Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Soil and Plant Analyses
2.3. Statistical Analyses
3. Results
3.1. Silica Accumulation in Potato Plants—Results from the Silica Amendment Experiment
3.2. Si Effects on Potato Yields—Results from the Long-Term Field Experiment
4. Discussion
5. Conclusions
- (i)
- How big is the range of Si contents in potato plants considering the numerous cultivars worldwide? Recently, published data show that Si contents in potato tubers represent a difference of four orders of magnitude, for example (Table 2).
- (ii)
- Which foliar Si fertilizer formula, at which dose, is most effective against which disease caused by fungi or fungus-like microorganisms?
- (iii)
- How do different soil Si fertilizers (e.g., slags, fused magnesium phosphate, wollastonite, or biochar) affect soil properties in different soils under different climate conditions?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laruelle, G.G.; Roubeix, V.; Sferratore, A.; Brodherr, B.; Ciuffa, D.; Conley, D.; Dürr, H.; Garnier, J.; Lancelot, C.; Le Thi Phuong, Q. Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Struyf, E.; Smis, A.; Van Damme, S.; Meire, P.; Conley, D.J. The Global Biogeochemical Silicon Cycle. Silicon 2009, 1, 207–213. [Google Scholar] [CrossRef]
- Tréguer, P.J.; Sutton, J.N.; Brzezinski, M.; Charette, M.A.; Devries, T.; Dutkiewicz, S.; Ehlert, C.; Hawkings, J.; Leynaert, A.; Liu, S.M. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 2021, 18, 1269–1289. [Google Scholar] [CrossRef]
- Carey, J.C.; Fulweiler, R.W. The terrestrial silica pump. PLoS ONE 2012, 7, e52932. [Google Scholar] [CrossRef] [PubMed]
- Street-Perrott, F.A.; Barker, P.A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf. Process. Landf. 2008, 33, 1436–1457. [Google Scholar] [CrossRef]
- Struyf, E.; Conley, D.J. Emerging understanding of the ecosystem silica filter. Biogeochemistry 2012, 107, 9–18. [Google Scholar] [CrossRef]
- Puppe, D. Review on protozoic silica and its role in silicon cycling. Geoderma 2020, 365, 114224. [Google Scholar] [CrossRef]
- Hodson, M.J. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. J. Archaeol. Sci. 2016, 68, 62–69. [Google Scholar] [CrossRef]
- Sangster, A.; Hodson, M.; Tubb, H. Silicon deposition in higher plants. In Studies in Plant Science; Elsevier: Amsterdam, The Netherlands, 2001; Volume 8, pp. 85–113. [Google Scholar]
- International Committee for Phytolith Taxonomy. International Code for Phytolith Nomenclature (ICPN) 2.0. Ann. Bot. 2019, 124, 189–199. [Google Scholar] [CrossRef]
- Hodson, M.J. The Relative Importance of Cell Wall and Lumen Phytoliths in Carbon Sequestration in Soil: A Hypothesis. Front. Earth Sci. 2019, 7, 167. [Google Scholar] [CrossRef]
- Hodson, M.J.; Guppy, C.N. Special issue on silicon at the root-soil interface. Plant Soil 2022, 477, 1–8. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Stein, M.; Schaller, J. Silicon in Plants: Alleviation of Metal (loid) Toxicity and Consequential Perspectives for Phytoremediation. Plants 2023, 12, 2407. [Google Scholar] [CrossRef] [PubMed]
- Katz, O.; Puppe, D.; Kaczorek, D.; Prakash, N.B.; Schaller, J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. Plants 2021, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.J. Significance and Role of Si in Crop Production. Adv. Agron. 2017, 146, 83–166. [Google Scholar]
- Puppe, D.; Sommer, M. Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization—A Review Focusing on Maize, Rice, and Wheat. Adv. Agron. 2018, 152, 1–49. [Google Scholar]
- Savant, N.K.; Korndörfer, G.H.; Datnoff, L.E.; Snyder, G.H. Silicon nutrition and sugarcane production: A review1. J. Plant Nutr. 1999, 22, 1853–1903. [Google Scholar] [CrossRef]
- Haynes, R.J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 2014, 177, 831–844. [Google Scholar] [CrossRef]
- Li, Z.; Delvaux, B. Phytolith-rich biochar: A potential Si fertilizer in desilicated soils. GCB Bioenergy 2019, 11, 1264–1282. [Google Scholar] [CrossRef]
- Gustafsson, O.; Krusa, M.; Zencak, Z.; Sheesley, R.J.; Granat, L.; Engstrom, E.; Praveen, P.; Rao, P.; Leck, C.; Rodhe, H. Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 2009, 323, 495–498. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Schaller, J.; Barkusky, D.; Sommer, M. Crop straw recycling prevents anthropogenic desilication of agricultural soil–plant systems in the temperate zone—Results from a long-term field experiment in NE Germany. Geoderma 2021, 403, 115187. [Google Scholar] [CrossRef]
- Yang, X.; Song, Z.; Qin, Z.; Wu, L.; Yin, L.; Van Zwieten, L.; Song, A.; Ran, X.; Yu, C.; Wang, H. Phytolith-rich straw application and groundwater table management over 36 years affect the soil-plant silicon cycle of a paddy field. Plant Soil 2020, 454, 343–358. [Google Scholar] [CrossRef]
- FAOSTAT: Food and Agriculture Data of the Statistics Division of the Food and Agriculture Organization (FAO) of the United Nations. Available online: https://www.fao.org/faostat/en/#home (accessed on 31 May 2024).
