Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,930)

Search Parameters:
Keywords = biodiversity conservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10210 KiB  
Article
Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece
by Ioannis Faraslis, Vassiliki Margaritopoulou, Christos Christakis and Efthimios Providas
Sustainability 2025, 17(15), 7158; https://doi.org/10.3390/su17157158 (registering DOI) - 7 Aug 2025
Abstract
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean [...] Read more.
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean Natura 2000 Special Protection Area (SPA), and landscape metrics were calculated using Geographic Information System spatial analysis tools. The analysis of metrics showed that the installation of renewable energy parks within the designated protected area negatively affect landscape fragmentation and the absence of carefully defined and evidence-based mitigation measures. The land cover categories that are significantly affected are those considered critical habitats of bird species that have been designated as SPAs. The results of this study highlight the need to integrate, in the National Renewable Energy Spatial Plans, specific biodiversity objectives, such as conservation objectives and the suspension of the installation of photovoltaic parks in certain areas that are important for conservation of biodiversity, in order to ensure the overall sustainability of renewable energy production. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

13 pages, 2843 KiB  
Article
Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic
by Indrajit Pal, Sreejita Banerjee, Oulavanh Sinsamphanh, Jeeten Kumar and Puvadol Doydee
Sustainability 2025, 17(15), 7162; https://doi.org/10.3390/su17157162 - 7 Aug 2025
Abstract
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 [...] Read more.
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 and SSP5-8.5 scenarios for the mid- and late-21st century (2050 and 2080), compared against a 2015 baseline, the analysis quantifies changes in sediment dynamics and ecosystem service provision. Results reveal a substantial increase in sediment retention, particularly in forested and flooded vegetation areas, under moderate and high-emission pathways. However, an overall rise in soil loss is observed across croplands and urbanized zones, driven by intensified high-risk areas, which requires conservative management. This study advocates for ecosystem-based adaptation (EbA) strategies—including afforestation, intercropping, and riparian restoration—to enhance watershed resilience. These nature-based solutions align with national adaptation goals and offer co-benefits for biodiversity, climate regulation, and rural livelihoods. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

16 pages, 7600 KiB  
Article
Passive Long-Term Acoustic Sampling Reveals Multiscale Temporal Ecological Pattern and Anthropogenic Disturbance of Campus Forests in a High Density City
by Xiaoqing Xu, Xueyao Sun and Hanbin Xie
Forests 2025, 16(8), 1289; https://doi.org/10.3390/f16081289 - 7 Aug 2025
Abstract
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role [...] Read more.
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role in supporting urban biodiversity. In this case study, acoustic monitoring was conducted over the course of a full year to objectively reveal the ecological patterns across temporal scales of the campus sound environment, by combining acoustic indices’ visualization combined with statistical analysis. The findings indicate (1) the existence of ecological sound patterns across different temporal scales, closely associated with phenological cycles; (2) the identification of the specific timing affected by the different species‘ activities, such as the breeding season of birds, the chirping time of cicadas and other insects, as well as the fluctuations in the intensity of human activities, and (3) the development of a methodological framework integrating a visualization technique with statistical analysis to enhance the understanding of long-term ecological dynamics. The results offer a foundation for promoting the sustainable conservation of campus biodiversity in high-density urban settings. Full article
(This article belongs to the Special Issue Soundscape in Urban Forests—2nd Edition)
Show Figures

