Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (175)

Search Parameters:
Keywords = biodegradable microplastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2104 KiB  
Article
Presence of Micro- and Nanoplastics Affects Degradation of Chlorinated Solvents
by Fadime Kara Murdoch, Yanchen Sun, Mark E. Fuller, Larry Mullins, Amy Hill, Jacob Lilly, John Wilson, Frank E. Löffler and Katarzyna H. Kucharzyk
Toxics 2025, 13(8), 656; https://doi.org/10.3390/toxics13080656 - 31 Jul 2025
Viewed by 157
Abstract
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such as tetrachloroethene (PCE) and explosives like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common in the environment, and their bioremediation is a promising cleanup strategy. This study examined how polystyrene (PS) and polyamide 6 (PA6) MPs and NPs influence CVOC and RDX biodegradation. PS particles did not inhibit the CVOC-degrading community SDC-9, but PA6 MPs impaired the reductive dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE), causing a “cis-DCE stall” with no further conversion to vinyl chloride (VC) or ethene. Only 45% of TCE was dechlorinated to cis-DCE, and Dehalococcoides mccartyi abundance dropped 1000-fold in 35 days with PA6 MPs. In contrast, neither PA6 nor PS MPs and NPs affected RDX biotransformation. These results highlight the significant impact of PA6 MPs on CVOC biodegradation and the need to consider plastic pollution in environmental management. Full article
(This article belongs to the Special Issue Novel Technologies for Degradation of Organic Pollutants)
Show Figures

Graphical abstract

17 pages, 624 KiB  
Communication
Clarifying the Taxonomy of Plastics and Bioplastics: Toward a ‘Zero-Trace Plastic’ (ZTP) Material Framework
by Benjamin Gazeau, Atiq Zaman, Henrique Pacini and Mubarak Ahmad Khan
Sustainability 2025, 17(15), 6763; https://doi.org/10.3390/su17156763 - 24 Jul 2025
Viewed by 564
Abstract
The lack of precise definitions in plastics-related terminology continues to hinder the development of coherent sustainability strategies across the materials value chain. This communication revisits current definitions of plastics, polymers, and bioplastics, distinguishing between source (bio-based vs. fossil-based), structure (synthetic vs. natural polymer), [...] Read more.
The lack of precise definitions in plastics-related terminology continues to hinder the development of coherent sustainability strategies across the materials value chain. This communication revisits current definitions of plastics, polymers, and bioplastics, distinguishing between source (bio-based vs. fossil-based), structure (synthetic vs. natural polymer), and degradation behaviour (persistent vs. compostable or biodegradable). It critiques ambiguous classifications promoted in policy and marketing discourse. It introduces the concept of “Zero-Trace Plastic” (ZTP) to refer to materials that are non-plastic substitutes intended for versatile plastic-like uses while guaranteeing no trace of synthetic plastics in their composition and no contribution to pollution across their lifecycle. The ZTPframework prioritises complete mineralisation without plastic or microplastics or chemical residues under real-world conditions. ZTP is proposed not as a replacement for existing biodegradability standards, but it helps distinguish between plastic and non-plastic biopolymers and works as a complementary benchmark for biodegradability that aligns with and extends them by incorporating environmental specificity and system-wide traceability. The paper proposes a harmonised terminology matrix and calls for coordinated efforts by international agencies and standardisation institutes, national bodies and industries to avoid using misleading terminologies like bioplastics, often used for greenwashing and to enhance circular material strategies. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 320
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

13 pages, 1373 KiB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 317
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