- Hodson, M.J.; White, P.J.; Mead, A.; Broadley, M.R. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 2005, 96, 1027–1046. [Google Scholar] [CrossRef] [PubMed]
- Crusciol, C.A.; Pulz, A.L.; Lemos, L.B.; Soratto, R.P.; Lima, G.P. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci. 2009, 49, 949–954. [Google Scholar] [CrossRef]
- Pilon, C.; Soratto, R.P.; Moreno, L.A. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 2013, 53, 1605–1614. [Google Scholar] [CrossRef]
- Soratto, R.P.; Fernandes, A.M.; Pilon, C.; Souza, M.R. Phosphorus and silicon effects on growth, yield, and phosphorus forms in potato plants. J. Plant Nutr. 2019, 42, 218–233. [Google Scholar] [CrossRef]
- Soltani, M.; Kafi, M.; Nezami, A.; Taghiyari, H. Effects of silicon application at nano and micro scales on the growth and nutrient uptake of potato minitubers (Solanum tuberosum var. Agria) in greenhouse conditions. BioNanoScience 2018, 8, 218–228. [Google Scholar] [CrossRef]
- Dorneles, A.O.S.; Pereira, A.S.; Possebom, G.; Sasso, V.M.; Rossato, L.V.; Tabaldi, L.A. Growth of potato genotypes under different silicon concentrations. Adv. Hortic. Sci. 2018, 32, 289–295. [Google Scholar]
- Xue, X.; Geng, T.; Liu, H.; Yang, W.; Zhong, W.; Zhang, Z.; Zhu, C.; Chu, Z. Foliar application of silicon enhances resistance against Phytophthora infestans through the ET/JA-and NPR1-dependent signaling pathways in potato. Front. Plant Sci. 2021, 12, 609870. [Google Scholar] [CrossRef]
- Vulavala, V.K.; Elbaum, R.; Yermiyahu, U.; Fogelman, E.; Kumar, A.; Ginzberg, I. Silicon fertilization of potato: Expression of putative transporters and tuber skin quality. Planta 2016, 243, 217–229. [Google Scholar] [CrossRef]
- Artyszak, A. Effect of Silicon Fertilization on Crop Yield Quantity and Quality-A Literature Review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef]
- Wadas, W. Nutritional value and sensory quality of new potatoes in response to silicon application. Agriculture 2023, 13, 542. [Google Scholar] [CrossRef]
- Wadas, W. Possibility of increasing early potato yield with foliar application of silicon. Agron. Sci. 2022, 77, 61–75. [Google Scholar] [CrossRef]
- Nyawade, S.; Gitari, H.I.; Karanja, N.N.; Gachene, C.K.; Schulte-Geldermann, E.; Sharma, K.; Parker, M.L. Enhancing climate resilience of rain-fed potato through legume intercropping and silicon application. Front. Sustain. Food Syst. 2020, 4, 566345. [Google Scholar] [CrossRef]
- Schaller, J.; Scherwietes, E.; Gerber, L.; Vaidya, S.; Kaczorek, D.; Pausch, J.; Barkusky, D.; Sommer, M.; Hoffmann, M. Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale. Sci. Rep. 2021, 11, 20852. [Google Scholar] [CrossRef]
- Schaller, J.; Macagga, R.; Kaczorek, D.; Augustin, J.; Barkusky, D.; Sommer, M.; Hoffmann, M. Increased wheat yield and soil C stocks after silica fertilization at the field scale. Sci. Total Environ. 2023, 887, 163986. [Google Scholar] [CrossRef]
- Barkusky, D. Müncheberger Nährstoffsteigerungsversuch, V140. In Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz, Landesamt für Verbraucherschutz, Landwirtschaft und Flurneuordnung (ed.): Dauerfeldversuche in Brandenburg und Berlin-Beiträge für eine nachhaltige landwirtschaftliche Bodenbenutzung; MLUL: Brandenburg, Germany, 2009; pp. 103–109. [Google Scholar]
- WRB. World Reference Base (WRB) for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Haysom, M.B.C.; Chapman, L.S. Some aspects of the calcium silicate trials at Mackay. Proc. Aust. Soc. Sugar Cane Technol. 1975, 42, 117–122. [Google Scholar]
