Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = biogenic silica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2632 KiB  
Article
Therapeutic Potential of Glucose Oxidase-Loaded Biogenic Mesoporous Silica Nanoparticles in Ovarian Cancer
by Andrea G. Uriostegui-Pena, Padmavati Sahare, Gabriel Luna-Bárcenas and Sujay Paul
Pharmaceuticals 2025, 18(7), 1060; https://doi.org/10.3390/ph18071060 - 18 Jul 2025
Viewed by 568
Abstract
Background/Objectives: Ovarian cancer (OC) remains one of the most lethal malignancies of the female reproductive system. Glucose oxidase (GOx) has emerged as a potential therapeutic agent in cancer treatment by inducing tumor starvation through glucose depletion. Nonetheless, its clinical application is constrained due [...] Read more.
Background/Objectives: Ovarian cancer (OC) remains one of the most lethal malignancies of the female reproductive system. Glucose oxidase (GOx) has emerged as a potential therapeutic agent in cancer treatment by inducing tumor starvation through glucose depletion. Nonetheless, its clinical application is constrained due to its systemic toxicity, immunogenicity, poor in vivo stability, and short half-life. These challenges can be addressed through nanotechnology; in particular, biogenic mesoporous silica nanoparticles (MSNs) offer promise as drug delivery systems (DDSs) that enhance therapeutic efficacy while minimizing side effects. Methods: Biogenic MSNs were extracted from the Equisetum myriochaetum plant via acid digestion, functionalized with 3-aminopropiltrietoxysilane (APTES) and glutaraldehyde (GTA), and loaded with GOx. The free and immobilized MSNs were characterized using FTIR, DLS, XRD, SEM/EDX, and BET techniques. A colorimetric approach was employed to quantify the enzymatic activity of both the free and immobilized GOx. The MTT assay was employed to assess the viability of SKOV3 cells. The obtained IC50 concentration of the nanoformulation was administered to SKOV3 cells to analyze the expression of cancer-related genes using RT-qPCR. Results: IC50 values of 60.77 ng/mL and 111.6 µg/mL were ascertained for the free and immobilized GOx, respectively. Moreover, a significant downregulation of the oncogene β-catenin (CTNNB1) was detected after 24 h with the nanoformulation. Conclusions: Our findings indicate that GOx-loaded biogenic MSNs may serve as a potential therapeutic agent for ovarian cancer. This is, to the best of our knowledge, the first report exploring the effect of GOx-loaded biogenic MSNs on SKOV3 cells. Full article
Show Figures

Figure 1

25 pages, 3946 KiB  
Review
Application Possibilities of Sustainable Nanostructured Silica-Based Materials in Cosmetics
by Veronica Latini, Agnieszka Feliczak-Guzik and Agata Wawrzyńczak
Cosmetics 2025, 12(4), 134; https://doi.org/10.3390/cosmetics12040134 - 25 Jun 2025
Viewed by 1039
Abstract
Nanostructured silica-based materials, including mesoporous silica nanoparticles (SiNPs), show a wide range of applications in various areas, such as food, pharmaceutical, and cosmetic industries. This is mainly due to their unique properties, namely biocompatibility, stability, adjustable pore size, a highly developed specific surface [...] Read more.
Nanostructured silica-based materials, including mesoporous silica nanoparticles (SiNPs), show a wide range of applications in various areas, such as food, pharmaceutical, and cosmetic industries. This is mainly due to their unique properties, namely biocompatibility, stability, adjustable pore size, a highly developed specific surface area, and simplicity in surface modification. Currently, special emphasis is placed on obtaining nanostructured silica-based materials using so-called green methods, which not only reduce toxic by-products, but also enable the use of raw materials from plants, agricultural and industrial waste, as well as bacteria or fungi. This trend is particularly evident in the cosmetic industry, which is striving to reduce the adverse environmental and social impacts of cosmetic production. Therefore, this article presents a review of the literature from the last ten years, which describes issues related to the possibilities of replacing synthetic silica-based ingredients in cosmetic products with their more environmentally friendly counterparts. Special emphasis has been placed on the application possibilities of sustainable nanostructured silica-based materials and their potential toxicity in topical formulations. The possibilities of obtaining nanostructured silica-based materials through green synthesis and using natural silica precursors have been briefly presented, as well as the options for modifying the surface of these materials. Full article
Show Figures