34 pages, 2648 KiB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Viewed by 392
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Degradation of Biodegradable Mulch-Derived Microplastics and Their Effects on Bacterial Communities and Radish Growth in Three Vegetable-Cultivated Purple Soils
by Ruixue Ao, Zexian Liu, Yue Mu, Jiaxin Chen and Xiulan Zhao
Agriculture 2025, 15(14), 1512; https://doi.org/10.3390/agriculture15141512 - 13 Jul 2025
Viewed by 406
Abstract
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), [...] Read more.
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), a neutral purple soil (NS), and a calcareous purple soil (CS) to investigate the degradation of 1% (w/w) microplastics derived from polyethylene mulch film (PE-MPs) and polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) mulch film (Bio-MPs), as well as their effects on soil properties, bacterial communities, and radish growth. PE-MPs degraded slightly, while the degradation of Bio-MPs followed the order of NS > CS > AS. PE-MPs and Bio-MPs enhanced the nitrification and radish growth in AS but had no significant effects on soil properties and radish growth in CS. Bio-MPs notably increased the relative abundance of PBAT/PLA degradation-related bacteria, such as Ramlibacter, Bradyrhizobium, and Microbacterium, across the three soils. In NS, Bio-MPs raised soil pH and enriched nitrogen-fixing and denitrifying bacteria, leading to a decrease in NO3-N content and radish biomass. Overall, the effects of Bio-MPs on soil–plant systems varied with soil properties, which are closely related to their degradation rates. These findings highlight the need to assess the ecological risks of BDM residues before their large-scale use in agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

16 pages, 1443 KiB  
Article
Effect of Addition of Spheroidal Cellulose Powders on Physicochemical and Functional Properties of Cosmetic Emulsions
by Emilia Klimaszewska, Marta Ogorzałek, Małgorzata Okulska-Bożek, Ewa Jabłońska, Hanna Wyłup, Zofia Nizioł-Łukaszewska and Ryszard Tomasiuk
Polymers 2025, 17(14), 1926; https://doi.org/10.3390/polym17141926 - 12 Jul 2025
Viewed by 398
Abstract
The purpose of this study was to demonstrate the feasibility of using spheroidal cellulose powders with different particle sizes (2 and 7 µm) in face creams and to evaluate their effect on selected physicochemical and performance properties of these products. A series of [...] Read more.
The purpose of this study was to demonstrate the feasibility of using spheroidal cellulose powders with different particle sizes (2 and 7 µm) in face creams and to evaluate their effect on selected physicochemical and performance properties of these products. A series of prototypes of facial creams with spheroidal cellulose were prepared. The following tests were carried out: stability, dynamic viscosity, texture analysis, degree of skin hydration, and evaluation of sensory appeal by consumers. It was observed that none of the creams showed instability over time. The addition of powdered spheroidal cellulose was found to increase dynamic viscosity and hardness and reduce the adhesion strength of the tested emulsions to the base face cream. A positive effect of the presence of polymeric raw materials on the level of skin hydration was observed. The most favorable results were obtained for the E4 cream prototype containing spheroidal powders of both 2 and 7 µm particle size at a weight ratio of 2.5 to 2.5. In addition, according to the members of the sensory panel, the E4 face cream was best evaluated and showed sensory benefits. The study concluded that spheroidal cellulose powders are a promising biodegradable alternative to microplastics in cosmetics. Full article
Show Figures

