Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = biodegradable copolyesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5025 KiB  
Article
Biodegradable Polymer Composites Based on Poly(butylene succinate) Copolyesters and Wood Flour
by Agnieszka Kozłowska, Krzysztof Gorący and Miroslawa El Fray
Polymers 2025, 17(7), 883; https://doi.org/10.3390/polym17070883 - 26 Mar 2025
Cited by 1 | Viewed by 931
Abstract
This study investigates the biodegradation behavior of poly(butylene succinate) (PBS) copolyesters containing dilinoleic acid (DLA) co-monomeric units and wood flour (WF) as a filler. PBS-DLA is a segmented thermoplastic elastomer (TPE), where the soft amorphous phase is formed by DLA ester segments, while [...] Read more.
This study investigates the biodegradation behavior of poly(butylene succinate) (PBS) copolyesters containing dilinoleic acid (DLA) co-monomeric units and wood flour (WF) as a filler. PBS-DLA is a segmented thermoplastic elastomer (TPE), where the soft amorphous phase is formed by DLA ester segments, while the hard phase consists of crystallizable PBS domains. Wood–plastic composites (WPCs) were prepared with WF at weight fractions of 10%, 20%, 30%, and 40% wt. and analyzed in terms of surface morphology, chemical structure, mechanical performance, and thermal stability before and after biodegradation in soil conditions. The results of microscopic analysis confirmed that the PBS-DLA copolymer and its composites undergo surface biodegradation as manifested by increased surface roughness and microcrack formation, particularly in composites with a higher WF content. ATR FT-IR spectroscopy indicated oxidation and hydrolysis, supporting the hypothesis of progressive surface erosion. Mechanical tests showed a decline in tensile strength and elongation at break, with the most pronounced changes in composites containing 20% WF. Thermal analysis (DSC, DMTA, and TGA) confirmed that the PBS-DLA copolymer retains its thermoplastic elastomeric behavior after a 3-month biodegradation experiment. The storage modulus (E′) remained stable, while only minor variations in melting and crystallization temperatures were observed. These findings reinforce the hypothesis of surface erosion rather than a bulk degradation mechanism. Given their biodegradability and retained thermoplastic behavior, WPC composites based on PBS-DLA copolyester could be promising for eco-friendly applications where controlled degradation is desirable, such as in packaging, agriculture, or biodegradable consumer goods. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2702 KiB  
Article
Synthesis of Lignocellulose-Based Poly(Butylene 3-Propyladipate-Co-Furanoate): Replacing Adipate
by Ruijia Hu, Weihao Li, Xi Zhou, Shunmin Yi, Xingfu Zheng, Qiufeng Mo and Wanyu Liu
Molecules 2025, 30(4), 878; https://doi.org/10.3390/molecules30040878 - 14 Feb 2025
Viewed by 618
Abstract
A novel lignocellulose-based poly(butylene 3-propyladipate-co-furanoate) (PBApF) was synthesized from lignocellulose-derived 3-propyladipic acid (3PAA), 1,4-butanediol (BDO), and 2,5-furandicarboxylic acid (FDCA). The copolyesters were characterized by 1H NMR, GPC, DSC, TGA, XRD, DMA, rotational rheology, tensile tests, and enzymatic degradation tests. They [...] Read more.
A novel lignocellulose-based poly(butylene 3-propyladipate-co-furanoate) (PBApF) was synthesized from lignocellulose-derived 3-propyladipic acid (3PAA), 1,4-butanediol (BDO), and 2,5-furandicarboxylic acid (FDCA). The copolyesters were characterized by 1H NMR, GPC, DSC, TGA, XRD, DMA, rotational rheology, tensile tests, and enzymatic degradation tests. They were random copolymers whose composition was well controlled, and the number-average sequence lengths of the copolyesters were around 1.35–4.33. By combining the results of tensile tests and DMA, the elongation at break of PBApF45 (1865%) had a much greater value than that of PBAF45 (1250%), i.e., the branching incorporated into the linear polymer increased the melt strength and conferred tension-hardening properties, which helped to enhance the elongation of the polymer. In addition, the influences of 3PAA content on enzymatic degradation were studied in terms of weight loss; when the content of 3PAA was 55 mol%, the copolyesters exhibited good biodegradability. Thus, depending on their composition, PBApFS might find end applications as biodegradable elastomers or impact modifiers for other polymers. Full article
Show Figures

