Spatiotemporal Patterns of Avian Species Richness Across Climatic Regions
Abstract
1. Introduction
2. Materials and Methods
- Study area
- Avifauna and Migration Routes of Türkiye
- Data collection
- Mapping of bird species richness
- Köppen–Geiger Climate Classification
- Statistical analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBA | Important Bird and Biodiversity Area |
IWRB | International Waterfowl Research Bureau |
IPCC | Intergovernmental Panel on Climate Change |
AR | Aegean Region |
MDR | Mediterranean Region |
EAR-MR | Eastern Anatolia Region |
CAR | Central Anatolia Region |
BSR | Black Sea Region |
MR | Marmara Region |
SAR | Southeastern Anatolia Region |
T | Temperate Climate Class |
AT | Arid and Temperate |
C | Cold Climate Class |
CT | Cold and Temperate |
NDVI | Normalized Difference Vegetation Index |
GIS | Geographic Information System |
p | Probability |
References
- Connor, E.F.; McCoy, E.D. The statistics and biology of the species-area relationship. Am. Nat. 1979, 113, 791–833. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mares, M.A.; Willig, M.R.; Hsieh, Y. Randomness, area and species-richness. Ecology 1982, 63, 1121–1133. [Google Scholar] [CrossRef]
- Brown, J.H.; Gibson, A.C. Biogeography; Mosby: St. Louis, MO, USA, 1983; ISBN 0-8016-0824-4. [Google Scholar]
- McGuinness, K.A. Equations and explanations in the study of species-area curves. Biol. Rev. 1984, 59, 423–441. [Google Scholar] [CrossRef]
- Myers, A.A.; Giller, P. (Eds.) Analytical Biogeography: An Integrated Approach to the Study of Animal and Plant Distributions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 9, p. 574. [Google Scholar]
- Lemoine, N.; Böhning-Gaese, K. Potential impact of global climate change on species richness of long-distance migrants. Conserv. Biol. 2003, 17, 577–586. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations and Communities; Blackwell Scientific: Oxford, UK, 1990; Volume 2. [Google Scholar]
- Rahbek, C. The relationship among area, elevation, and regional species richness in neotropical birds. Am. Nat. 1997, 149, 875–902. [Google Scholar] [CrossRef] [PubMed]
- Hole, D.G.; Willis, S.G.; Pain, D.J.; Fishpool, L.D.; Butchart, S.H.; Collingham, Y.C.; Huntley, B. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 2009, 12, 420–431. [Google Scholar] [CrossRef]
- Bagchi, R.; Crosby, M.; Huntley, B.; Hole, D.G.; Butchart, S.H.; Collingham, Y.; Kalra, M.; Rajkumar, J.; Rahmani, A.; Pandey, M.; et al. Evaluating the effectiveness of conservation site networks under climate change: Accounting for uncertainty. Glob. Change Biol. 2013, 19, 1236–1248. [Google Scholar] [CrossRef]
- BirdLife International and National Audubon Society. 2017. Available online: https://www.audubon.org/conservation/climate/actionplan (accessed on 16 January 2025).
- Arneth, A.; Shin, Y.J.; Leadley, P.; Rondinini, C.; Bukvareva, E.; Kolb, M.; Midgley, G.F.; Oberdorff, T.; Palomo, I.; Saito, O. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. USA 2020, 117, 30882–30891. [Google Scholar] [CrossRef]
- Kaya, M. İğneada longoz Ormanları ve Çevresinin Kuşları. Trak. Univ. J. Nat. Sci. 2015, 16, 31–43. [Google Scholar]
- Kaya, M. Ornithological Observations in Strandzha Mountains, Kırklareli-Dereköy. J. Inst. Sci. Technol. 2023, 13, 2423–2436. [Google Scholar]
