Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = biological clocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9603 KB  
Article
Pinealectomy-Induced Neuroinflammation Varies with Age in Rats
by Dimitrinka Atanasova, Desislava Krushovlieva, Pavel Rashev, Milena Mourdjeva, Despina Pupaki and Jana Tchekalarova
Int. J. Mol. Sci. 2025, 26(16), 8093; https://doi.org/10.3390/ijms26168093 - 21 Aug 2025
Viewed by 202
Abstract
It is widely accepted that chronic inflammation constitutes a significant mechanism that promotes the biological aging process. The pineal gland is regarded as being closely related to the control of the “life clock”. The present study aimed to determine the inflammation associated with [...] Read more.
It is widely accepted that chronic inflammation constitutes a significant mechanism that promotes the biological aging process. The pineal gland is regarded as being closely related to the control of the “life clock”. The present study aimed to determine the inflammation associated with pinealectomy in the rat hippocampus and to investigate the extent to which age stage impacts the severity of this inflammation. We evaluated the expression of the Akt/NF-kB signaling pathway in neurons and gliosis level in the dorsal hippocampus (dHipp) of rats subjected to sham surgery or pinealectomy at 3, 14, or 18 months of age. The assessment was conducted using immunohistochemistry. Removal of the pineal gland resulted in significant, region-specific increases in NF-kB expression in neurons of the dHipp in the youngest and middle-aged groups. However, the change in expression of the phosphorylated form of Akt (pAkt1) in neurons went in the opposite direction in these two age groups, and there were also regional differences. Pinealectomy triggered microgliosis in both young and old rats, but middle-aged rats were resistant to microglia activation. Conversely, astrogliosis was observed in young adult and middle-aged groups with melatonin deficiency in certain regions of the dHipp. It is noteworthy that young adult rats demonstrated the highest degree of vulnerability to inflammation associated with the loss of melatonin as a hormone. In contrast, middle-aged rats with pinealectomy exhibited a complex and partial adaptive response. These findings emphasize the dynamic and age-dependent nature of neuroinflammation following pinealectomy, underscoring the developmental stage as a critical determinant of inflammatory susceptibility. Full article
Show Figures

Figure 1

23 pages, 1044 KB  
Review
Cellular Models of Aging and Senescence
by Byunggik Kim, Dong I. Lee, Nathan Basisty and Dao-Fu Dai
Cells 2025, 14(16), 1278; https://doi.org/10.3390/cells14161278 - 18 Aug 2025
Viewed by 531
Abstract
Aging, a state of progressive decline in physiological function, is an important risk factor for chronic diseases, ranging from cancer and musculoskeletal frailty to cardiovascular and neurodegenerative diseases. Understanding its cellular basis is critical for developing interventions to extend human health span. This [...] Read more.
Aging, a state of progressive decline in physiological function, is an important risk factor for chronic diseases, ranging from cancer and musculoskeletal frailty to cardiovascular and neurodegenerative diseases. Understanding its cellular basis is critical for developing interventions to extend human health span. This review highlights the crucial role of in vitro models, discussing foundational discoveries like the Hayflick limit and the senescence-associated secretory phenotype (SASP), the utility of immortalized cell lines, and transformative human induced pluripotent stem cells (iPSCs) for aging and disease modeling and rejuvenation studies. We also examine methods to induce senescence and discuss the distinction between chronological time and biological clock, with examples of applying cells from progeroid syndromes and mitochondrial diseases to recapitulate some signaling mechanisms in aging. Although no in vitro model can perfectly recapitulate organismal aging, well-chosen models are invaluable for addressing specific mechanistic questions. We focus on experimental strategies to manipulate cellular aging: from “steering” cells toward resilience to “reversing” age-related phenotypes via senolytics, partial epigenetic reprogramming, and targeted modulation of proteostasis and mitochondrial health. This review ultimately underscores the value of in vitro systems for discovery and therapeutic testing while acknowledging the challenge of translating insights from cell studies into effective, organism-wide strategies to promote healthy aging. Full article
(This article belongs to the Special Issue Experimental Systems to Model Aging Processes)
Show Figures