Figure 1

25 pages, 20771 KiB  
Article
Sedimentary and Early Diagenetic Responses to the Huaiyuan Movement During the Early–Middle Ordovician Transition in the Ordos Basin, North China
by Hao Quan, Zhou Yu, Zhanfeng Qiao, Chenqing Li, Pan Xia, Zhongtang Su, Huaguo Wen, Min Qin and Meng Ning
Geosciences 2025, 15(6), 219; https://doi.org/10.3390/geosciences15060219 - 12 Jun 2025
Viewed by 461
Abstract
The early Paleozoic Huaiyuan Movement created a major unconformity in the Ordos Basin, significantly influencing sedimentation and early diagenesis in both the overlying and underlying strata near the unconformity. However, the origins of the associated dolomite and silica near this unconformity remain poorly [...] Read more.
The early Paleozoic Huaiyuan Movement created a major unconformity in the Ordos Basin, significantly influencing sedimentation and early diagenesis in both the overlying and underlying strata near the unconformity. However, the origins of the associated dolomite and silica near this unconformity remain poorly understood. This study aims to reveal how this tectonic event controlled the Early–Middle Ordovician sedimentary environments and early diagenetic processes. The petrological and geochemical results indicate a progressive transition from a dolomitic tidal flat to an intra-platform depression, culminating in a mixed tidal flat during the Early-to-Middle Ordovician, driven by the Huaiyuan Movement. Furthermore, this movement, accompanied by intense weathering and erosion, increased the supply of marine dissolved silica (DSi) and terrestrial nutrients. Consequently, extensive tidal-edge biogenic silica accumulated, which later precipitated as siliceous-cemented dolomite during a shallow-burial stage. We propose a conceptual model of the sedimentary–early diagenetic processes in response to the Huaiyuan Movement, providing novel insights into the regional paleoenvironmental evolution across the Early–Middle Ordovician transition in the Ordos Basin. Full article
Show Figures

Figure 1

28 pages, 5628 KiB  
Article
Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation
by Tamara B. Benzaquén, Paola M. Carraro, Griselda A. Eimer, Julio Urzúa-Ahumada, Po S. Poon and Juan Matos
Molecules 2025, 30(12), 2484; https://doi.org/10.3390/molecules30122484 - 6 Jun 2025
Viewed by 561
Abstract
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice [...] Read more.
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice husk as the silica template. Iron was incorporated and the so-prepared biogenic photocatalysts were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, transmission electron microscopy, diffuse reflectance UV-Vis, surface pH, cyclic voltammetry, and Fourier transform infrared spectral analysis of pyridine adsorption. The photocatalytic performance of the materials was evaluated following the removal by adsorption and the photon-driven degradation of RhB. The adsorption capacity and photocatalytic activity of the biogenic materials were correlated with their properties, including iron content, texture, surface content, and electrochemical properties. The best biogenic material boosted the degradation rates of RhB under UV irradiation up to 4.7 and 2.2 times greater than the direct photolysis and the benchmark semiconductor TiO2-P25. It can be concluded that the use of rice husks for the synthesis of biogenic Fe-modified mesoporous materials is a promising strategy for wastewater treatment applications, particularly in the removal of highly toxic organic dyes. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules: Recent Advances in Photochemistry)
Show Figures

Graphical abstract

21 pages, 2433 KiB  
Review
Harnessing Microalgae as Sustainable Cell Factories for Polyamine-Based Nanosilica for Biomedical Applications
by Sik Yoon, Boon Huat Bay and Ken Matsumoto
Molecules 2025, 30(8), 1666; https://doi.org/10.3390/molecules30081666 - 8 Apr 2025
Cited by 2 | Viewed by 998
Abstract
Microalgae are microscopic unicellular organisms that inhabit marine, freshwater, and moist terrestrial ecosystems. The vast number and diversity of microalgal species provide a significant reservoir of biologically active compounds, highly promising for biomedical applications. Diatoms are unicellular eukaryotic algae belonging to the class [...] Read more.
Microalgae are microscopic unicellular organisms that inhabit marine, freshwater, and moist terrestrial ecosystems. The vast number and diversity of microalgal species provide a significant reservoir of biologically active compounds, highly promising for biomedical applications. Diatoms are unicellular eukaryotic algae belonging to the class Bacillariophyceae. They possess intricately structured silica-based cell walls, which contain long-chain polyamines that play important roles in the formation of silica. Long-chain polyamines are uncommon polyamines found only in organisms that produce biosilica. Diatomite, which is a marine sediment of the remains of the silica skeleton of diatoms, could be an abundant source of biogenic silica that can easily be converted to silica particles. This concise review focuses on the biofabrication of polyamine-based nanosilica from diatoms and highlights the possibility of utilizing diatom biosilica as a nanocarrier for drug and siRNA delivery, bioimaging, and bone tissue engineering. The challenges that may affect diatom production, including environmental stresses and climate change, are discussed together with the prospect of increasing diatom-based biosilica production with the desired nanostructures via genetic manipulation. Full article
Show Figures