Figure 1

16 pages, 4914 KiB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

19 pages, 4925 KiB  
Article
Environmental Heterogeneity Drives Diversity Across Forest Strata in Hopea hainanensis Communities
by Shaocui He, Donghai Li, Xiaobo Yang, Dongling Qi, Naiyan Shang, Caiqun Liang, Rentong Liu and Chunyan Du
Diversity 2025, 17(8), 556; https://doi.org/10.3390/d17080556 - 7 Aug 2025
Abstract
Species and phylogenetic diversity play vital roles in sustaining the structure, function, and resilience of plant communities, particularly in tropical rainforests. However, the mechanisms according to which environmental filtering and competitive exclusion influence diversity across forest layers remain insufficiently understood. In this study, [...] Read more.
Species and phylogenetic diversity play vital roles in sustaining the structure, function, and resilience of plant communities, particularly in tropical rainforests. However, the mechanisms according to which environmental filtering and competitive exclusion influence diversity across forest layers remain insufficiently understood. In this study, we investigated the species and phylogenetic diversity patterns in two representative tropical rainforest sites—Bawangling and Jianfengling—within Hainan Tropical Rainforest National Park, China, focusing on communities associated with the endangered species Hopea hainanensis. We employed a one-way ANOVA and Pearson’s correlation analyses to examine the distribution characteristics and interrelationships among diversity indices and used Mantel tests to assess the correlations with environmental variables. Our results revealed that the plant community in Jianfengling exhibited a significantly higher species richness at the family, genus, and species levels (a total of 288 plant species have been recorded, belonging to 82 families and 183 genera) compared to that in Bawangling (a total of 212 plant species, belonging to 75 families and 162 genera). H. hainanensis held the highest importance value in the middle tree layer across both sites (IV(BWL) = 12.44; IV(JFL) = 5.73), while dominant species varied notably among other forest layers, indicating strong habitat specificity. Diversity indices, including the Simpson index, the Shannon–Wiener index, and Pielou’s evenness, were significantly higher in the large shrub layer of Jianfengling, whereas Bawangling showed a relatively higher Shannon–Wiener index in the middle shrub layer. Phylogenetic diversity (PD) and the phylogenetic structure indices (NRI and NTI) displayed distinct vertical stratification patterns between sites. Furthermore, the PD in Bawangling’s large shrub layer was positively correlated with total phosphorus in the soil, while community evenness was influenced by soil organic carbon and total nitrogen. In Jianfengling, species richness was significantly associated with soil bulk density, altitude, and pH. These findings enhance our understanding of the ecological and evolutionary processes shaping biodiversity in tropical rainforests and highlight the importance of incorporating both species and phylogenetic metrics into the conservation strategies for endangered species such as Hopea hainanensis. Full article
(This article belongs to the Special Issue Biodiversity Conservation Planning and Assessment—2nd Edition)
Show Figures

Figure 1

20 pages, 2079 KiB  
Article
Spatiotemporal Patterns of Avian Species Richness Across Climatic Regions
by Çağdan Uyar, Serkan Özdemir, Dalia Perkumienė, Marius Aleinikovas, Benas Šilinskas and Mindaugas Škėma
Diversity 2025, 17(8), 557; https://doi.org/10.3390/d17080557 - 7 Aug 2025
Abstract
This study highlights the spatial, seasonal, and climatic variations in bird species richness across Türkiye, a country with rich avian richness situated at the intersection of major migratory routes. Bird species richness was calculated for each province. Differences between regions, Köppen–Geiger climate classes, [...] Read more.
This study highlights the spatial, seasonal, and climatic variations in bird species richness across Türkiye, a country with rich avian richness situated at the intersection of major migratory routes. Bird species richness was calculated for each province. Differences between regions, Köppen–Geiger climate classes, and seasons were analyzed using the Kruskal–Wallis method. Non-parametric analysis of longitudinal data in factorial experiments was also employed to determine seasonal differences within regions and climate classes. The results revealed significant spatial variations in species richness, particularly between temperate and cold climate regions. While seasonal differences were generally less pronounced, they were critical for both migratory and resident bird species. Wetlands, coastal areas, and transitional habitats were identified as biodiversity hotspots for both resident and migratory birds. This study underscores the need to integrate regional, climatic, and seasonal variations into ecosystem-based management plans. Protecting critical habitats, enhancing connectivity through ecological corridors, and adopting adaptive conservation strategies are essential for sustaining Türkiye’s rich avian diversity. These results provide valuable insights for conservation planning and emphasize the importance of addressing spatial and seasonal dynamics to ensure long-term biodiversity preservation. Full article
(This article belongs to the Special Issue Diversity in 2025)
Show Figures