Graphical abstract

28 pages, 1135 KB  
Review
Protein Marker-Dependent Drug Discovery Targeting Breast Cancer Stem Cells
by Ashley V. Huang, Yali Kong, Kan Wang, Milton L. Brown and David Mu
Int. J. Mol. Sci. 2025, 26(16), 7935; https://doi.org/10.3390/ijms26167935 - 17 Aug 2025
Viewed by 486
Abstract
Breast cancer is one of the most common cancers globally. Unfortunately, many patients with breast cancer develop resistance to chemotherapy and tumor recurrence, which is primarily driven by breast cancer stem cells (BCSCs). BCSCs behave like stem cells and can self-renew and differentiate [...] Read more.
Breast cancer is one of the most common cancers globally. Unfortunately, many patients with breast cancer develop resistance to chemotherapy and tumor recurrence, which is primarily driven by breast cancer stem cells (BCSCs). BCSCs behave like stem cells and can self-renew and differentiate into mature tumor cells, enabling the cancer to regrow and metastasize. Key markers like CD44 and aldehyde dehydrogenase-1 (ALDH1), along with pathways like Wingless-related integration site (Wnt), Notch, and Hedgehog, are critical to regulating this stem-like behavior of BCSCs and, thus, are being investigated as targets for various new therapies. This review summarizes marker-dependent strategies for targeting BCSCs and expands on the challenges for the development of anti-BCSC drugs. We explore cutting-edge approaches like artificial intelligence (AI)-driven drug discovery and urge readers to seriously consider biological clocks and chronotherapy as experimental variables in drug discovery. Collectively, the task of cancer researchers is to overcome the many hurdles targeting BCSCs if we hope to tangibly improve breast cancer treatment outcomes and reduce mortality. Full article
(This article belongs to the Collection Feature Papers in Molecular Oncology)
Show Figures

Figure 1

13 pages, 1009 KB  
Article
Analysis of Selective Pressure on Ancient Human Mitochondrial Genomes Reveals the Presence of Widespread Sequencing Artefacts
by Pedro Fernandes, Bernardo Pinho, Bárbara Miguéis, João B. Almeida, Teresa Rito and Pedro Soares
Int. J. Mol. Sci. 2025, 26(16), 7739; https://doi.org/10.3390/ijms26167739 - 11 Aug 2025
Viewed by 954
Abstract
Human mitochondrial DNA (mtDNA) is a relevant marker in evolutionary and population genetics, including ancient DNA (aDNA) research, due to inherent characteristics. However, aDNA is prone to damage and sequencing artefacts, potentially confounding evolutionary interpretations. To assess evolutionary patterns in ancient and modern [...] Read more.
Human mitochondrial DNA (mtDNA) is a relevant marker in evolutionary and population genetics, including ancient DNA (aDNA) research, due to inherent characteristics. However, aDNA is prone to damage and sequencing artefacts, potentially confounding evolutionary interpretations. To assess evolutionary patterns in ancient and modern mtDNA, we built a phylogeny comprising 63,965 modern and 3757 ancient public mitogenomes, classified mutations by genomic region and functional effect, and analysed distribution, frequency, and predicted pathogenicity of private and pre-terminal mutations, investigating purifying selection. We compared mutation class ratios (non-synonymous, rRNA, tRNA, nonsense vs. synonymous) across ancient and modern terminal branches and pre-terminal nodes. The predicted pathogenicity of non-synonymous mutations was evaluated across major European haplogroups using three tools. Ancient variants exhibited higher ratios of potentially deleterious mutations and significantly elevated pathogenicity scores compared to modern and pre-terminal branches, highlighting a mutation load likely inflated by damage-related artefacts. Remarkably, nonsense mutations—largely incompatible with life—were over 70 times more frequent in aDNA. The correlation between mutation ratios and predicted deleteriousness across haplogroups suggests a pattern incompatible with biological persistence or relaxed selection alone. These findings highlight the importance of rigorous quality control for ancient data in evolutionary inference, molecular clock calibration, and pathogenic variant identification. Full article
(This article belongs to the Special Issue Molecular Updates and Applications in Forensic Medicine)
Show Figures