Graphical abstract

16 pages, 3096 KiB  
Article
Silicon Speciation and Its Relationship with Carbon and Nitrogen in the Sediments of a Macrophytic Eutrophic Lake
by Yong Liu, Guoli Xu, Guocheng Wang, Haiquan Yang, Jv Liu, Hai Guo, Jiaxi Wu, Lujia Jiang and Jingfu Wang
Toxics 2025, 13(4), 266; https://doi.org/10.3390/toxics13040266 - 31 Mar 2025
Viewed by 438
Abstract
Silicon (Si) is one of the biogenic elements in lake aquatic ecosystems. Sediments are both sinks and sources of Si, but little is known about its influence on the biogeochemical cycle of Si in lakes and its relationship to other biogenic factors such [...] Read more.
Silicon (Si) is one of the biogenic elements in lake aquatic ecosystems. Sediments are both sinks and sources of Si, but little is known about its influence on the biogeochemical cycle of Si in lakes and its relationship to other biogenic factors such as carbon and nitrogen. Examining Caohai Lake, a typical macrophytic lake in China, this study systematically examined the different Si forms and biogenic silica (BSi) distribution characteristics and their coupling relationships with total organic carbon (TOC) and total nitrogen (TN) in surface sediments. Iron–manganese-oxide-bonded silicon (IMOF-Si) and organic sulfide-bonded silicon (OSF-Si) jointly accounted for 95.9% of Valid-Si in the sediments, indicating that the fixation of Si by organic matter and iron–manganese oxides was the main mechanism underlying the formation of the different forms of Valid-Si in sediments. The release and recycling of Si in sediments may be mainly driven by mineralized degradation of organic matter and anoxic reduction conditions at the sediment–water interface. The content of biogenic Si (BSi) in the sediments was relatively higher in the southern and eastern areas, which could be explained by the intensification of eutrophication and the increased abundance of diatomaceous siliceous organisms in these areas seen in recent years. The TOC and TN contents in the sediments were generally high, and the sources of organic matter in the sediments included both the residues of endophytes (main contributors) and the input of terrigenous organic matter. TOC and TN both had highly significant correlations with OSF-Si and Valid-Si, which demonstrated that Valid-Si had excellent coupling relationships with C and N in the sediments. The good correlation between BSi, TOC and TN (p < 0.01), as well as the high C/Si, N/Si mole ratio of TOC and TN to BSi, respectivelny, indicating that the dissolution and release rate of BSi may be much higher than the degradation rate of organic matter from the sediments, especially in the areas with a higher abundance of siliceous organisms. Full article
Show Figures

Figure 1

21 pages, 28470 KiB  
Article
Preparation and Characterization of Submicrometer and Nanometer Cellulose Fiber with Biogenic SiO2
by Yakoub Touati, Dora Kroisová, Rawaa Yahya and Štěpánka Dvořáčková
Polymers 2025, 17(6), 761; https://doi.org/10.3390/polym17060761 - 13 Mar 2025
Viewed by 840
Abstract
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods [...] Read more.
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods are tested to extract the nanocellulose, namely hand milling, ball milling, and wet milling using a high-shear wet media mill from Masuko Sangyo Co., Ltd., Kawaguchi-city, Japan. A range of analytical methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), are utilized to characterize the morphology, elemental composition, thermal stability, and chemical properties of the samples. The study revealed that among the tested methods, only wet milling successfully produced cellulose nanofibrils and silica nanoparticles, forming a biogenic organic–inorganic nanohybrid system. The nanofibers had lengths in the range of 120 nm and below, while the nanoparticles were in the tens of nanometers. The silica nanoparticles were found to adhere to the cellulose nanofibrils, forming a biogenic organic–inorganic nanohybrid system, with potential applications across diverse fields, including biomedical (drug delivery, biosensing, bone regeneration, and wound healing), cosmetic (skin and dental care), technical (insulating aerogels, flame retardants, and UV-absorbing pigments), and food applications (dietary supplements, thickeners). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