- de Lima Rodrigues, L.; Daroub, S.H.; Rice, R.W.; Snyder, G.H. Comparison of three soil test methods for estimating plant-available silicon. Commun. Soil Sci. Plant Anal. 2003, 34, 2059–2071. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Buhtz, C.; Schaller, J. The potential of sodium carbonate and Tiron extractions for the determination of silicon contents in plant samples—A method comparison using hydrofluoric acid digestion as reference. Front. Environ. Sci. 2023, 11, 1145604. [Google Scholar] [CrossRef]
- Puppe, D.; Buhtz, C.; Kaczorek, D.; Schaller, J.; Stein, M. Microwave plasma atomic emission spectroscopy (MP-AES)—A useful tool for the determination of silicon contents in plant samples? Front. Environ. Sci. 2024, 12, 1378922. [Google Scholar] [CrossRef]
- Zepner, L.; Karrasch, P.; Wiemann, F.; Bernard, L. ClimateCharts. net–an interactive climate analysis web platform. Int. J. Digit. Earth 2021, 14, 338–356. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.-D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2011, 32, 201–213. [Google Scholar] [CrossRef]
- Wadas, W.; Kondraciuk, T. Effect of silicon on micronutrient content in new potato tubers. Int. J. Mol. Sci. 2023, 24, 10578. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Tamai, K.; Yamaji, N.; Mitani, N.; Konishi, S.; Katsuhara, M.; Ishiguro, M.; Murata, Y.; Yano, M. A silicon transporter in rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Mitani-Ueno, N.; Ma, J.F. Linking transport system of silicon with its accumulation in different plant species. Soil Sci. Plant Nutr. 2021, 67, 10–17. [Google Scholar] [CrossRef]
- Exley, C.; Guerriero, G.; Lopez, X. How is silicic acid transported in plants? Silicon 2020, 12, 2641–2645. [Google Scholar] [CrossRef]
- Wani, A.H.; Mir, S.H.; Kumar, S.; Malik, M.A.; Tyub, S.; Rashid, I. Silicon en route-from loam to leaf. Plant Growth Regul. 2023, 99, 465–476. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Vivancos, J.; Ramakrishnan, G.; Guérin, V.; Carpentier, G.; Sonah, H.; Labbé, C.; Isenring, P.; Belzile, F.J.; Bélanger, R.R. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J. 2015, 83, 489–500. [Google Scholar] [CrossRef]
- Birch, P.R.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Thorne, S.J.; Stirnberg, P.M.; Hartley, S.E.; Maathuis, F.J.M. The Ability of Silicon Fertilisation to Alleviate Salinity Stress in Rice is Critically Dependent on Cultivar. Rice 2022, 15, 8. [Google Scholar] [CrossRef]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Bomers, S.; Ribarits, A.; Kamptner, A.; Tripolt, T.; von Gehren, P.; Prat, N.; Söllinger, J. Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria. Agronomy 2024, 14, 1399. [Google Scholar] [CrossRef]
- Porter, G.A.; Bradbury, W.B.; Sisson, J.A.; Opena, G.B.; McBurnie, J.C. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J. 1999, 91, 416–425. [Google Scholar] [CrossRef]
- Po, E.A.; Snapp, S.S.; Kravchenko, A. Potato yield variability across the landscape. Agron. J. 2010, 102, 885–894. [Google Scholar] [CrossRef]
- Cambouris, A.; Nolin, M.; Zebarth, B.; Laverdière, M. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. Am. J. Potato Res. 2006, 83, 381–395. [Google Scholar] [CrossRef]
- Schaller, J.; Cramer, A.; Carminati, A.; Zarebanadkouki, M. Biogenic amorphous silica as main driver for plant available water in soils. Sci. Rep. 2020, 10, 2424. [Google Scholar] [CrossRef]
- Arora, R.; Khurana, S.P. Major fungal and bacterial diseases of potato and their management. In Fruit and Vegetable Diseases; Springer: Berlin/Heidelberg, Germany, 2004; pp. 189–231. [Google Scholar]