Graphical abstract

13 pages, 1425 KB  
Article
Psychology or Physiology? Choosing the Right Color for Interior Spaces to Support Occupants’ Healthy Circadian Rhythm at Night
by Mansoureh Sadat Jalali, Ronald B. Gibbons and James R. Jones
Buildings 2025, 15(15), 2665; https://doi.org/10.3390/buildings15152665 - 28 Jul 2025
Viewed by 646
Abstract
The human circadian rhythm is connected to the body’s endogenous clock and can influence people’s natural sleeping habits as well as a variety of other biological functions. According to research, various electric light sources in interior locations can disrupt the human circadian rhythm. [...] Read more.
The human circadian rhythm is connected to the body’s endogenous clock and can influence people’s natural sleeping habits as well as a variety of other biological functions. According to research, various electric light sources in interior locations can disrupt the human circadian rhythm. Many psychological studies, on the other hand, reveal that different colors can have varied connections with and a variety of effects on people’s emotions. In this study, the effects of light source attributes and interior space paint color on human circadian rhythm were studied using 24 distinct computer simulations. Simulations were performed using the ALFA plugin for Rhinoceros 6 on an unfurnished bedroom 3D model at night. Results suggest that cooler hues, such as blue, appear to have an unfavorable effect on human circadian rhythm at night, especially when utilized in spaces that are used in the evening, which contradicts what psychologists and interior designers advocate in terms of the soothing mood and nature of the color. Furthermore, the effects of Correlated Color Temperature (CCT) and the intensity of a light source might be significant in minimizing melanopic lux to prevent melatonin suppression at night. These insights are significant for interior designers, architects, and lighting professionals aiming to create healthier living environments by carefully selecting lighting and color schemes that support circadian health. Incorporating these considerations into design practices can help mitigate adverse effects on sleep and overall well-being, ultimately contributing to improved occupant comfort and health. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

35 pages, 638 KB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Cited by 1 | Viewed by 960
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

13 pages, 436 KB  
Opinion
It Is Time to Consider the Lost Battle of Microdamaged Piezo2 in the Context of E. coli and Early-Onset Colorectal Cancer
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7160; https://doi.org/10.3390/ijms26157160 - 24 Jul 2025
Viewed by 511
Abstract
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, [...] Read more.
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, including lifestyle and diet, are highly suspected. The identification of colibactin from Escherichia coli as a potential pathogenic source is a major step forward in addressing this public health challenge. Therefore, the following opinion manuscript aims to outline the likely onset of the pathomechanism and the critical role of acquired Piezo2 channelopathy in early-onset colorectal cancer, which skews proton availability and proton motive force regulation toward E. coli within the microbiota–host symbiotic relationship. In addition, the colibactin produced by the pks island of E. coli induces host DNA damage, which likely interacts at the level of Wnt signaling with Piezo2 channelopathy-induced pathological remodeling. This transcriptional dysregulation eventually leads to tumorigenesis of colorectal cancer. Mechanotransduction converts external physical cues to inner chemical and biological ones. Correspondingly, the proposed quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling, initiated by Piezo2, seems to be the principal and essential underlying novel oscillatory signaling that could be lost in colorectal cancer onset. Hence, Piezo2 channelopathy not only contributes to cancer initiation and impaired circadian regulation, including the proposed hippocampal ultradian clock, but also to proliferation and metastasis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