Figure 1

10 pages, 1487 KiB  
Article
Eco-Friendly Adhesion of Isosorbide-Based Polycarbonate
by Ruiqi Han, Kazuaki Matsumura and Masayuki Yamaguchi
Molecules 2025, 30(13), 2843; https://doi.org/10.3390/molecules30132843 - 3 Jul 2025
Viewed by 271
Abstract
We investigated the practical adhesion of a conventional poly(vinyl alcohol) glue with a glassy isosorbide-based polycarbonate (ISB-PC) comprising isosorbide and 1,4-cyclohexanedimethanol. The addition of 1 wt.% of a copolymer of vinyl alcohol and butenediol to the ISB-PC greatly improved its lap-shear strength. This [...] Read more.
We investigated the practical adhesion of a conventional poly(vinyl alcohol) glue with a glassy isosorbide-based polycarbonate (ISB-PC) comprising isosorbide and 1,4-cyclohexanedimethanol. The addition of 1 wt.% of a copolymer of vinyl alcohol and butenediol to the ISB-PC greatly improved its lap-shear strength. This improvement may be attributed to the dissolution of the copolymer chains in the ISB-PC, which had a low water droplet contact angle. Furthermore, the blend was transparent because most of the copolymer chains dissolved in the ISB-PC. Microplastics present a serious environmental issue, even for adhesives. Therefore, the present technique to modify ISB-PC to show good lap-shear strength with a biodegradable glue is attractive. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 1059 KiB  
Review
Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics
by Kuan Chang, Yong Ma and Yulai Han
Microplastics 2025, 4(3), 39; https://doi.org/10.3390/microplastics4030039 - 2 Jul 2025
Viewed by 266
Abstract
Soil microplastic pollution poses a significant threat to the integrity of terrestrial ecosystems and agricultural sustainability. This review provides a comprehensive synthesis of recent progress on soil microplastic (MP) sources, ecological impacts, and separation technologies. Agricultural practices (e.g., residual plastic mulch and wastewater [...] Read more.
Soil microplastic pollution poses a significant threat to the integrity of terrestrial ecosystems and agricultural sustainability. This review provides a comprehensive synthesis of recent progress on soil microplastic (MP) sources, ecological impacts, and separation technologies. Agricultural practices (e.g., residual plastic mulch and wastewater irrigation) and atmospheric deposition serve as primary drivers of contamination accumulation, with pronounced spatial heterogeneity observed across regions. Predominant MP types such as polyethylene, polystyrene, and polypropylene disrupt soil structure and biogeochemical processes through three core mechanisms: physical interference, chemical toxicity, and biological accumulation. These particles further form carrier–pollutant complexes, exacerbating ecotoxicological impacts across trophic levels. While emerging separation techniques like magnetic separation and solvent extraction demonstrate enhanced efficiency, their implementation faces challenges stemming from soil matrix complexity and high operational costs. This article underscores the need for global collaborative efforts to accelerate innovation in biodegradable polymers, offering practical pathways for sustainable soil management. Full article
Show Figures

Figure 1

15 pages, 790 KiB  
Article
The Role of Artificial Weathering Protocols on Abiotic and Bacterial Degradation of Polyethylene
by Pauline F. De Bigault De Cazanove, Alena Vdovchenko, Ruth S. Rose and Marina Resmini
Polymers 2025, 17(13), 1798; https://doi.org/10.3390/polym17131798 - 27 Jun 2025
Viewed by 477
Abstract
Plastic pollution poses significant environmental challenges due to its persistence and contribution to the microplastic formation, with polyethylene being among the materials more abundantly found. Understanding how different artificial weathering protocols influence the degradation of plastics is crucial for assessing their environmental impact. [...] Read more.
Plastic pollution poses significant environmental challenges due to its persistence and contribution to the microplastic formation, with polyethylene being among the materials more abundantly found. Understanding how different artificial weathering protocols influence the degradation of plastics is crucial for assessing their environmental impact. This study investigates the effects of three distinct artificial weathering protocols—continuous UV-A irradiation (ML), cyclic UV-dark exposure (MC[L→D]), and sequential UV-dark phase (ML→D)—on the physicochemical properties of plastics, using oxo-low-density polyethylene as the model material. Surface oxidation, measured by quantification of the carbonyl index, was most pronounced under the MC[L→D] protocol despite the shortest time of overall UV exposure, indicating that oxidative reactions continue during the dark phases. Vinyl group formation, however, required continuous or cyclic UV exposure, highlighting the critical role of light in this chemical process. Alterations in the surface hydrophilicity, measured by contact angle, and changes in molecular weight were quantified and found to closely link to the weathering conditions, with increased oxidations enhancing the surface hydrophilicity and the chain scission balanced by crosslinking with extended UV durations. These findings emphasize the importance of weathering protocols when trying to simulate conditions in the lab that are closer to the ones in the environment to understand plastic degradation mechanisms. Biodegradation experiments with Rhodococcus rhodochrous demonstrated that weathered oxo-LDPE samples with higher surface oxidation levels (ΔCI > 1) supported an increased CO2 production by Rhodococcus rhodochrous, with the MC[L→D]—360 h protocol yielding the highest biodegradation rates—31–43% higher than the control. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