Graphical abstract

17 pages, 2727 KiB  
Article
Local Perspectives on the Role of Dams in Altering River Ecosystem Services in West Africa
by Jean Hounkpe, Yaovi Aymar Bossa, Félicien Djigbo Badou, Flaurine Nouasse, Koupamba Gisèle Sanni Sinasson, Issoufou Yangouliba, Afissétou L. D. Bio Salifou, Irette Kodjogbe, Yacouba Yira, Ozias Hounkpatin, Luc O. C. Sintondji and Daouda Mama
Earth 2025, 6(3), 93; https://doi.org/10.3390/earth6030093 - 7 Aug 2025
Abstract
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services [...] Read more.
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services among communities located near the Alafiarou and Okpara dams in Benin and the Bagré dam in Burkina Faso. The methodology involved designing and implementing a questionnaire in KoboCollect, with trained agents deployed to conduct data collection at each of the three sites. Data analysis indicates that respondents identified biodiversity conservation and the provision of drinking water as the most crucial ecosystem services. Over two-thirds of participants reported observing both positive and negative changes in the services provided by rivers and in socio-economic activities since the construction of the dams. While the majority noted improvements in agriculture, irrigation, water quality, fisheries, and flow rates, other changes included biodiversity loss, a decrease in vegetation cover (notably trees and shrubs), an increase in the population of mosquitoes and other insects, and a decline in fishery resources downstream. Despite these challenges, local communities were strongly willing to participate in initiatives aimed at protecting and restoring river ecosystems and their related services. Full article
Show Figures

Figure 1

20 pages, 3615 KiB  
Article
Identification of Suitable Habitats for Threatened Elasmobranch Species in the OSPAR Maritime Area
by Moritz Mercker, Miriam Müller, Thorsten Werner and Janos Hennicke
Fishes 2025, 10(8), 393; https://doi.org/10.3390/fishes10080393 - 7 Aug 2025
Abstract
Protecting threatened elasmobranch species despite limited data on their distribution and abundance is a critical challenge, particularly in the context of increasing human impacts on marine ecosystems. In the northeastern Atlantic, species such as the leafscale gulper shark, Portuguese dogfish, spurdog, and spotted [...] Read more.
Protecting threatened elasmobranch species despite limited data on their distribution and abundance is a critical challenge, particularly in the context of increasing human impacts on marine ecosystems. In the northeastern Atlantic, species such as the leafscale gulper shark, Portuguese dogfish, spurdog, and spotted ray are facing pressures from overfishing, bycatch, habitat degradation, and climate change. The OSPAR Commission has listed these species as threatened and/or declining and aims to protect them by reliably identifying suitable habitats and integrating these areas into Marine Protected Areas (MPAs). In this study, we present a spatial modelling framework using regression-based approaches to identify suitable habitats for these four species. Results show that suitable habitats of the spotted ray (25.8%) and spurdog (18.8%) are relatively well represented within existing MPAs, while those of the deep-water sharks are underrepresented (6.0% for leafscale gulper shark, and 6.8% for Portuguese dogfish). Our findings highlight the need for additional MPAs in deep-sea continental slope areas, particularly west and northwest of Scotland and Ireland. Such expansions would support OSPAR’s goal to protect 30% of its maritime area by 2030 and could benefit broader deep-sea biodiversity, including other vulnerable demersal species and benthic communities. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation of Fishes)
Show Figures