9 pages, 1196 KiB  
Article
A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol
by Sanjib Kumar Karmee, Sreedhar Gundekari, Louis C. Muller and Ajinkya Hable
Reactions 2025, 6(1), 15; https://doi.org/10.3390/reactions6010015 - 13 Feb 2025
Viewed by 1243
Abstract
Glycerol is a biogenic waste that is generated in both the biodiesel and oleo-chemical industries. The value addition of surplus glycerol is of utmost importance for making these industries economically profitable. In line with this, glycerol is converted into glycerol carbonate, a potential [...] Read more.
Glycerol is a biogenic waste that is generated in both the biodiesel and oleo-chemical industries. The value addition of surplus glycerol is of utmost importance for making these industries economically profitable. In line with this, glycerol is converted into glycerol carbonate, a potential candidate for the industrial production of polymers and biobased non-isocyanate polyurethanes. In addition, glycerol can also be converted into solketal, which is the protected form of glycerol with a primary hydroxyl functional group. In this contribution, we developed a microwave-assisted solvent and catalyst-free method for converting solketal into solketal carbonate. Under conventional heating conditions, the reaction of solketal with dimethyl carbonate resulted in 70% solketal carbonate in 48 h. However, under microwave heating, 90% solketal carbonate was obtained in just 30 min. From the perspective of sustainability and green chemistry, biomass-derived heterogeneous catalysts are gaining importance. Therefore, in this project, several green catalysts, such as molecular sieves (MS, 4Å), Hβ-Zeolite, Montmorillonite K-10 clay, activated carbon from groundnut shell (Arachis hypogaea), biochar prepared from the pyrolysis of sawdust, and silica gel, were successfully used for the carbonyl transfer reaction. The obtained solketal carbonate was thoroughly characterized by 1H NMR, 13C NMR, IR, and MS. The method presented here is facile, clean, and environmentally benign, as it eliminates the use of complicated procedures, toxic solvents, and toxic catalysts. Full article
Show Figures

Figure 1

14 pages, 1848 KiB  
Article
Effect of Temperature on Polyamine Oxidase Genes in Skeletonema dohrnii
by Wei Teng and Jun Sun
Int. J. Mol. Sci. 2025, 26(3), 1048; https://doi.org/10.3390/ijms26031048 - 26 Jan 2025
Viewed by 851
Abstract
In our experiments, we investigated the effect of temperature on diatom polyamine metabolism using Skeletonema dohrnii as an experimental algal species. We set three different temperature conditions for incubation and selected Skeletonema dohrnii in the exponential growth period, and analyzed basic physiological parameters, [...] Read more.
In our experiments, we investigated the effect of temperature on diatom polyamine metabolism using Skeletonema dohrnii as an experimental algal species. We set three different temperature conditions for incubation and selected Skeletonema dohrnii in the exponential growth period, and analyzed basic physiological parameters, polyamine composition and content, and polyamine oxidase (PAO) gene expression at different temperatures. The results showed that low temperatures led to a decrease in growth rate, an increase in biogenic silica content, an increase in the content of putrescine and spermine, a decrease in the concentration of spermidine, and a down-regulation of PAO gene expression. In addition, high temperature led to an increase in growth rate, a significant change in the concentration of putrescine and spermine, and an increase in spermidine. These findings suggest that changes in temperature affect the growth rate of algae, low temperature increases the biogenic silica content of diatoms, different temperature stresses lead to different kinds of polyamine changes in diatoms, and the PAO gene may play a role in regulating the response of algae to temperature changes. This study lays a foundation for further exploration of the function of the PAO gene in Skeletonema dohrnii. Full article
(This article belongs to the Special Issue Plant Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

18 pages, 4439 KiB  
Article
The Influence of Horsetail (Equisetum arvense L.) Powder and Horsetail-Based Silica on the Crystallization Kinetics of Polylactide
by Olga Mysiukiewicz, Joanna Szulc and Andrzej Miklaszewski
Materials 2024, 17(23), 5697; https://doi.org/10.3390/ma17235697 - 21 Nov 2024
Viewed by 1328
Abstract
Biogenic silica (SiO2) sourced from living organisms, especially plants such as rice and other cereals, has recently been successfully applied in different polymeric compositions. Another rich source of biogenic silica is common horsetail (Equisetum arvense L.), containing up to 25% [...] Read more.
Biogenic silica (SiO2) sourced from living organisms, especially plants such as rice and other cereals, has recently been successfully applied in different polymeric compositions. Another rich source of biogenic silica is common horsetail (Equisetum arvense L.), containing up to 25% SiO2 in the dry matter. In this study, biogenic silica was obtained from horsetail powder by acid leaching in sulfuric acid and calcination at 400 °C. The analysis, including measurements of specific surface area using the Brunauer–Emmett–Teller method, assessment of crystallinity by X-ray diffraction, as well as chemical content analysis by Fourier-transform infrared spectroscopy showed that high-purity, high-surface mesoporous silica was obtained. The biogenic silica and horsetail powders were also introduced to polylactide (PLA) to determine their influence on the polymer’s crystallization, which was studied in both non-isothermal and isothermal conditions by differential scanning calorimetry. The crystallization parameters were calculated according to the Avrami method based on isothermal crystallization curves at 100, 110 and 120 °C. The crystalline structures were observed by optical microscopy in polarized light. It was found that both fillers improve the crystallization of PLA, especially in low-supercooling conditions, so they can be successfully utilized in industrial applications, when high crystallinity of polylactide is needed. Full article
Show Figures

Graphical abstract

18 pages, 5323 KiB  
Article
Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany
by Daniel Puppe, Jacqueline Busse, Mathias Stein, Danuta Kaczorek, Christian Buhtz and Jörg Schaller
Biology 2024, 13(10), 828; https://doi.org/10.3390/biology13100828 - 16 Oct 2024
Cited by 2 | Viewed by 1625
Abstract
The potato is the most important non-cereal food crop, and thus improving potato growth and yield is the focus of agricultural researchers and practitioners worldwide. Several studies reported beneficial effects of silicon (Si) fertilization on potato performance, although plant species from the family [...] Read more.
The potato is the most important non-cereal food crop, and thus improving potato growth and yield is the focus of agricultural researchers and practitioners worldwide. Several studies reported beneficial effects of silicon (Si) fertilization on potato performance, although plant species from the family Solanaceae are generally considered to be non-Si-accumulating. We used results from two field experiments in the temperate zone to gain insight into silica accumulation in potato plants, as well as corresponding long-term potato yield performance. We found relatively low Si contents in potato leaves and roots (up to 0.08% and 0.3% in the dry mass, respectively) and negligible Si contents in potato tuber skin and tuber flesh for plants grown in soils with different concentrations of plant-available Si (field experiment 1). Moreover, potato yield was not correlated to plant-available Si concentrations in soils in the long term (1965–2015, field experiment 2). Based on our results, we ascribe the beneficial effects of Si fertilization on potato growth and yield performance reported in previous studies mainly to antifungal/osmotic effects of foliar-applied Si fertilizers and to changes in physicochemical soil properties (e.g., enhanced phosphorus availability and water-holding capacity) caused by soil-applied Si fertilizers. Full article
Show Figures