26 pages, 694 KB  
Article
The Owls Are Not What They Seem: Health, Mood, and Sleep Problems Reported by Morning and Evening Types with Atypical Timing of Weekend Sleep
by Arcady A. Putilov, Evgeniy G. Verevkin, Dmitry S. Sveshnikov, Zarina V. Bakaeva, Elena B. Yakunina, Olga V. Mankaeva, Vladimir I. Torshin, Elena A. Trutneva, Michael M. Lapkin, Zhanna N. Lopatskaya, Roman O. Budkevich, Elena V. Budkevich, Natalya V. Ligun, Alexandra N. Puchkova and Vladimir B. Dorokhov
Clocks & Sleep 2025, 7(3), 35; https://doi.org/10.3390/clockssleep7030035 - 11 Jul 2025
Viewed by 581
Abstract
Morningness-eveningness is usually assessed as either a trait or a state using either a morning–evening preference scale or sleep timing reported for free days, respectively. These assessments were implemented in numerous studies exploring the associations between morningness-eveningness and health, mood, and sleep problems. [...] Read more.
Morningness-eveningness is usually assessed as either a trait or a state using either a morning–evening preference scale or sleep timing reported for free days, respectively. These assessments were implemented in numerous studies exploring the associations between morningness-eveningness and health, mood, and sleep problems. Evening types almost always had more problems than morning types. We examined these associations in university students with conflicting results of trait and state assessments of morningness-eveningness and tried to confirm their chronotype using a multidimensional chronotyping approach that recognizes four types other than morning and evening (lethargic, vigilant, napping, and afternoon). The conflicting trait and state assessments of morningness-eveningness were found in 141 of 1582 students. Multidimensional chronotyping supported morningness of morning types with late weekend sleep timing, and the associations with health, mood, and sleep problems resembled the associations of other morning types (i.e., these associations persisted despite late sleep timing). In contrast, evening types with early weekend sleep timing were more likely classified as lethargic or napping types rather than evening types. They did not resemble evening types in their associations with health, mood, and sleep problems (i.e., early sleep timing did not change these associations). Model-based simulations of the sleep–wake cycles of students with conflicting trait and state assessments suggested that their bedtimes cannot be solely determined by their biological clocks. On weekdays or weekends, mind-bedtime procrastination can lead to missing the bedtime signal from their biological clocks (i.e., self-deprivation of sleep or, in other words, voluntary prolongation of the wake phase of the sleep–wake cycle). Full article
(This article belongs to the Section Computational Models)
Show Figures

Figure 1

12 pages, 270 KB  
Perspective
Biological Age, Aging Clocks, and the Interplay with Lymphoid Neoplasms: Mechanisms and Clinical Frontiers
by Xiaocan Wu, Hanna Liu and Kejun Ying
Lymphatics 2025, 3(3), 19; https://doi.org/10.3390/lymphatics3030019 - 11 Jul 2025
Viewed by 568
Abstract
Lymphoid neoplasms (LN), a diverse group of malignancies arising from lymphocytes, exhibit a striking increase in incidence with chronological age, suggesting a deep connection with the aging process. While chronological age remains a primary risk factor, the concept of biological age, reflecting an [...] Read more.
Lymphoid neoplasms (LN), a diverse group of malignancies arising from lymphocytes, exhibit a striking increase in incidence with chronological age, suggesting a deep connection with the aging process. While chronological age remains a primary risk factor, the concept of biological age, reflecting an individual’s physiological state and susceptibility to age-related diseases, offers a more nuanced understanding of this relationship. Aging clocks, particularly epigenetic clocks based on DNA methylation, provide quantitative measures of biological age and have revealed associations between accelerated aging and increased cancer risk, including LN. Immunosenescence, the age-related decline in immune function characterized by thymic involution, altered lymphocyte populations, and chronic inflammation (inflammaging), appears to be a key mechanistic link between aging and LN development, potentially providing a more accurate predictor of cancer risk than mutation accumulation alone. Accelerated biological aging, measured by various clocks, correlates with LN risk and progression (e.g., in chronic lymphocytic leukemia), and may influence treatment tolerance and outcomes, particularly in older adults who are often burdened by frailty and comorbidities like sarcopenia. Integrating biological age assessments into clinical practice holds promise for refining diagnosis, prognosis, and personalizing treatment strategies (including guiding intensity and considering anti-aging interventions), and improving outcomes for patients with LN. This review synthesizes the current understanding of the intricate relationship between LN, immunosenescence, biological age, and aging clocks, highlighting clinical implications and key future research directions aimed at translating these insights into better patient care. Full article
Show Figures

