R.H.A. Hydrophobin-Coated Echogenic Microbubbles for Molecular Targeting of Tumor Cells. Adv. Sci. 2025, 12, 2401526. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Wang, H.C.; Qin, X.; Wang, X.S.; Qiao, M.Q.; Anzai, J.; Chen, Q. Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf. B Biointerfaces 2009, 71, 102–106. [Google Scholar] [CrossRef]
- Khalesi, M.; Zune, Q.; Telek, S.; Riveros-Galan, D.; Verachtert, H.; Toye, D.; Gebruers, K.; Derdelinckx, G.; Delvigne, F. Fungal Biofilm Reactor Improves the Productivity of Hydrophobin HFBII. Biochem. Eng. J. 2014, 88, 171–178. [Google Scholar] [CrossRef]
- Askolin, S.; Nakari-Setälä, T.; Tenkanen, M. Overproduction, Purification, and Characterization of the Trichoderma Reesei Hydrophobin HFBI. Appl. Microbiol. Biotechnol. 2001, 57, 124–130. [Google Scholar] [CrossRef]
- Linder, M.; Selber, K.; Nakari-Setälä, T.; Qiao, M.; Kula, M.-R.; Penttilä, M. The Hydrophobins HFBI and HFBII from Trichoderma Reesei Showing Efficient Interactions with Nonionic Surfactants in Aqueous Two-Phase Systems. Biomacromolecules 2001, 2, 511–517. [Google Scholar] [CrossRef]
- Tagu, D.; De Bellis, R.; Balestrini, R.; De Vries, O.M.H.; Piccoli, G.; Stocchi, V.; Bonfante, P.; Martin, F. Immunolocalization of Hydrophobin HYDPt-1 from the Ectomycorrhizal Basidiomycete Pisolithus Tinctorius during Colonization of Eucalyptus Globulus Roots. New Phytol. 2001, 149, 127–135. [Google Scholar] [CrossRef]
- Sallada, N.D. Overproduction and Initial Characterization of a Class II Hydrophobin Fusion Protein Heterologously Produced in Pichia Pastoris. Master’s Thesis, Lehigh University, Bethlehem, PA, USA, 2017. [Google Scholar]
- Niu, B.; Wang, D.; Yang, Y.; Xu, H.; Qiao, M. Heterologous Expression and Characterization of the Hydrophobin HFBI in Pichia Pastoris and Evaluation of Its Contribution to the Food Industry. Amino Acids 2012, 43, 763–771. [Google Scholar] [CrossRef]
- Winterburn, J. Production of biosurfactant by fermentation with integral foam fractionation. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2011. [Google Scholar]
- Lohrasbi-Nejad, A.; Torkzadeh-Mahani, M.; Hosseinkhani, S. Heterologous Expression of a Hydrophobin HFB1 and Evaluation of Its Contribution to Producing Stable Foam. Protein Expr. Purif. 2016, 118, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Sallada, N.D.; Harkins, L.E.; Berger, B.W. Effect of Gene Copy Number and Chaperone Coexpression on Recombinant Hydrophobin HFBI Biosurfactant Production in Pichia Pastoris. Biotechnol. Bioeng. 2019, 116, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Sallada, N.D.; Dunn, K.J.; Berger, B.W. A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin. Biochemistry 2018, 57, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Western Blot Protocol. Available online: https://www.abcam.com/en-us/technical-resources/protocols/western-blot (accessed on 23 July 2025).
- Criterion Blotter Instruction Manual. Available online: https://www.bio-rad.com/webroot/web/pdf/lsr/literature/4006190b.pdf (accessed on 23 July 2025).
- Quick Start Bradford Protein Assay Instruction Manual. Available online: https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/4110065A.pdf (accessed on 23 July 2025).
- Riccobelli, D.; Al-Terke, H.H.; Laaksonen, P.; Metrangolo, P.; Paananen, A.; Ras, R.H.A.; Ciarletta, P.; Vella, D. Flattened and Wrinkled Encapsulated Droplets: Shape Morphing Induced by Gravity and Evaporation. Phys. Rev. Lett. 2023, 130, 218202. [Google Scholar] [CrossRef]
- Mann, M.M.; Berger, B.W. A Genetically-Encoded Biosensor for Direct Detection of Perfluorooctanoic Acid. Sci. Rep. 2023, 13, 15186. [Google Scholar] [CrossRef]
- PD-10 Desalting Column Product Booklet. Available online: https://www.cytivalifesciences.com/en/us/shop/chromatography/prepacked-columns/desalting-and-buffer-exchange/sephadex-g-25-in-pd-10-desalting-columns-p-05778 (accessed on 28 July 2025).