16 pages, 1643 KiB  
Article
Interactive Effect of Microplastics and Fungal Pathogen Rhizoctonia solani on Antioxidative Mechanism and Fluorescence Activity of Invasive Species Solidago canadensis
by Muhammad Anas, Irfan Ullah Khan, Rui-Ke Zhang, Shan-Shan Qi, Zhi-Cong Dai and Dao-Lin Du
Plants 2025, 14(13), 1972; https://doi.org/10.3390/plants14131972 - 27 Jun 2025
Viewed by 637
Abstract
Microplastics and invasive species, driven by anthropogenic activities, significantly disrupt ecosystems and microbial communities. This study investigated the interactive effects of biodegradable microplastics (polylactic acid, or PLA, and polyhydroxyalkanoates, or PHAs) and the fungal pathogen Rhizoctonia solani on the invasive plant Solidago canadensis [...] Read more.
Microplastics and invasive species, driven by anthropogenic activities, significantly disrupt ecosystems and microbial communities. This study investigated the interactive effects of biodegradable microplastics (polylactic acid, or PLA, and polyhydroxyalkanoates, or PHAs) and the fungal pathogen Rhizoctonia solani on the invasive plant Solidago canadensis. One plant of Solidago canadensis/pot was cultivated in forest soil amended with 1% (w/w) microplastics and/or R. solani. PLA exhibited greater toxicity than PHAs, reducing the plant height, root length, and biomass by 68%, 44%, and 70%, respectively. Microplastics impaired the maximum quantum yield of photosystem II more severely than R. solani. However, S. canadensis demonstrated adaptive antioxidative and extracellular enzymatic mechanisms under combined stresses. A heatmap analysis revealed a positive correlation between PHAs and plant growth traits, while a redundancy analysis explained the 15.96% and 4.19% variability for the first two components (r2 = 0.95). A structural equation model indicated the negative effects of morphology and physiology on biomass (β = −1.694 and β = −0.932; p < 0.001), countered by positive antioxidant contributions (β = 1.296; p < 0.001). These findings highlight complex interactions among microplastics, pathogens, and invasive species, offering insights into ecological management strategies under dual environmental pressures. Future studies should assess the long-term field effects and microbial mediation of these interactions. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

20 pages, 2581 KiB  
Article
Tenebrio molitor Could Be an Efficient Pre-Treatment Bioagent for Polystyrene Initial Deterioration and Further Application of Pleurotus eryngii and Trametes versicolor in Microplastic Biodegradation
by Slobodan Stefanović, Milena Dimitrijević, Dragosav Mutavdžić, Kristina Atlagić, Slobodan Krnjajić and Žaklina Marjanović
Polymers 2025, 17(13), 1772; https://doi.org/10.3390/polym17131772 - 26 Jun 2025
Viewed by 540
Abstract
Plastic is a major organic pollutant globally but has only recently been recognized for its recalcitrant nature and resistance to degradation. Although vast amounts of plastic debris are overwhelming the planet, the search for solutions to its degradation has only recently begun. One [...] Read more.
Plastic is a major organic pollutant globally but has only recently been recognized for its recalcitrant nature and resistance to degradation. Although vast amounts of plastic debris are overwhelming the planet, the search for solutions to its degradation has only recently begun. One of the most well-known agents of plastic biodegradation is the larvae of Tenebrio molitor, which can alter the structure of polymers like polystyrene. However, while this insect can cause deterioration, its frass, which still consists of polystyrene microplastics, remains a problem. We investigated whether this frass could be further degraded by strains of white rot fungi, specifically Pleurotus eryngii and Trametes versicolor. We introduced two PS derivatives (styrofoam and stirodure) to the fungi in liquid media and evaluated oxidative metabolism enzymes (laccase, Mn-peroxidase, lignin-peroxidase) activities, and the phenolic products of the potential aromatic polymer degradation in the media. Finally, we evaluated FTIR spectra to determine if we could detect changes in polystyrene molecule degradation. Both fungi produced high amounts of enzymes, particularly when the polystyrene was present. Large quantities of phenolic substances were simultaneously detected, some associated with polystyrene degradation. FTIR spectra of different polystyrene products confirmed species-specific mechanisms for their degradation by experimental fungal strains. Full article
(This article belongs to the Special Issue Degradation and Recycling of Polymer Materials)
Show Figures