Graphical abstract

18 pages, 1436 KB  
Article
Circulating Bacterial DNA as a Novel Blood-Based Biomarker in Type 2 Diabetes Mellitus (DM2): Results from the PROMOTERA Study
by Robertina Giacconi, Patrizia D’Aquila, Fabiola Olivieri, Davide Gentilini, Luciano Calzari, Carlo Fortunato, Gretta Veronica Badillo Pazmay, Mirko Di Rosa, Giada Sena, Elisabetta De Rose, Antonio Cherubini, Riccardo Sarzani, Roberto Antonicelli, Giuseppe Pelliccioni, Anna Rita Bonfigli, Roberta Galeazzi, Fabrizia Lattanzio, Giuseppe Passarino, Dina Bellizzi and Francesco Piacenza
Int. J. Mol. Sci. 2025, 26(14), 6564; https://doi.org/10.3390/ijms26146564 - 8 Jul 2025
Viewed by 521
Abstract
Blood bacterial DNA (BB-DNA) has been identified as a novel biomarker for metabolic dysfunction, yet its relationship with epigenetic features in type 2 diabetes mellitus (DM2) patients remains largely unexplored. This study investigated the relationship between BB-DNA and epigenetic, inflammatory, and aging-related markers [...] Read more.
Blood bacterial DNA (BB-DNA) has been identified as a novel biomarker for metabolic dysfunction, yet its relationship with epigenetic features in type 2 diabetes mellitus (DM2) patients remains largely unexplored. This study investigated the relationship between BB-DNA and epigenetic, inflammatory, and aging-related markers in 285 elderly both with and without DM2. BB-DNA levels were higher in DM2 patients than in non-diabetic subjects, with the highest levels in those with severe renal impairment. BB-DNA showed a positive association with plasma IL-1β, linking bacterial DNA to systemic inflammation. Epigenetic analysis revealed a negative correlation between BB-DNA and DNA methylation-based leukocyte telomere length, suggesting accelerated aging in DM2. Additionally, BB-DNA was positively associated with DNAm-based biological age estimators, particularly DNAmPhenoAge and DNAmAge Skin Blood Clock. BB-DNA also correlated with DNAmVEGFA and DNAmCystatin C, key markers of diabetic nephropathy and vascular dysfunction. Furthermore, BB-DNA levels were associated with hypomethylation of genes involved in inflammation (e.g., IL1β, TNFα, IFNγ), cellular senescence (p16, p21, TP53), and metabolic regulation (e.g., IGF1, SREBF1, ABCG1, PDK4). These associations suggest that increased BB-DNA may reflect and potentially promote a pro-inflammatory and pro-senescent epigenetic profile in DM2. Importantly, many of these associations remained significant after adjusting for diabetes status, supporting BB-DNA as a robust biomarker across clinical subgroups. These findings provide new insights into the relationship between BB-DNA, inflammation, and epigenetic aging in DM2, highlighting BB-DNA as a potential biomarker for disease progression and complications, particularly in relation to renal dysfunction and systemic inflammation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 2067 KB  
Article
Sex and Circadian Rhythm Dependent Behavioral Effects of Chronic Stress in Mice and Modulation of Clock Genes in the Prefrontal Cortex
by Jessica Mingardi, Mattia Giovenzana, Noemi Nicosia, Paulina Misztak, Alessandro Ieraci and Laura Musazzi
Int. J. Mol. Sci. 2025, 26(13), 6410; https://doi.org/10.3390/ijms26136410 - 3 Jul 2025
Cited by 1 | Viewed by 484
Abstract
Behavioral stress is a recognized triggering factor for systemic diseases, including psychiatric disorders. The stress response is subjected to circadian regulation and many factors shape the susceptibility to its maladaptive consequences, including the biological sex. Accordingly, circadian dysregulation of the stress response, often [...] Read more.
Behavioral stress is a recognized triggering factor for systemic diseases, including psychiatric disorders. The stress response is subjected to circadian regulation and many factors shape the susceptibility to its maladaptive consequences, including the biological sex. Accordingly, circadian dysregulation of the stress response, often occurring in a sexually dimorphic manner, is typically associated with psychiatric disorders. However, the interaction between stress, sex, circadian phases, and behavior is still largely unknown. Here, we used the chronic restraint stress (CRS) model in male and female mice to assess the impact of sex and circadian phases on the behavioral consequences of chronic stress. Animals were stressed either in the light or dark phase, and anxious-/depressive-/anhedonic-like behaviors were assessed. Associated transcriptional changes in clock genes were measured in the prefrontal cortex. A significant interaction of stress, sex, and circadian phase was found in most of the parameters evaluated, with no behavioral response to stress in males stressed in the dark phase, and an exaggerated response in females stressed in the dark phase compared to the light phase. We also found some molecular changes in corticosterone serum levels and expression of clock genes in the prefrontal cortex. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

31 pages, 7946 KB  
Article
EpInflammAge: Epigenetic-Inflammatory Clock for Disease-Associated Biological Aging Based on Deep Learning
by Alena Kalyakulina, Igor Yusipov, Arseniy Trukhanov, Claudio Franceschi, Alexey Moskalev and Mikhail Ivanchenko
Int. J. Mol. Sci. 2025, 26(13), 6284; https://doi.org/10.3390/ijms26136284 - 29 Jun 2025
Cited by 1 | Viewed by 2149
Abstract
We present EpInflammAge, an explainable deep learning tool that integrates epigenetic and inflammatory markers to create a highly accurate, disease-sensitive biological age predictor. This novel approach bridges two key hallmarks of aging—epigenetic alterations and immunosenescence. First, epigenetic and inflammatory data from the same [...] Read more.
We present EpInflammAge, an explainable deep learning tool that integrates epigenetic and inflammatory markers to create a highly accurate, disease-sensitive biological age predictor. This novel approach bridges two key hallmarks of aging—epigenetic alterations and immunosenescence. First, epigenetic and inflammatory data from the same participants was used for AI models predicting levels of 24 cytokines from blood DNA methylation. Second, open-source epigenetic data (25 thousand samples) was used for generating synthetic inflammatory biomarkers and training an age estimation model. Using state-of-the-art deep neural networks optimized for tabular data analysis, EpInflammAge achieves competitive performance metrics against 34 epigenetic clock models, including an overall mean absolute error of 7 years and a Pearson correlation coefficient of 0.85 in healthy controls, while demonstrating robust sensitivity across multiple disease categories. Explainable AI revealed the contribution of each feature to the age prediction. The sensitivity to multiple diseases due to combining inflammatory and epigenetic profiles is promising for both research and clinical applications. EpInflammAge is released as an easy-to-use web tool that generates the age estimates and levels of inflammatory parameters for methylation data, with the detailed report on the contribution of input variables to the model output for each sample. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

33 pages, 1219 KB  
Review
Circadian Clock Deregulation and Metabolic Reprogramming: A System Biology Approach to Tissue-Specific Redox Signaling and Disease Development
by Rossitza Konakchieva, Mitko Mladenov, Marina Konaktchieva, Iliyana Sazdova, Hristo Gagov and Georgi Nikolaev
Int. J. Mol. Sci. 2025, 26(13), 6267; https://doi.org/10.3390/ijms26136267 - 28 Jun 2025
Viewed by 1144
Abstract
Circadian rhythms govern cellular metabolism, redox balance, and endocrine signaling in numerous tissues. However, chronic disturbance of these biological rhythms, mediated by modern lifestyle factors including shift work, sleep irregularity, and prolonged light exposure, has been increasingly associated with oxidative stress, metabolic dysregulation, [...] Read more.
Circadian rhythms govern cellular metabolism, redox balance, and endocrine signaling in numerous tissues. However, chronic disturbance of these biological rhythms, mediated by modern lifestyle factors including shift work, sleep irregularity, and prolonged light exposure, has been increasingly associated with oxidative stress, metabolic dysregulation, and the pathogenesis of chronic diseases. This review discusses recent mechanistic advances that link circadian misalignment with tissue-specific metabolic reprogramming and impaired proteostasis, focusing on metabolic inflammation and associated pathologies. Emerging work reveals a close interdependence between the circadian clock and proteasome-mediated protein turnover and highlights this interplay’s importance in maintaining redox homeostasis. Furthermore, circadian modulation of the activity of the inflammasome complex is suggested to represent an important, but largely unexplored, risk factor in the pathobiology of both malignancy and metabolic syndrome. Recently, researchers have proposed them as novel endocrine regulators of systemic energy balance and inflammation, with a focus on their circadian regulation. In addition, the emerging domains of chrono-epigenetics and tissue-specific programming of the clock pathways may serve to usher in novel therapies through precision medicine. Moving ahead, circadian-based therapeutic approaches, including time-restricted feeding, chronopharmacology, and metabolic rewiring, have high potential for re-establishing physiological domain homeostasis linked to metabolic inflammation pathologies. Elucidating this reciprocal relationship between circadian biology and cellular stress pathways may one day facilitate the generation of precise interventions aiming to alleviate the health burden associated with circadian disruption. Full article
(This article belongs to the Special Issue Hormone Metabolism and Signaling in Human Health and Disease)
Show Figures