- Aydın, A.; Mutlu, S.; Tuncalı, T. Kocaçay Deltası, Türkiye’nin Önemli Doğa Alanları. Doğa Derneği 2006, 1, 124–125. [Google Scholar]
- Onmuş, O.; Siki, M. Shorebirds in the Gediz Delta (İzmir, Turkey): Breeding and wintering abundances, distributions, and seasonal occurrences. Turk. J. Zool. 2011, 35, 615–629. [Google Scholar] [CrossRef]
- Barlas, E. Distribution of Bat (Chiroptera) Species in Eskişehir Region. Master’s Thesis, Anadolu University, Eskişehir, Türkiye, 2016. [Google Scholar]
- Per, E.; Kiraz Erciyas, Y.; Yavuz, N. The Distribution, Migration Phenology and Spatial and Temporal Status of Hirundinidae Species in Turkey. Trak. Univ. J. Nat. Sci. 2016, 17, 7–15. [Google Scholar]
- Azizoğlu, E.; Adızel, Ö. Determination of seasonal habitat usage and population distributions of bird species detected in and around of Yüksekova Nehil Reed (Hakkâri-Türkiye). Adyütayam 2017, 5, 10–19. [Google Scholar]
- Süel, H. Predicting distribution of white stork (Ciconia ciconia Linnaeus, 1758) under climate change in Turkey. Turk. J. For. 2019, 20, 243–249. [Google Scholar] [CrossRef]
- BirdLife International. State of the World’s Birds 2022: Insights and Solutions for the Biodiversity Crisis; BirdLife International: Cambridge, UK, 2022. [Google Scholar]
- Johnston, A.; Auer, T.; Fink, D.; Strimas-Mackey, M.; Iliff, M.; Rosenberg, K.V.; Brown, S.; Lanctot, R.; Rodewald, A.D.; Kelling, S. Comparing abundance distributions and range maps in spatial conservation planning for migratory species. Ecol. Appl. 2020, 30, e02058. [Google Scholar] [CrossRef]
- Rousseau, J.S.; Betts, M.G. Factors influencing transferability in species distribution models. Ecography 2022, 7, e06060. [Google Scholar] [CrossRef]
- Ponti, R.; Sannolo, M. The importance of including phenology when modelling species ecological niche. Ecography 2023, 4, e06143. [Google Scholar] [CrossRef]
- Pacifici, M.; Visconti, P.; Butchart, S.H.; Watson, J.E.; Cassola, F.M.; Rondinini, C. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 2017, 7, 205–208. [Google Scholar] [CrossRef]
- BirdLife International. State of the World’s Birds: Taking the Pulse of the Planet; BirdLife International: Cambridge, UK, 2018. [Google Scholar]
- Knudsen, E.; Lindén, A.; Both, C.; Jonzén, N.; Pulido, F.; Saino, N.; Sutherland, W.J.; Bach, L.A.; Coppack, T.; Ergon, T.; et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 2011, 86, 928–946. [Google Scholar] [CrossRef]
- Moss, S. Understanding Bird Behaviour; Bloomsbury Publishing: London, UK, 2015; ISBN 978-1-4729-1206-0. [Google Scholar]
- Raja, C.; Chinnasamy, S.; Ramachandran, M.; Saravanan, V. Understanding Bird Migration Pattern: Causes and Mechanisms. J. Electron. Autom. Eng. 2024, 3, 10–15. [Google Scholar] [CrossRef]
- Trierweiler, C.; Klaassen, R.H.; Drent, R.H.; Exo, K.M.; Komdeur, J.; Bairlein, F.; Koks, B.J. Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132897. [Google Scholar] [CrossRef]
- Özkazanç, N.K.; Özay, E. The factors that threaten the migratory birds. Bartın Univ. Int. J. Nat. Appl. Sci. 2019, 2, 77–89. [Google Scholar]
- Audubon. Drought and Birds. 2024. Available online: https://ca.audubon.org/news/drought-and-birds (accessed on 27 June 2025).