Figure 1

21 pages, 2787 KiB  
Article
Composted PBST Biodegradable Mulch Film Residues Enhance Crop Development: Insights into Microbial Community Assembly, Network Interactions, and Soil Metabolism
by Liuliu Li, Liyuan Liu, Guoyuan Zou, Xuexia Wang, Li Xu, Yong Yang, Jinfeng Liu, Huabo Liu and Dongsheng Liu
Plants 2025, 14(13), 1902; https://doi.org/10.3390/plants14131902 - 20 Jun 2025
Viewed by 492
Abstract
Biodegradable mulch film (BDM) is regarded as a key solution to combat plastic mulch film pollution due to its ability to degrade completely into CO2 and H2O through environmentally friendly microorganisms. However, commercial BDM often fails to degrade fully after [...] Read more.
Biodegradable mulch film (BDM) is regarded as a key solution to combat plastic mulch film pollution due to its ability to degrade completely into CO2 and H2O through environmentally friendly microorganisms. However, commercial BDM often fails to degrade fully after use, leading to the accumulation of BDM residues in soil and their transformation into microplastics (MPs) via various processes, posing a threat to the soil ecosystem. Given these discrepancies between the theoretical and practical degradation performance of BDM, there is an urgent need to understand the impacts of BDM residues on plant growth and soil health. This research conducted pot experiments spanning the entire growth cycle of Chinese cabbage to evaluate the impact of PBST-BDM raw material (R), PBST-BDM residues (M), and PBST-BDM composting product (P) on crop growth and soil quality. The findings revealed that R treatments had a slight effect on Chinese cabbage growth (e.g., a 5.80% increase in emergence rate in R 1% treatment, p < 0.05), while M treatments significantly hindered the emergence rate, plant height, leaf area, and biomass accumulation of Chinese cabbage by 30.4% (p < 0.05), 2.71 cm (p < 0.05), 39.0% (p < 0.05), and 1.86 g (p < 0.05) in the M 1% treatment compared to the control group (CK). In contrast, P treatments enhanced Chinese cabbage growth, with greater improvements at higher weight ratios, resulting in increases of 8.89% (p < 0.05), 4.96 cm (p < 0.05), 36.3% (p < 0.05), and 2.31 g (p < 0.05) in the P 1% treatment. Microbial network topology in the M 1% treatment is highly variable, with the increased proportion of positive correlations in the P 1% treatment hinting at stronger symbiotic interactions between species (p < 0.05). Analysis results of PCoA and PLS-DA showed significant differences in microbial community and soil metabolites between M 1% treatment and CK (p < 0.05). These findings suggest that, although composting post-use BDM may reduce their negative ecological effects, possibly via accelerating the early breakdown of residues, the feasibility and scalability of this approach require further validation under real-world field conditions. Full article
Show Figures