Figure 1

20 pages, 8429 KiB  
Article
Altitude and Temperature Drive Spatial and Temporal Changes in Vegetation Cover on the Eastern Tibetan Plateau
by Yu Feng, Hongjin Zhu, Xiaojuan Zhang, Feilong Qin, Peng Ye, Pengtao Niu, Xueman Wang and Songlin Shi
Earth 2025, 6(3), 92; https://doi.org/10.3390/earth6030092 - 6 Aug 2025
Abstract
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and [...] Read more.
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and topography on vegetation cover. In this research, we selected the Shaluli Mountains (SLLM) in the ETP as the study area, monitored the spatial and temporal dynamics of the regional vegetation cover using remote sensing methods, and quantified the drivers of vegetation change using Geodetector (GD). The results showed a decreasing trend in annual precipitation (PRE) (−2.4054 mm/year) and the Palmer Drought Severity Index (PDSI) (−0.1813/year) in the SLLM. Annual maximum temperature (TMX) on the spatial and temporal scales showed an overall increasing trend, and the regional climate tended to become warmer and drier. Since 2000, fractional vegetation cover (FVC) has shown a fluctuating upward trend, with an average value of 0.6710, and FVC has spatially shown a pattern of “low in the middle and high in the surroundings”. The areas with non-significant increases (p > 0.05) and significant increases (p < 0.05) in FVC accounted for 46.03% and 5.76% of the SLLM. Altitude (q = 0.3517) and TMX (q = 0.3158) were the main drivers of FVC changes. As altitude and TMX increased, FVC showed a trend of increasing and then decreasing. The results of this study help us to clarify the influence of climate and topography on the vegetation ecosystem of the ETP and provide a scientific basis for regional biodiversity conservation and sustainable development. Full article
Show Figures

Figure 1

20 pages, 2960 KiB  
Article
Effectiveness of Kaolinite with and Without Polyaluminum Chloride (PAC) in Removing Toxic Alexandrium minutum
by Cherono Sheilah Kwambai, Houda Ennaceri, Alan J. Lymbery, Damian W. Laird, Jeff Cosgrove and Navid Reza Moheimani
Toxins 2025, 17(8), 395; https://doi.org/10.3390/toxins17080395 - 6 Aug 2025
Abstract
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, [...] Read more.
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, and 0.3 g L−1), two pH levels (7 and 8), and two cell densities (1.0 and 2.0 × 107 cells L−1) in seawater. PAC significantly enhanced removal, achieving up to 100% efficiency within two hours. Zeta potential analysis showed that PAC imparted positive surface charges to the clay, promoting electrostatic interactions with negatively charged algal cells and enhancing flocculation through Van der Waals attractions. In addition, the study conducted a cost estimate analysis and found that treating one hectare at 0.1 g L−1 would cost approximately USD 31.75. The low KPAC application rate also suggests minimal environmental impact on benthic habitats. Full article
Show Figures

Figure 1

14 pages, 7789 KiB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 - 6 Aug 2025
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

16 pages, 2848 KiB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

21 pages, 524 KiB  
Article
The Role of Solidarity Finance in Sustainable Local Development in Ecuador
by Pablo Dávila Pinto, Sigfredo Ortuño-Pérez, Diego Mantilla Garcés and Víctor Albuja Centeno
Economies 2025, 13(8), 227; https://doi.org/10.3390/economies13080227 - 6 Aug 2025
Abstract
This study explores the role of solidarity finance in promoting local development and the empowerment of marginalized communities through financial inclusion and access to community credits. It focuses on how solidarity-based financial mechanisms provide accessible credit with fewer barriers, fostering productive activities and [...] Read more.
This study explores the role of solidarity finance in promoting local development and the empowerment of marginalized communities through financial inclusion and access to community credits. It focuses on how solidarity-based financial mechanisms provide accessible credit with fewer barriers, fostering productive activities and economic resilience. This study employed a quantitative and exploratory design, analyzing data from 51 community funds in Ecuador out of a total of 220 through a self-administered online survey, validated by auditing professionals and answered by community representatives. The 25-item questionnaire gathered data on organizational dynamics, financial practices, and perceptions of sustainability. Descriptive analysis was complemented with an analysis of variance to test hypotheses concerning associativity, self-management, and organizational performance. The results show that while associativity, self-management, and organizational management are perceived as institutional strengths, aspects such as autonomy and solidarity received lower evaluations, suggesting critical areas for strategic improvement. Notably, significant differences emerged between self-management–organization and solidarity–organization groups, emphasizing the importance of associativity (collaboration) in enhancing the sustainability of solidarity finance, which proves to be a vital mechanism for community empowerment and local development; however, its long-term sustainability depends on strengthening internal dimensions, particularly autonomy and solidarity, and reinforcing associativity as a core driver of organizational resilience. Full article
Show Figures

Figure 1

25 pages, 15953 KiB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 - 5 Aug 2025
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

Back to TopTop