Figure 1

41 pages, 6783 KiB  
Article
Stress-Responsive Gene Expression, Metabolic, Physiological, and Agronomic Responses by Consortium Nano-Silica with Trichoderma against Drought Stress in Bread Wheat
by Ghalia S. Aljeddani, Ragaa A. Hamouda, Amal M. Abdelsattar and Yasmin M. Heikal
Int. J. Mol. Sci. 2024, 25(20), 10954; https://doi.org/10.3390/ijms252010954 - 11 Oct 2024
Cited by 2 | Viewed by 2185
Abstract
The exploitation of drought is a critical worldwide challenge that influences wheat growth and productivity. This study aimed to investigate a synergistic amendment strategy for drought using the single and combined application of plant growth-promoting microorganisms (PGPM) (Trichoderma harzianum) and biogenic [...] Read more.
The exploitation of drought is a critical worldwide challenge that influences wheat growth and productivity. This study aimed to investigate a synergistic amendment strategy for drought using the single and combined application of plant growth-promoting microorganisms (PGPM) (Trichoderma harzianum) and biogenic silica nanoparticles (SiO2NPs) from rice husk ash (RHA) on Saudi Arabia’s Spring wheat Summit cultivar (Triticum aestivum L.) for 102 DAS (days after sowing). The significant improvement was due to the application of 600 ppm SiO2NPs and T. harzianum + 600 ppm SiO2NPs, which enhanced the physiological properties of chlorophyll a, carotenoids, total pigments, osmolytes, and antioxidant contents of drought-stressed wheat plants as adaptive strategies. The results suggest that the expression of the studied genes (TaP5CS1, TaZFP34, TaWRKY1, TaMPK3, TaLEA, and the wheat housekeeping gene TaActin) in wheat remarkably enhanced wheat tolerance to drought stress. We discovered that the genes and metabolites involved significantly contributed to defense responses, making them potential targets for assessing drought tolerance levels. The drought tolerance indices of wheat were revealed by the mean productivity (MP), stress sensitivity index (SSI), yield stability index (YSI), and stress tolerance index (STI). We employed four databases, such as BAR, InterPro, phytozome, and the KEGG pathway, to predict and decipher the putative domains in prior gene sequencing. As a result, we discovered that these genes may be involved in a range of important biological functions in specific tissues at different developmental stages, including response to drought stress, proline accumulation, plant growth and development, and defense response. In conclusion, the sole and/or dual T. harzianum application to the wheat cultivar improved drought tolerance strength. These findings could be insightful data for wheat production in Saudi Arabia under various water regimes. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

22 pages, 12371 KiB  
Article
The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits
by Nuriya R. Ayupova, Valery V. Maslennikov, Irina Yu. Melekestseva, Dmitry A. Artemyev and Elena V. Belogub
Minerals 2024, 14(9), 939; https://doi.org/10.3390/min14090939 - 13 Sep 2024
Cited by 1 | Viewed by 1328
Abstract
The formation of Paleozoic silica–iron-rich sedimentary rocks in the Urals volcanic-hosted massive sulfide (VHMS) deposits is considered a result of seafloor alteration of hyaloclastites mixed with calcareous/organic or sulfide material. These rocks host various Ti mineral phases pointing to the transformation of precursor [...] Read more.
The formation of Paleozoic silica–iron-rich sedimentary rocks in the Urals volcanic-hosted massive sulfide (VHMS) deposits is considered a result of seafloor alteration of hyaloclastites mixed with calcareous/organic or sulfide material. These rocks host various Ti mineral phases pointing to the transformation of precursor metacolloidal TiO2 phases to disordered anatase during seafloor alteration of hyaloclastites, which was later converted to globules and clusters and further to diagenetic rutile. The LA-ICP-MS analysis showed that the Ti content of hyaloclasts partly replaced by finely dispersed Si–Fe aggregates increases to 540–2950 ppm and decreases (<5 ppm) in full Si–Fe pseudomorphs after hyaloclasts. LA-ICP-MS element mapping reveals the enrichment in V, U, Cr, W, Nb, Pb, and Th of the anatase globules and the local accumulation of Zr, Y, and REE on their periphery. Corrosive biogenic textures in the outer zones of some hyaloclasts and biomorphic aggregates in rocks contain anatase particles in assemblage with apatite indicating the biophilic properties of Ti. This work fills the knowledge gaps about Ti mobilization during low-temperature seafloor alteration of hyaloclastites in VHMS deposits. Full article
(This article belongs to the Special Issue Mineralization and Geochemistry of VMS Deposits)
Show Figures

Figure 1

18 pages, 3816 KiB  
Article
Density Functional Study of Structural and Vibrational Properties of α-Moganite
by Dmitrii Pankin, Mikhail Smirnov, Evgenii Roginskii, Aleksandr Savin, Ilya Kolesnikov and Anastasia Povolotckaia
Photonics 2023, 10(12), 1346; https://doi.org/10.3390/photonics10121346 - 6 Dec 2023
Cited by 4 | Viewed by 1969
Abstract
α-moganite is a recently discovered polymorph of silica, commonly intergrown with quartz in natural microcrystalline silica samples. An important challenge is finding an effective method for estimating its amount in a sample under study, which is important for its applications, related to the [...] Read more.
α-moganite is a recently discovered polymorph of silica, commonly intergrown with quartz in natural microcrystalline silica samples. An important challenge is finding an effective method for estimating its amount in a sample under study, which is important for its applications, related to the technology of growth of dielectric layers, as well as for fundamental problems, related to the formation of both terrestrial and lunar mineral deposits and biogenic formation. One of these methods is vibrational spectroscopy, with the help of which the presence of a particular compound is determined by the presence of characteristic spectral lines. In this work, the search for such lines is carried out using density functional theory calculations and comparisons of the IR and Raman spectra of α-quartz and α-moganite. With the help of such calculations, the stability of the moganite structure has been proven for the first time, and its spectral characteristics have been determined over the entire range of vibrational frequencies. Several new spectral lines characteristic of α-moganite were discovered in the 65–85 cm−1 region. Moreover, the evolution of spectral peculiarities under hydrostatic pressure was studied. Full article
(This article belongs to the Special Issue Optical Spectroscopy and Applications)
Show Figures