Figure 1

17 pages, 1809 KiB  
Review
Biodegradable Microplastics: Environmental Fate and Persistence in Comparison to Micro- and Nanoplastics from Traditional, Non-Degradable Polymers
by Paolo Costa and Maximilian Lackner
Macromol 2025, 5(2), 29; https://doi.org/10.3390/macromol5020029 - 18 Jun 2025
Cited by 1 | Viewed by 1174
Abstract
The escalating production of virgin plastics has resulted in an unprecedented generation of microplastics (MPs), posing significant environmental and health risks. Biodegradable plastics have emerged as an alternative, but their degradation also releases microplastic-sized particles, referred to as biodegradable microplastics (BMPs). This review [...] Read more.
The escalating production of virgin plastics has resulted in an unprecedented generation of microplastics (MPs), posing significant environmental and health risks. Biodegradable plastics have emerged as an alternative, but their degradation also releases microplastic-sized particles, referred to as biodegradable microplastics (BMPs). This review evaluates the current understanding of BMPs, focusing on their environmental fate, degradation kinetics, and comparative persistence relative to conventional MPs. The degradation process of biodegradable plastics involves sequential abiotic and biotic mechanisms, with factors such as polymer chemistry, geometry, and environmental conditions influencing BMPs’ formation and mineralization. Studies highlight the temporal advantage of BMPs, which exhibit significantly shorter lifetimes than traditional MPs; however, their environmental impact remains context-dependent, particularly in soil and aquatic systems. Despite promising results under controlled conditions, challenges in standardizing biodegradation assessments and discrepancies between laboratory and real-world scenarios complicate evaluations of the temporal fate and the effects of BMPs. This work underscores the need for long-term studies and improved modeling approaches to accurately predict BMP behavior and mitigate their ecological impact. Poly(hydroxyalkanoates) are a class of fully biodegradable polymers that do not leave behind persistent microplastics. Biodegradable plastics should be prioritized over non-degradable, traditional polymers, as they can replace them in a large fraction of applications, yet with a significantly reduced footprint and without leaving behind persistent micro- and nanoplastics. They can also be recycled. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Graphical abstract

19 pages, 801 KiB  
Review
Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies
by Hongbo Liu, Xiang Yuan, Yuxuan Yao, Lijin Yao, Junbo Zhang and Claudia Maurer
Recycling 2025, 10(3), 116; https://doi.org/10.3390/recycling10030116 - 12 Jun 2025
Viewed by 2058
Abstract
The widespread implementation of anaerobic digestion (AD) systems for organic waste treatment is increasingly challenged by emerging contaminants, including microplastics (MPs), antibiotics, and heavy metals (HMs), which exhibit environmental persistence and pose risks to ecological and human health. This review critically examines the [...] Read more.
The widespread implementation of anaerobic digestion (AD) systems for organic waste treatment is increasingly challenged by emerging contaminants, including microplastics (MPs), antibiotics, and heavy metals (HMs), which exhibit environmental persistence and pose risks to ecological and human health. This review critically examines the sources, transformation pathways, and advanced mitigation strategies for these contaminants within AD systems. MPs, primarily derived from fragmented plastics and personal care products, accumulate in digestates and act as vectors for adsorbing toxic additives and pathogens. Antibiotics, introduced via livestock manure and wastewater, exert selective pressures that propagate antibiotic resistance genes (ARGs) while disrupting methanogenic consortia. HMs, originating from industrial and agricultural activities, impair microbial activity through bioaccumulation and enzymatic interference, with their bioavailability modulated by speciation shifts during digestion. To combat these challenges, promising mitigation approaches include the following: (1) bioaugmentation with specialized microbial consortia to enhance contaminant degradation and stabilize HMs; (2) thermal hydrolysis pretreatment to break down MPs and antibiotic residues; (3) chemical passivation using biochar or sulfides to immobilize HMs. Co-digestion practices inadvertently concentrate these contaminants, with MPs and HMs predominantly partitioning into solid phases, while antibiotics persist in both liquid and solid fractions. These findings highlight the urgency of optimizing mitigation strategies to minimize contaminant mobility and toxicity. However, critical knowledge gaps persist regarding the long-term impacts of biodegradable MPs, antibiotic transformation byproducts, and standardized regulatory thresholds for contaminant residues in digestate. This synthesis underscores the necessity for integrated engineering solutions and policy frameworks to ensure the safe resource recovery from AD systems, balancing energy production with environmental sustainability. Full article
Show Figures

Figure 1

Back to TopTop