- Moudrý, V.; Šímová, P. Relative importance of climate, topography, and habitats for breeding wetland birds with different latitudinal distributions in the Czech Republic. Appl. Geogr. 2013, 44, 165–171. [Google Scholar] [CrossRef]
- Somveille, M.; Manica, A.; Rodrigues, A.S. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 2019, 42, 225–236. [Google Scholar] [CrossRef]
- Kumerloeve, H. Zur Kenntnis der Avifauna Kleinasiens und der europäischen Türkei. İstanbul Üniversitesi Fen Fakültesi Mecmuası Seri B 1970, 35, 85–160. [Google Scholar]
- Wood, J.R.; De Pietri, V.L. Next-generation paleornithology: Technological and methodological advances allow new insights into the evolutionary and ecological histories of living birds. Auk 2015, 132, 486–506. [Google Scholar] [CrossRef]
- Wahby, A. Les oiseaux de la region de Stamboul et ses environs. Bull. Soc. Zool. 1930, 4, 171–175. [Google Scholar]
- Kirwan, G.; Demirci, B.; Welch, H.; Boyla, K.; Özen, M.; Castell, P.; Marlow, T. Birds Turk; Bloomsbury Publishing: London, UK, 2010; ISBN 9781408104750. [Google Scholar]
- Ergene, S. Türkiye Kuşları. İstanbul Üniversitesi Fen Fakültesi Monografileri; Kenan Matbaası: Istanbul, Türkiye, 1945; Volume 4, pp. 216–246. [Google Scholar]
- Ertan, A.; Kılıç, A.; Kasparek, M. Önemli Kuş Alanları; Doğal Hayatı Koruma Derneği: İstanbul, Türkiye, 1992; p. 156. [Google Scholar]
- Eken, G.; Bozdoğan, M.; Isfendiyaroğlu, S.; Kiliç, D.T.; Lise, Y. (Eds.) Türkiye’nin Önemli Doğa Alanlari. (Key Biodiversity Areas of Türkiye); Doğa Derneği: Ankara, Türkiye, 2006; Volume 2, ISBN 9789759890131. [Google Scholar]
- BirdLife International. Important Bird Areas Hold Internationally Important Numbers of Other Animals or Plants in Turkey. 2008. Available online: https://datazone.birdlife.org/sowb/casestudy/important-bird-areas-hold-internationally-important-numbers-of-other-animals-or-plants-in-turkey (accessed on 27 June 2025).
- Eken, G.; Magnin, G. A Preliminary Biodiversity Atlas of the Konya Basin, Central Turkey; Biodiversity Programme Report; Doğal Hayatı Koruma Derneği: İstanbul, Türkiye, 1999; Volume 13. [Google Scholar]
- Zeydanli, U.Z.; Welch, H.J.; Welch, G.R.; Altintaş, M.; Domaç, A. Gap Analysis and Priority Conservation Area Selection for Mediterranean Turkey; Preliminary Technical Report Turkish Foundation for Nature Conservation: Ankara, Türkiye, 2005. [Google Scholar]
- Welch, H.J. GAP Biodiversity Research Project 2001–2003/Final Report; Doğal Hayatı Koruma Derneği: İstanbul, Türkiye, 2004. [Google Scholar]
- Jarrad, F.; Low-Choy, S.; Mengersen, K. Biosecurity Surveill: Quant. Approaches; Centre for Agriculture and Bioscience International: Boston, MA, USA, 2015; Volume 6. [Google Scholar]
- Zhang, J.; Li, S. A review of machine learning based Species’ distribution modelling. In Proceedings of the International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2–3 December 2017; pp. 199–206. Available online: https://ieeexplore.ieee.org/document/8328619 (accessed on 27 June 2025).
- Kellenberger, B.; Veen, T.; Folmer, E.; Tuia, D. 21,000 birds in 4.5 h: Efficient large-scale seabird detection with machine learning. Remote Sens. Ecol. Conserv. 2021, 7, 445–460. [Google Scholar] [CrossRef]
- Mutlu, M.; Özdem, K.; Akcayol, M.A. Bird species classification using deep learning: A comparative study. J. Politek. 2022, 25, 1251–1260. [Google Scholar]
- Alswaitti, M.; Zihao, L.; Alomoush, W.; Alrosan, A.; Alissa, K. Effective classification of birds’ species based on transfer learning. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 4172–4184. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Yu, Y.; Lin, Y.; Ran, J. An efficient model for a vast number of bird species identification based on acoustic features. Animals 2022, 12, 2434. [Google Scholar] [CrossRef] [PubMed]
- Uyar, Ç.; Perkumienė, D.; Škėma, M.; Aleinikovas, M. An International Perspective on the Status of Wildlife in Türkiye’s Sustainable Forest Management Processes. Forests 2024, 15, 2195. [Google Scholar] [CrossRef]