Graphical abstract

31 pages, 3833 KiB  
Review
Recent Advances in the Development of 1,4-Cyclohexanedimethanol (CHDM) and Cyclic-Monomer-Based Advanced Amorphous and Semi-Crystalline Polyesters for Smart Film Applications
by Farida Irshad, Nayab Khan, Haidar Howari, Mahvish Fatima, Assad Farooq, Muhammad Awais, Muhammad Ayyoob, Muhammad Qamar Tusief, Razia Virk and Fiaz Hussain
Materials 2024, 17(18), 4568; https://doi.org/10.3390/ma17184568 - 17 Sep 2024
Cited by 2 | Viewed by 2660
Abstract
Polyester-based advanced thin films have versatile industrial applications, especially in the fields of textiles, packaging, and electronics. Recent advances in polymer science and engineering have resulted in the development of advanced amorphous and semi-crystalline polyesters with exceptional performance compared to those of conventional [...] Read more.
Polyester-based advanced thin films have versatile industrial applications, especially in the fields of textiles, packaging, and electronics. Recent advances in polymer science and engineering have resulted in the development of advanced amorphous and semi-crystalline polyesters with exceptional performance compared to those of conventional polymeric films. Among these, 1,4-cyclohexanedimethanol (CHDM) and cyclic-monomer-based polyesters have gained considerable attention for their exceptional characteristics and potential applications in smart films. This review article provides a comprehensive overview of the recent advances in the synthesis, characterization, and applications of CHDM and cyclic-monomer-based advanced polymers for smart film applications. It discusses the structure–property relationships of these innovative polyesters and highlights their unique characteristics, including thermal, mechanical, and barrier characteristics. Furthermore, this article also emphasizes the solution, melt, and solid-state polymerizations of the polymers. Special emphasis is placed on the influence of the addition of a second diol or second diacid on the performance characteristics of synthesized polyesters/copolyesters to explore their versatile industrial applications. Additionally, the impact of the stereochemistry of the monomers is explored to optimize the characterization of polyesters suitable for industrial applications. Furthermore, this article explores the potential of these advanced polyesters to be considered as materials for smart film applications, especially in the field of flexible electronics. Finally, this article examines the challenges and future recommendations for the development of CHDM and cyclic-monomer-based polyesters for smart film applications. It discusses potential avenues for further research, including in-depth studies for the synthesis and characterization of polyesters, the development of sustainable and biodegradable alternatives to cyclic monomers, alternative green approaches for the synthesis of polymers, etc. This review article provides valuable insight for researchers in academia and industry who are working in the fields of polymer science and materials engineering. Full article
Show Figures

Figure 1

12 pages, 2108 KiB  
Article
A Comparative Study on the Melt Crystallization of Biodegradable Poly(butylene succinate-co-terephthalate) and Poly(butylene adipate-co-terephthalate) Copolyesters
by Pengkai Qin and Linbo Wu
Polymers 2024, 16(17), 2445; https://doi.org/10.3390/polym16172445 - 29 Aug 2024
Cited by 1 | Viewed by 1365
Abstract
As an important biodegradable and partially biobased copolyester, poly(butylene succinate-co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but it was found to display poorer melt processability during pelletizing [...] Read more.
As an important biodegradable and partially biobased copolyester, poly(butylene succinate-co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but it was found to display poorer melt processability during pelletizing and injection molding. To make clear its melt crystallization behavior under rapid cooling, PBST48 and PBST44 were synthesized, and their melt crystallization was investigated comparatively with PBAT48. PBST48 showed a PBAT48-comparable melt crystallization performance at a cooling rate of 10 °C/min or at isothermal conditions, but it showed a melt crystallization ability at a cooling rate of 40 °C/min which was clearly poorer. PBST44, which has the same mass composition as PBAT48, completely lost its melt crystallization ability under the rapid cooling. The weaker chain mobility of PBST, resulting from its shorter succinate moiety, is responsible for its inferior melt crystallization ability and processability. In comparison with PBAT48, PBST48 displayed higher tensile modulus, and both PBST48 and PBST44 showed higher light transmittance. The findings in this study deepen the understanding of PBST’s properties and will be of guiding significance for improving PBST’s processability and application development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

21 pages, 9777 KiB  
Article
Performance Enhancement of Biopolyester Blends by Reactive Compatibilization with Maleic Anhydride-Grafted Poly(butylene succinate-co-adipate)
by Kerly Samaniego-Aguilar, Estefania Sanchez-Safont, Ignacio Pisa-Ripoll, