A Library of Microsatellite Markers for Efficiently Characterizing the Aquatic Macrophyte Myriophyllum heterophyllum
Abstract
1. Introduction
1.1. Plant Life History
1.2. Goals and Rationale of Study
2. Materials and Methods
2.1. Sample Collection and Species Identification
2.2. Amplification, Sequencing, and Fragment Analysis
2.3. Data Analysis
3. Results
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Halstead, J.M.; Michaud, J.; Hallas-Burt, S.; Gibbs, J.P. Hedonic analysis of effects of a nonnative invader (Myriophyllum heterophyllum) on New Hampshire (USA) lakefront properties. Environ. Manag. 2003, 32, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Heidbüchel, P.; Sachs, M.; Stanik, N.; Hussner, A. Species-specific fragmentation rate and colonization potential partly explain the successful spread of aquatic plants in lowland streams. Hydrobiologia 2019, 843, 107–123. [Google Scholar] [CrossRef]
- Eckert, C.G.; Dorken, M.E.; Barrett, S.C.H. Ecological and evolutionary consequences of sexual and clonal reproduction in aquatic plants. Aquat. Bot. 2016, 135, 46–61. [Google Scholar] [CrossRef]
- Li, W. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquat. Bot. 2014, 118, 62–70. [Google Scholar] [CrossRef]
- Moody, M.L.; Les, D.H. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc. Nat. Acad. Sci. USA 2002, 99, 14867–14871. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.M.; Groffier, H.; Pestelard, C.; Hussner, A. Ecology and environmental impact of Myriophyllum heterophyllum, an aggressive invader in European waterways. Diversity 2020, 12, 127. [Google Scholar] [CrossRef]
- Minnesota Department of Natural Resources Rare Species Guide, Myriophyllum heterophyllum. Available online: https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=PDHAL04060 (accessed on 6 June 2025).
- Bickel, T.O. A boat hitchhiker’s guide to survival: Cabomba caroliniana desiccation resistance and survival ability. Hydrobiologia 2015, 746, 123–134. [Google Scholar] [CrossRef]
- Bruckerhoff, L.; Havel, J.; Knight, S. Survival of invasive aquatic plants after air exposure and implications for dispersal by recreational boats. Hydrobiologia 2015, 746, 113–121. [Google Scholar] [CrossRef]
- Maine Department of Environmental Protection Invasive Aquatic Plant Map. Available online: https://www.arcgis.com/apps/mapviewer/index.html?webmap=126b9dbc59f44f969f74739bc9bc4ade (accessed on 6 June 2025).
- Cameron, D.; (Maine Natural Areas Program, Augusta, ME, USA). Personal communication, 2024.
- Thum, R.A.; Zuellig, M.P.; Johnson, R.L.; Moody, M.L.; Vossbrinck, C. Molecular markers reconstruct the invasion history of variable leaf watermilfoil (Myriophyllum heterophyllum) and distinguish it from closely related species. Biol. Invasions 2011, 13, 1687–1709. [Google Scholar] [CrossRef]
- Maine Department of Environmental Protection Courtesy Boat Inspections. Available online: https://www.maine.gov/dep/water/invasives/inspect.html#:~:text=Background,with%20grant%20oversight%20and%20communications (accessed on 6 June 2025).
- Thum, R.A.; Lennon, J.T.; Connor, J.; Smagula, A.P. A DNA Fingerprinting approach for distinguishing native and non-native milfoils. Lake Reserv. Manag. 2006, 22, 1–6. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, D.; Xu, X. Development of microsatellite markers in the hexaploid aquatic macrophyte, Myriophyllum spicatum (Haloragaceae). Appl. Plant Sci. 2013, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R. Conservation Genetics. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 382–390. ISBN 9780444641304. [Google Scholar] [CrossRef]
- Soltis, P.S.; Soltis, D.E. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. USA 2000, 97, 7051–7057. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, T.; Roschanski, A.M.; Pannell, J.R.; Korbecka, G.; Schnittler, M. Characterization of microsatellite loci and reliable genotyping in a polyploid plant, Mercurialis perennis (Euphorbiaceae). J. Hered. 2011, 102, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Balloux, F.; Lehmann, L.; de Meeûs, T. The population genetics of clonal and partially clonal diploids. Genetics 2003, 164, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Heidbüchel, P.; Kuntz, K.; Hussner, A. Alien aquatic plants do not have higher fragmentation rates than native species: A field study from the River Erft. Aquat. Sci. 2016, 78, 767–777. [Google Scholar] [CrossRef]
- Bernacki, L.E.; (Saint Joseph’s College of Maine, Standish, ME, USA). Unpublished work. 2023.