- Good, S.D.; Baker, G.B.; Gummery, M.; Votier, S.C.; Phillips, R.A. National Plans of Action (NPOAs) for reducing seabird bycatch: Developing best practice for assessing and managing fisheries impacts. Biol. Conserv. 2020, 247, 108592. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Borges, J.G.; Kašpar, J.; Tahri, M. A design for addressing multiple ecosystem services in forest management planning. Forests 2020, 11, 1108. [Google Scholar] [CrossRef]
- Yang, X.; Liu, S.; Jia, C.; Liu, Y.; Yu, C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 2021, 298, 113540. [Google Scholar] [CrossRef]
- Zurell, D.; König, C.; Malchow, A.K.; Kapitza, S.; Bocedi, G.; Travis, J.; Fandos, G. Spatially explicit models for decision-making in animal conservation and restoration. Ecography 2021, 2022, e05787. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Hermoso, V.; Martínez-Salinas, A. Multi-objective forest restoration planning in Costa Rica: Balancing landscape connectivity and ecosystem service provisioning with sustainable development. J. Environ. Manag. 2022, 310, 114717. [Google Scholar] [CrossRef] [PubMed]
- Stern, E.R.; Humphries, M.M. Interweaving local, expert, and Indigenous knowledge into quantitative wildlife analyses: A systematic review. Biol. Conserv. 2022, 266, 109444. [Google Scholar] [CrossRef]
- Plummer, K.E.; Gillings, S.; Siriwardena, G.M. Evaluating the potential for bird-habitat models to support biodiversity-friendly urban planning. J. Appl. Ecol. 2020, 57, 1902–1914. [Google Scholar] [CrossRef]
- Walker, J.; Taylor, P.D. Using eBird data to model population change of migratory bird species. Avian Conserv. Ecol. 2017, 12, 4. [Google Scholar] [CrossRef]
- Horns, J.J.; Adler, F.R.; Şekercioğlu, Ç.H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 2018, 221, 151–159. [Google Scholar] [CrossRef]
- Fink, D.; Auer, T.; Johnston, A.; Ruiz-Gutierrez, V.; Hochachka, W.M.; Kelling, S. Modeling avian full annual cycle distribution and population trends with citizen science data. Ecol. Appl. 2020, 30, e02056. [Google Scholar] [CrossRef]
- Neate-Clegg, M.H.; Horns, J.J.; Adler, F.R.; Aytekin, M.Ç.K.; Şekercioğlu, Ç.H. Monitoring the world’s bird populations with community science data. Biol. Conserv. 2020, 248, 108653. [Google Scholar] [CrossRef]
- Walker, J.; Taylor, P. Evaluating the efficacy of eBird data for modeling historical population trajectories of North American birds and for monitoring populations of boreal and Arctic breeding species. Avian Conserv. Ecol. 2020, 15, 10. [Google Scholar] [CrossRef]
- Kittelberger, K.D.; Tanner, C.J.; Orton, N.D.; Şekercioğlu, Ç.H. The value of community science data to analyze long-term avian trends in understudied regions: The state of birds in Türkiye. Avian Res. 2023, 14, 100140. [Google Scholar] [CrossRef]
- Apaydin, H.; Anli, A.S.; Ozturk, F. Evaluation of topographical and geographical effects on some climatic parameters in the Central Anatolia Region of Türkiye. Int. J. Climatol. 2011, 31, 1264. [Google Scholar] [CrossRef]
- Ekinci, D. The noticeable geomorphosites of Türkiye. Int. J. Arts Sci. 2010, 3, 303–321. [Google Scholar]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar]
- Göktürk, O.M.; Fleitmann, D.; Badertscher, S.; Cheng, H.; Edwards, R.L.; Leuenberger, M.; Fankhauser, A.; Tüysüz, O.; Kramers, J. Climate on the southern Black Sea coast during the Holocene: Implications from the Sofular Cave record. Quat. Sci. Rev. 2011, 30, 2433–2445. [Google Scholar] [CrossRef]
- Schemmel, F.; Mikes, T.; Rojay, B.; Mulch, A. The impact of topography on isotopes in precipitation across the Central Anatolian Plateau (Türkiye). Am. J. Sci. 2013, 313, 61–80. [Google Scholar] [CrossRef]
- Turkes, M. Climate and drought in Türkiye. In Water Resources of Turkey; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 85–125. [Google Scholar] [CrossRef]
- Boyla, K.A.; Sinav, L.; Dizdaroğlu, D.E. Türkiye Breed. Bird Atlas; WWF-Türkiye Report: İstanbul, Türkiye, 2019; ISBN 978-605-9903-21-9. [Google Scholar]
- Elvan, O.D.; Arslangündoğdu, Z.; Birben, Ü. Conserving migratory birds of Turkey: Role of the international legal framework. Environ. Monit. Assess. 2022, 194, 320. [Google Scholar] [CrossRef]
- Trakuş. Bird List of Türkiye. 2024. Available online: https://www.trakus.org/kods_bird/uye/?fsx=turkiyenin_kuslari (accessed on 31 July 2025).