Figure 1

22 pages, 1990 KB  
Article
Circadian-Tuned Peptide Drug/Gene Co-Delivery Nanocomplexes to Enhance Glioblastoma Targeting and Transfection
by Ana R. Neves, Eric Vivès, Prisca Boisguérin, Telma Quintela and Diana Costa
Int. J. Mol. Sci. 2025, 26(13), 6130; https://doi.org/10.3390/ijms26136130 - 26 Jun 2025
Viewed by 684
Abstract
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53 [...] Read more.
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53) have been associated with treatment resistance. Thus, this study aimed to explore an innovative therapeutic strategy to enhance treatment efficacy of GBM. Previously, our team had developed a WRAP5 cell-penetrating peptide (CPP) functionalized with a transferrin receptor ligand (Tf) for the targeted delivery of TMZ and a p53-encoding plasmid to glioma cells. Our research had elucidated the circadian oscillations of the clock genes in the U87 glioma cells by employing two different computational models and observed that T16 and T8 time points revealed the highest circadian activity for Bmal1 and Per2 genes, respectively. Similar analysis was conducted for the transferrin receptor, which revealed that T7 and T8 were the key time points for its expression. A confocal microscopy study indicated the highest intracellular uptake of complexes and p53 mRNA expression at T8, the time point with the highest Per2 and transferrin receptor expression. Following mRNA analysis, the evaluation of p53 levels confirmed transcriptional changes at the protein level, and that T16 appears to be a favourable time point for enhancing therapeutic efficacy in U87 glioblastoma cells. These findings suggested that synchronizing the complexes’ administration with the biological clock of GBM cells may significantly improve glioblastoma therapeutics. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Graphical abstract

15 pages, 2609 KB  
Review
Evaluation of the Circadian Rhythm Component Cipc (Clock-Interacting Pacemaker) in Leukemogenesis: A Literature Review and Bioinformatics Approach
by Leidivan Sousa da Cunha, Beatriz Maria Dias Nogueira, Flávia Melo Cunha de Pinho Pessoa, Caio Bezerra Machado, Deivide de Sousa Oliveira, Manoel Odorico de Moraes Filho, Maria Elisabete Amaral de Moraes, André Salim Khayat and Caroline Aquino Moreira-Nunes
Clocks & Sleep 2025, 7(3), 33; https://doi.org/10.3390/clockssleep7030033 - 25 Jun 2025
Viewed by 915
Abstract
Circadian rhythms (CRs) are a key biological system regulating physiological processes such as metabolism, cell growth, DNA repair, and immunity, adapting to environmental changes like the light/dark cycle. Governed by internal clocks, it modulates gene expression through feedback loops involving Clock Genes (CGs), [...] Read more.
Circadian rhythms (CRs) are a key biological system regulating physiological processes such as metabolism, cell growth, DNA repair, and immunity, adapting to environmental changes like the light/dark cycle. Governed by internal clocks, it modulates gene expression through feedback loops involving Clock Genes (CGs), with the cycle initiated by CLOCK–BMAL1 and NPAS2–BMAL1 heterodimers. Disruptions in circadian rhythms have been linked to diseases including metabolic disorders, neurodegeneration, and cancer. CIPC (CLOCK-interacting pacemaker) has been studied as a negative regulator of the CLOCK–BMAL1 complex, focusing on its role in cancer, particularly leukemias. Public datasets and bioinformatics tools were used to examine CIPC gene expression in healthy patients and acute myeloid leukemia (AML) samples. Our analysis revealed significant overexpression of CIPC in AML compared to healthy tissues (p < 0.0001 ****). Additionally, survival analysis indicated significant differences in overall survival based on CIPC expression, with a log-rank test p-value = 0.014, suggesting that CIPC expression may affect overall patient survival. Altered CIPC expression may contribute to leukemogenesis by inhibiting circadian genes, which are often disrupted in leukemia. Furthermore, CIPC interacts with oncogenic pathways, including the MAPK/ERK pathway, which is essential for cell proliferation. Additional studies are needed to validate these findings and explore the detailed role of CIPC in cancer development. Full article
(This article belongs to the Section Human Basic Research & Neuroimaging)
Show Figures

Figure 1

Back to TopTop