Marker | Primer Sequences (5′-3′) | Repeat Motif(s) | TA °C | Allele Size Range |
---|---|---|---|---|
Myrsp4 | F: ACTGGCTAATGATATGCTGA R: TCTTTCCACGCCTCTTC | (TA)3 (CA)11 | 52 | 244–272 |
Myrsp6 | F: TAACAAACCGTACATTACAAGC R: TTTCTCTGGGAGCCATAAC | (TC)6 | 59 | 146–154 |
Myrsp8 | F: GCACCATTAGGAGGAGAAC R: CTGCCGAAGATGAAACG | (TC)3 (CAAG)2 | 59 | 274 |
Myrsp12 | F: CGCTTCACAAGTATtctg | (TA)3 (TC)9 (CA)5 | 51.4 | 358–385 |
R: TTCATGGTAGCCGTCA | ||||
Myrsp14 | F: TTCCCATCCTTCTCCTG | (TA)2 (TG)4 (AG)4 | 50 | 293–307 |
R: CCAAGTAAGTGTCCCAAAC | ||||
Myrsp15 | F: TCTTTCCACGCCTCTTC | (TG)5 (AG)7 | 50 | 244–285 |
R: ACTGGCTAATGATATGCTGA | ||||
Myrsp16 | F: GGCTGCCCTATGCTAA | (TG)3 (TATG)2 (TA)3 | 54 | 182–192 |
R: ATCCCACTGAAGTCAAACT |
Sebago (n = 25) | Belgrade (n = 30) | Downeast (n = 32) | |||||
---|---|---|---|---|---|---|---|
Locus | Am | A | Ho | A | Ho | A | Ho |
Myrsp4 | 3 | 5 | 0.720 | 4 | 0.967 | 3 | 0.031 |
Myrsp6 | 2 | 4 | 0.160 | 2 | 0.500 | 1 | 0.000 |
Myrsp8 | 1 | 1 | 0.000 | - | - | - | - |
Myrsp12 | 3 | - | - | 3 | 1.000 | 4 | 0.968 |
Myrsp14 | 1 | - | - | 1 | 0.367 | 1 | 0.000 |
Myrsp15 | 3 | - | - | 3 | 0.967 | 3 | 0.313 |
Myrsp16 | 3 | - | - | 2 | 1.000 | 3 | 0.313 |
Mean | 2.429 | 3.333 | 0.293 | 2.667 | 0.800 | 2.500 | 0.271 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernacki, L.E. A Library of Microsatellite Markers for Efficiently Characterizing the Aquatic Macrophyte Myriophyllum heterophyllum. Hydrobiology 2025, 4, 21. https://doi.org/10.3390/hydrobiology4030021
Bernacki LE. A Library of Microsatellite Markers for Efficiently Characterizing the Aquatic Macrophyte Myriophyllum heterophyllum. Hydrobiology. 2025; 4(3):21. https://doi.org/10.3390/hydrobiology4030021
Chicago/Turabian StyleBernacki, Lucas E. 2025. "A Library of Microsatellite Markers for Efficiently Characterizing the Aquatic Macrophyte Myriophyllum heterophyllum" Hydrobiology 4, no. 3: 21. https://doi.org/10.3390/hydrobiology4030021
APA StyleBernacki, L. E. (2025). A Library of Microsatellite Markers for Efficiently Characterizing the Aquatic Macrophyte Myriophyllum heterophyllum. Hydrobiology, 4(3), 21. https://doi.org/10.3390/hydrobiology4030021