- Cırık, Ö. Gökyüzü Krallığı. Yeşil Atlas J. 2005, 8, 30–37. [Google Scholar]
- Dinç, A.; Ok, M. Kuş gözlemciliğinin ekoturizme etkisinin araştırılması: Eskikaraağaç örneği. J. Tour. Intell. Smartness 2022, 5, 145–153. [Google Scholar]
- Kocaman, G.; Arslan, H. Ebird verilerinin incelenmesi yolu ile Türkiye’de kuş gözlemciliği üzerine bir değerlendirme. J. Soc. Sci. 2023, 63, 537–552. [Google Scholar]
- Cornell Lab of Ornithology. eBird. 2024. Available online: https://ebird.org/region/TR (accessed on 19 March 2025).
- eBird. eBird: An Online Database of Bird Distribution and Abundance. Cornell Lab of Ornithology, Ithaca, New York. 2023. Available online: http://www.ebird.org (accessed on 31 July 2025).
- Strimas-Mackey, M.; Miller, E.; Hochachka, W. auk: eBird Data Extraction and Processing with AWK. R Package, version 0.3.0; 2018. Ithaca, New York, United States. Available online: https://cornelllabofornithology.github.io/auk/ (accessed on 27 July 2025).
- eBird. Vanellus Indicus, Identification. 2024. Available online: https://bit.ly/3Di8A9S (accessed on 31 July 2025).
- Febrianto, H.; Fariza, A.; Hasim, J.A.N. Urban flood risk mapping using analytic hierarchy process and natural break classification (Case study: Surabaya, East Java, Indonesia). In Proceedings of the International Conference on Knowledge Creation and Intelligent Computing (KCIC), Manado, Indonesia, 15–17 November 2016; pp. 148–154. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on geographical environment unit division based on the method of natural breaks (Jenks). The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2013, 40, 47–50. [Google Scholar]
- Rabosky, D.; Grundler, M.; Brown, J.; Huang, H.; Mitchell, J.; Rcpp, I. Package, BAMMtools. September 2024. Analysis and Visualization of Macroevolutionary Dynamics on Phylogenetic Trees. 78p. Available online: http://bamm-project.org/ (accessed on 4 August 2025).
- Geiger, R. Üerarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger/Klima der Erde. (Wandkarte 1, 16 Mill.); Klett-Perthes: Gotha, Germany, 1961. [Google Scholar]
- Köppen, W. Versuch Einer Klassifikation der Klimate, Vorzugsweise Nach Ihren Beziehungen Zur Pflanzenwelt. (Schluss). Geogr. Z. 1900, 12, 657–679. [Google Scholar]
- Öztürk, M.Z.; Çetinkaya, G.; Aydın, S. Climate Types of Turkey According to Köppen-Geiger Climate Classification. Coğrafya J. 2017, 35, 17–27. [Google Scholar]
- Yılmaz, E.; Çiçek, İ. Detailed Köppen-Geiger climate regions of Turkey. J. Hum. Sci. 2018, 15, 225–242. [Google Scholar] [CrossRef]
- Taşoğlu, E.; Öztürk, M.Z.; Yazıcı, Ö. High Resolution Köppen-Geiger Climate Zones of Türkiye. Int. J. Climatol. 2024, 44, 5248–5265. [Google Scholar] [CrossRef]
- Kolmogorov, A. Sulla determinazione empirica di una legge didistribuzione. Giorn. Dell’inst. Ital. Degli Att. 1933, 4, 89–91. [Google Scholar]
- Smirnov, N.V. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Özdemir, S. Testing the Effect of Resolution on Species Distribution Models Using Two Invasive Species. Pol. J. Environ. Stud. 2024, 33, 1325–1335. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Orlich, S. Kruskal-Wallis Multiple Comparisons with a MINITAB Macro Dunn’s Test; Minitab Inc.: State College, PA, USA, 2000; p. 13. [Google Scholar]
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots, R Package Version 2 (0.6.1.999); 2018. Available online: https://github.com/kassambara/ggpubr (accessed on 4 August 2025).