- Yuen, J. Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Secur. 2021, 13, 247–253. [Google Scholar] [CrossRef]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The importance of nutrient management for potato production Part I: Plant nutrition and yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef]
- Rosen, C.J.; Kelling, K.A.; Stark, J.C.; Porter, G.A. Optimizing phosphorus fertilizer management in potato production. Am. J. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Fereres, E.; Voss, R.E. Growth and yield response of two potato cultivars to various levels of applied water. Irrig. Sci. 1983, 3, 211–222. [Google Scholar] [CrossRef]
- Vos, J.; Haverkort, A. Water availability and potato crop performance. In Potato Biology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 333–351. [Google Scholar]
Si Content (mg kg−1) | |||||
---|---|---|---|---|---|
30 June 2022 | 28 July 2022 | ||||
Treatment | Plant Material | Mean | SD | Mean | SD |
Control | Leaves | 0 | -- | 50 | 0.2 |
0.5% ASi | Leaves | 0 | -- | 646 | -- |
1.0% ASi | Leaves | 12 | 263 | 789 | -- |
Control | Tuber skin | 0 | -- | 0 | -- |
0.5% ASi | Tuber skin | 0 | -- | 0 | -- |
1.0% ASi | Tuber skin | 0 | -- | 0 | -- |
Control | Tuber flesh | 0 | -- | 0 | -- |
0.5% ASi | Tuber flesh | 0 | -- | 0 | -- |
1.0% ASi | Tuber flesh | 0 | -- | 0 | -- |
Control | Roots | 316 | 405 | 860 | 929 |
0.5% ASi | Roots | 936 | 762 | 1669 | 2361 |
1.0% ASi | Roots | 3198 | 2081 | 2401 | 3326 |
Si Content (mg kg−1 DM) | Si Contents of Control and Si Treatments Statistically Significantly Different? | |||||
---|---|---|---|---|---|---|
Year | Potato Cultivar | Plant Material | Control | Si Treatment(s) | Reference | |
2009 | Bintje | Leaves | 3700–4100 | 4200–4700 | yes (under drought stress)/no (without stress) | Crusciol et al. [25] |
2013 | Agata | Leaves | 4100 | 8300–10,000 | yes | Pilon et al. [26] |
Stems | 6300 | 7600–10,100 | yes (soil Si application)/no (foliar Si application) | |||
Roots | 3800 | 4000–5900 | yes (soil Si application)/no (foliar Si application) | |||
Tubers | 2000 | 2100–2200 | no | |||
2016 | Winston | Leaves | 1400–2300 | 1500–2200 | no | Vulavala et al. [31] |
Roots a | 15,600–41,300 | 17,300–34,200 | no | |||
Tuber skin | 950–2000 | 850–3900 | no | |||
2018 | Agria | Shoots + roots | 26 | 27–50 | ns | Soltani et al. [28] |
Tubers | 37 | 40–46 | ns | |||
2019 | Agata | Leaves | 8300 | 8400–8600 | no | Soratto et al. [27] |
Roots | 11,000 | 11,600–12,300 | no | |||
Shoots | 8100 | 8300–9600 | yes (high Si fertilization level)/no (low Si fertilization level) | |||
Tubers | 1200 | 2100–2300 | yes | |||
2023 | Catania | Tubers | 0.2 | 0.3 | no | Wadas and Kondraciuk [46] |
2024 | Talent | Leaves | 0–50 | 0–790 | no | This study |
Tuber skin | 0 | 0 | no | |||
Tuber flesh | 0 | 0 | no | |||
Roots | 320–860 | 940–3200 | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puppe, D.; Busse, J.; Stein, M.; Kaczorek, D.; Buhtz, C.; Schaller, J. Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany. Biology 2024, 13, 828. https://doi.org/10.3390/biology13100828
Puppe D, Busse J, Stein M, Kaczorek D, Buhtz C, Schaller J. Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany. Biology. 2024; 13(10):828. https://doi.org/10.3390/biology13100828
Chicago/Turabian StylePuppe, Daniel, Jacqueline Busse, Mathias Stein, Danuta Kaczorek, Christian Buhtz, and Jörg Schaller. 2024. "Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany" Biology 13, no. 10: 828. https://doi.org/10.3390/biology13100828
APA StylePuppe, D., Busse, J., Stein, M., Kaczorek, D., Buhtz, C., & Schaller, J. (2024). Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany. Biology, 13(10), 828. https://doi.org/10.3390/biology13100828