- Capto MMC ImpRes Resin. Available online: https://cdn.cytivalifesciences.com/api/public/content/digi-16468-pdf?_gl=1*2gezrb*_gcl_au*MTUzNjc1MzI2MC4xNzUzNzM0MzQx*_ga*NTA2MTc4NTY4LjE3NTM3MzQzNDI.*_ga_CS9H0CZBWW*czE3NTM3OTUzOTYkbzIkZzEkdDE3NTM3OTU5MDckajYwJGwwJGgw (accessed on 28 July 2025).
- Kozlowski, L.P. IPC—Isoelectric Point Calculator. Biol. Direct 2016, 11, 55. [Google Scholar] [CrossRef]
- Cytiva Multimodal Chromatography Handbook. Available online: https://cdn.cytivalifesciences.com/api/public/content/digi-16870-pdf?_gl=1*r1pcr1*_gcl_au*MTUzNjc1MzI2MC4xNzUzNzM0MzQx*_ga*NTA2MTc4NTY4LjE3NTM3MzQzNDI.*_ga_CS9H0CZBWW*czE3NTM3OTUzOTYkbzIkZzEkdDE3NTM3OTU2MDYkajYwJGwwJGgw (accessed on 28 July 2025).
- Reis, N.; Gonçalves, C.N.; Vicente, A.A.; Teixeira, J.A. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses. Biotechnol. Bioeng. 2006, 95, 744–753. [Google Scholar] [CrossRef]
- El Enshasy, H.; Abdel-Fattah, Y.; Kenawy, A.; Anwar, M.; Omar, H.; Magd, S.; Zahra, R. Kinetics of Cell Growth and Cyclosporin A Production by Tolypocladium Inflatum When Scaling up from Shake Flask to Bioreactor. J. Microbiol. Biotechnol. 2008, 18, 128–134. [Google Scholar]
- Rehman, S.; Shawl, A.S.; Kour, A.; Sultan, P.; Ahmad, K.; Khajuria, R.; Qazi, G.N. Comparative Studies and Identification of Camptothecin Produced by an Endophyte at Shake Flask and Bioreactor. Nat. Prod. Res. 2009, 23, 1050–1057. [Google Scholar] [CrossRef]
- Chin, W.Y.W.; Annuar, M.S.M.; Tan, B.C.; Khalid, N. Evaluation of a Laboratory Scale Conventional Shake Flask and a Bioreactor on Cell Growth and Regeneration of Banana Cell Suspension Cultures. Sci. Hortic. 2014, 172, 39–46. [Google Scholar] [CrossRef]
- Ahmadi-Sakha, S.; Sharifi, M.; Niknam, V.; Ahmadian-Chashmi, N. Phenolic Compounds Profiling in Shake Flask and Bioreactor System Cell Cultures of Scrophularia Striata Boiss. Vitr. Cell. Dev. Biol.—Plant 2018, 54, 444–453. [Google Scholar] [CrossRef]
Column | Load Volume [mL] | Elution Fraction Volume [mL] | Elution Concentration [μM] |
---|---|---|---|
1 mL HiTrap NH4Cl elution | 20 | 2 | 5.4–7.5 |
40 | 2 | 14–18 | |
50 | 2 | 22–24 | |
100 | 2 | 20–26 | |
4.7 mL HiScreen NaOH elution | 15 | 5 | 14–26 |
25 | 5 | 28–32 | |
50 | 5 | 45–48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinkeade, M.A.; Pagan, A.L.; Berger, B.W. Optimizing Scaled up Production and Purification of Recombinant Hydrophobin HFBI in Pichia pastoris. Microorganisms 2025, 13, 1845. https://doi.org/10.3390/microorganisms13081845
Kinkeade MA, Pagan AL, Berger BW. Optimizing Scaled up Production and Purification of Recombinant Hydrophobin HFBI in Pichia pastoris. Microorganisms. 2025; 13(8):1845. https://doi.org/10.3390/microorganisms13081845
Chicago/Turabian StyleKinkeade, Mason A., Aurora L. Pagan, and Bryan W. Berger. 2025. "Optimizing Scaled up Production and Purification of Recombinant Hydrophobin HFBI in Pichia pastoris" Microorganisms 13, no. 8: 1845. https://doi.org/10.3390/microorganisms13081845
APA StyleKinkeade, M. A., Pagan, A. L., & Berger, B. W. (2025). Optimizing Scaled up Production and Purification of Recombinant Hydrophobin HFBI in Pichia pastoris. Microorganisms, 13(8), 1845. https://doi.org/10.3390/microorganisms13081845