- Dinno, A.; Dinno, M.A. Package ‘dunn. test’. CRAN Repos 2017, 10, 1–7. [Google Scholar]
- Noguchi, K.; Gel, Y.R.; Brunner, E.; Konietschke, F. nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. J. Stat. Softw. 2012, 50, 1–23. [Google Scholar] [CrossRef]
- Ghosh, S. Nonparametric Analysis of Longitudinal Data in Factorial Experiments. Technometrics 2003, 45, 171–172. [Google Scholar] [CrossRef]
- Parish, T.; Lakhani, K.H.; Sparks, T.H. Modelling the relationship between bird population variables and hedgerow and other field margin attributes. I. Species richness of winter, summer and breeding birds. J. Appl. Ecol. 1994, 31, 764–775. [Google Scholar] [CrossRef]
- Hurlbert, A.H.; Haskell, J.P. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 2003, 161, 83–97. [Google Scholar] [CrossRef]
- Okçu, D. The Variations of Normalized Difference Vegetation Index in Turkey and Relationship Between Meteorological Parameters. Ph.D. Thesis, İstanbul Technical University, Graduate School of Natural and Applied Sciences, Istanbul, Turkish, 1999. [Google Scholar]
- Rosenzweig, M.L. Species diversity gradients: We know more and less than we thought. J. Mammol. 1992, 73, 715–730. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Species Divers. Space Time; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- MacArthur, R.H. Geographical Ecology; Harper Row: New York, NY, USA, 1972. [Google Scholar]
- Simpson, B. A historical phytogeography of the high Andean flora. Rev. Chil. Hist. Nat. 1983, 56, 109–122. [Google Scholar]
- Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 1992, 65, 514–527. [Google Scholar] [CrossRef]
- Stevens, G.C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 1989, 133, 240–256. [Google Scholar] [CrossRef]
- Terborgh, J. Bird species diversity on an Andean elevational gradient. Ecology 1977, 58, 1007–1019. [Google Scholar] [CrossRef]
- Dani, R.S.; Divakar, P.K.; Baniya, C.B. Diversity and composition of plants species along elevational gradient: Research trends. Biodivers. Conserv. 2023, 32, 2961–2980. [Google Scholar] [CrossRef]
- Arıkan, K.G.; Buyuk, Ö.G.; Yeni, B.; Per, E. Wildlife Smuggling in the Turkish Media. Acta Infologica 2021, 5, 299–317. [Google Scholar] [CrossRef]
- Öztemel, Y. Bird Population Influence of Wind Power Plants (WPP) on Bird Migration Road. Master’s Thesis, Adnan Menderes University, Aydın, Turkish, 2021; p. 73. [Google Scholar]
- Oppel, S.; Buechley, E.R.; López-López, P.; Phipps, L.; Arkumarev, V.; Bounas, A.; Williams, F.; Dobrev, V.; Dobrev, D.; Stoychev, S. Egyptian vulture Neophron percnopterus. In Migration Strategies of Birds of Prey in Western Palearctic; CRC Press: Boca Raton, FL, USA, 2021; pp. 22–34. [Google Scholar] [CrossRef]
- Şekercioğlu, Ç.H.; Anderson, S.; Akçay, E.; Bilgin, R.; Can, Ö.E.; Semiz, G.; Tavşanoğlu, Ç.; Yokeş, M.B.; Soyumert, A.; İpekdal, K.; et al. Turkey’s globally important biodiversity in crisis. Biol. Conserv. 2011, 144, 2752–2769. [Google Scholar] [CrossRef]
- Bicudo, J.E.P.; Buttemer, W.A.; Chappell, M.A.; Pearson, J.T.; Bech, C. Ecological and Environmental Physiology of Birds; Oxford University Press: New York, NY, USA, 2010; pp. 593–594. ISBN 978-0-19-922844-7. [Google Scholar] [CrossRef]
- Sözgen, Ö.T.; Arslangündoğdu, Z.; Oğurlu, İ. Contributions of Urban Woodlands to Bird Diversity and Abundance in The Anatolian Side of Istanbul. Kastamonu Univ. J. For. Fac. 2024, 24, 182–196. [Google Scholar] [CrossRef]
- Akdemir, D.; Özdemir, İ. Effect of clear cutting on birds in brutian pine forests in the Western Mediterranean Region. Turk. J. For. 2015, 16, 102–110. [Google Scholar]
- Süel, H.; Akdemir, D.; Ertuğrul, E.T.; Özdemir, S. Determining environmental factors affecting bird diversity. Kastamonu Univ. J. For. Fac. 2021, 21, 244–251. [Google Scholar] [CrossRef]
- Kahraman, A.; Onder, M.; Ceyhan, E. The importance of bioconservation and biodiversity in Turkey. Int. J. Biosci. Biochem. Bioinform. 2012, 2, 95. [Google Scholar] [CrossRef]