Figure 1

27 pages, 6498 KiB  
Article
Unveiling the Diagenetic and Mineralogical Impact on the Carbonate Formation of the Indus Basin, Pakistan: Implications for Reservoir Characterization and Quality Assessment
by Faisal Hussain Memon, Abdul Haque Tunio, Khalil Rehman Memon, Aftab Ahmed Mahesar and Ghulam Abbas
Minerals 2023, 13(12), 1474; https://doi.org/10.3390/min13121474 - 23 Nov 2023
Cited by 7 | Viewed by 2611
Abstract
The Chiltan formation is a potential hydrocarbon-producing reservoir in the Indus Basin, Pakistan. However, its diagenetic alterations and heterogeneous behavior lead to significant challenges in accurately characterizing the reservoir and production performance. This manuscript aims to utilize six carbonate core samples of the [...] Read more.
The Chiltan formation is a potential hydrocarbon-producing reservoir in the Indus Basin, Pakistan. However, its diagenetic alterations and heterogeneous behavior lead to significant challenges in accurately characterizing the reservoir and production performance. This manuscript aims to utilize six carbonate core samples of the Chiltan limestone to conduct an in-depth analysis of the diagenetic impacts on reservoir quality. The comprehensive formation evaluation was carried out through thin-section analysis, SEM-EDS, and FTIR investigation, as well as plug porosity and permeability measurements under varying stress conditions. In result, petrography revealed three microfacies of intraclastic packestone (MF1), bioclastic pelliodal packestone (MF2), and bioclastic ooidal grainstone (MF3), with distinct diagenetic features and micro-nano fossil assemblages. The MF1 microfacies consist of bioclasts, ooids, pellets, and induced calcite, while the MF2 microfacies contain micrite cemented peloids, algae, and gastropods. Although, the MF3 grainstone microfacies contains key features of bioclasts, milliods, bivalves, echinoderms, and branchiopods with intense micritization. Diagenesis has a significant impact on petrophysical properties, leading to increased reservoir heterogeneity. The specified depositional environment exposed the alteration of the Chiltan formation during distinct diagenetic phases in marine, meteoric, and burial settings. Marine diagenesis involves biogenic carbonates and micro-nano fossils, while meteoric diagenesis involves mineral dissolution, reprecipitation, secondary porosity, compaction, cementation, and stylolite formation. Pore morphology and mineralogy reveal a complex pore network within the formation, including a micro-nano pore structure, inter–intra particle, moldic, vuggy, and fenestral pores with variations in shape, connectivity, and distribution. Various carbonate mineral phases in the formation samples were analyzed, including the calcite matrix and dolomite crystals, while silica, calcite, and clay minerals were commonly observed cement types in the analysis. The core samples analyzed showed poor reservoir quality, with porosity values ranging from 2.02% to 5.31% and permeability values from 0.264 mD to 0.732 mD, with a standard deviation of 1.21. Stress sensitivity was determined using Klinkenberg-corrected permeability at increasing pore pressure conditions, which indicated around 22%–25% reduction in the measured gas permeability and 7% in Klinkenberg permeability due to increasing the net confining stress. In conclusion, the Chiltan formation possesses intricate reservoir heterogeneity and varied micropore structures caused by diagenesis and depositional settings. The formation exhibits nonuniform pore geometry and low petrophysical properties caused by the diverse depositional environment and various minerals and cement types that result in a low-quality reservoir. Stress sensitivity further decreases the permeability with varying stress levels, emphasizing the need of stress effects in reservoir management. The results of this study provide a solid foundation in reservoir characterization and quality assessment that has implications for predicting fluid flow behavior, providing insight into geological evolution and its impact on reservoir quality and leading to improving resource exploration and production strategies. Full article
Show Figures

Figure 1

Back to TopTop