- Süel, H.; Özdemir, S. Yalçınkaya, B. Assessing Climate Change Impacts on the Genus Anser in Türkiye. In Soil, Forest and Water Researches Giving Life to Humans; Özdemir, S., Çiçekler, M., Eds.; SRA Academic Publishing: Klaipeda, Lithuania, 2022; Volume 8, pp. 89–118. ISBN 978-625-7148-69-6. [Google Scholar]
- Osmanoğlu, T.; Özdemir, İ. Relationships between stand structure and bird species richness in the Isparta-Gölcük Nature Park Forest. Biol. Divers. Conserv. 2014, 7, 78–86. [Google Scholar]
- Mert, A.; Aksan, Ş.; Özkan, U.; Özdemir, İ. Relationships between the richness of bird species and structural diversity from satellite images of Landsat-8 OLI. Turk. J. For. 2016, 17, 68–72. [Google Scholar]
- Süel, H.; Oğurlu, İ.; Ertuğrul, E.T. Bird Fauna of Karacaören I Dam Lake, Isparta-Turkey. J. Grad. Sch. Nat. Appl. Sci. Mehmet Akif Ersoy Univ. 2018, 9, 22–28. [Google Scholar]
- Acarer, A. Cinereous vulture (Aegypius monachus) become extinct in the forests of Turkey in the future? Šumarski List 2024, 148, 7–8. [Google Scholar] [CrossRef]
- Evcin, Ö. Does Climate Change Affect the Potential Distribution of House Sparrows (Passer domesticus)? Menba Kastamonu Univ. Fac. Fish. J. 2024, 10, 93–104. [Google Scholar]
- Kızılocak, D.H. A Study on Avifauna of Ganos Mountain (Tekirdag). Master’s Thesis, Namık Kemal University, Graduate School of Natural and Applied Sciences, Tekirdağ, Turkey, 2017. [Google Scholar]
- Tozlu, Z. Determination of Bioecology and Distribution Maps of Ardeidae Species in Some Lakes (Sapanca, Poyrazlar, Taskısıgı and Kucuk Akgol) in the Eastern Marmara Region. Ph.D. Thesis, Sakarya University Graduate School of Natural and Applied Sciences, Sakarya, Türkiye, 2019. [Google Scholar]
- Jourdain, E.; Gauthier-Clerc, M.; Bicout, D.; Sabatier, P. Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerg. Infect. Dis. 2007, 13, 365. [Google Scholar] [CrossRef]
- Sanders, H.L. Marine benthic diversity: A comparative study. Am. Nat. 1968, 102, 243–282. [Google Scholar] [CrossRef]
- Junk, W.J.; Brown, M.; Campbell, I.C.; Finlayson, M.; Gopal, B.; Ramberg, L.; Warner, B.G. The comparative biodiversity of seven globally important wetlands: A synthesis. Aquat. Sci. 2006, 68, 400–414. [Google Scholar] [CrossRef]
- Benassi, G.; Battisti, C.; Luiselli, L. Area effect on bird species richness of an archipelago of wetland fragments in Central Italy. Community Ecol. 2007, 8, 229–237. [Google Scholar] [CrossRef]
- Cerda-Peña, C.; Rau, J.R. The importance of wetland habitat area for waterbird species-richness. Ibis 2023, 165, 739–752. [Google Scholar] [CrossRef]
- Mert, A.; Tavuç, İ.; Özdemir, S.; Ulusan, M.D. Future Responses of the Burdur Lake to Climate Change and Uncontrolled Exploitation. J. Indian Soc. Remote Sens. 2025, 53, 1025–1036. [Google Scholar] [CrossRef]
- Gürlük, S.; Rehber, E. A Study on Environmental Valuation of the Lake Manyas, Turk. J. Agric. Econ. 2009, 15, 9–15. [Google Scholar]
- Atıcı, T. Tuz Gölü Özel Çevre Koruma Bölgesi Göllerinde Alg Çeşitliliği ve Potansiyel Siyanobakteri Toksisitesi. Türler Ve Habitatlar 2022, 3, 94–109. [Google Scholar] [CrossRef]
- Kayra, T.; Alphan, H. Doğu Akdeniz Delta Sistemlerindeki Sulak Alanlarda Peyzaj Paterni Değişimleri: Göksu Deltası ve Yumurtalık Lagünü Milli Parkı Örnekleri. Türkiye Peyzaj Araştırmaları Derg. 2024, 7, 35–52. [Google Scholar] [CrossRef]
- Karadeniz, N. Sultan Sazligi, Ramsar Site in Turkey. Humed. Mediterráneos 2000, 1, 107–114. [Google Scholar]
- Günal, N. The Effects of the Climate on the Natural Vegetation in Turkey. Acta Turc. 2013, 1, 1–22. [Google Scholar]
- Mooser, A.; Anfuso, G.; Stanchev, H.; Stancheva, M.; Williams, A.T.; Aucelli, P.P. Most attractive scenic sites of the Bulgarian Black Sea coast: Characterization and sensitivity to natural and human factors. Land 2022, 11, 70. [Google Scholar] [CrossRef]
- Fjeldså, J.; Bowie, R.C.; Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 249–265. [Google Scholar] [CrossRef]
- EBBA2. About (Turkey): National Coordinators, Data Providers and Other Key Supporters. 2024. Available online: https://ebba2.info/about/organization/data-provider-tr/#data_provider (accessed on 12 February 2025).
Species Richness | |||
---|---|---|---|
Minimum | Mean | Maximum | |
Summer | 1 | 4.14 | 17 |
Winter | 1 | 6.43 | 21 |
Year | 1 | 8.76 | 26 |
Regions | Z | p |
---|---|---|
MDR-EAR | 3.328 | 0.009 * |
MDR-AR | 1.215 | 1 |
EAR-AR | −1.940 | 0.549 |
MDR-SAR | 1.483 | 1 |
EAR-SAR | −1.635 | 1 |
AR-SAR | 0.268 | 1 |
MDR-CAR | 2.686 | 0.076 |
EAR-CAR | −0.660 | 1 |
AR-CAR | 1.334 | 1 |
SAR-CAR | 1.036 | 1 |
MDR-BSR | 1.742 | 0.857 |
EAR-BSR | −2.051 | 0.423 |
AR-BSR | 0.312 | 1 |
SAR-BSR | −0.003 | 1 |
CAR-BSR | −1.283 | 1 |
MDR-MR | −0.102 | 1 |
EAR-MR | −3.791 | 0.002 * |
AR-MR | −1.410 | 1 |
SAR-MR | −1.698 | 0.939 |
CAR-MR | −3.063 | 0.023 * |
BSR-MR | −2.058 | 0.416 |
Köppen–Geiger Climate Classes | Z | p |
---|---|---|
AT-C | 1.567 | 0.351 |
AT-T | −2.173 | 0.089 |
C-T | −3.988 | 0.000 * |
AT-CT | 0.162 | 1 |
C-CT | −1.353 | 0.529 |
T-CT | 2.253 | 0.073 |
Results for Regions | ||
Statistic | p | |
Group (regions) | 28.975 | 0.000 |
Time (seasons) | 10.135 | 0.001 |
Group: Time | 167.089 | 0.000 * |
Results for Climate Classes | ||
Statistic | p | |
Group (Köppen–Geiger Climate Classes) | 26.966 | 0.000 |
Time (seasons) | 3.99 | 0.046 |
Group: Time | 12.578 | 0.005 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyar, Ç.; Özdemir, S.; Perkumienė, D.; Aleinikovas, M.; Šilinskas, B.; Škėma, M. Spatiotemporal Patterns of Avian Species Richness Across Climatic Regions. Diversity 2025, 17, 557. https://doi.org/10.3390/d17080557
Uyar Ç, Özdemir S, Perkumienė D, Aleinikovas M, Šilinskas B, Škėma M. Spatiotemporal Patterns of Avian Species Richness Across Climatic Regions. Diversity. 2025; 17(8):557. https://doi.org/10.3390/d17080557
Chicago/Turabian StyleUyar, Çağdan, Serkan Özdemir, Dalia Perkumienė, Marius Aleinikovas, Benas Šilinskas, and Mindaugas Škėma. 2025. "Spatiotemporal Patterns of Avian Species Richness Across Climatic Regions" Diversity 17, no. 8: 557. https://doi.org/10.3390/d17080557
APA StyleUyar, Ç., Özdemir, S., Perkumienė, D., Aleinikovas, M., Šilinskas, B., & Škėma, M. (2025). Spatiotemporal Patterns of Avian Species Richness Across Climatic Regions. Diversity, 17(8), 557. https://doi.org/10.3390/d17080557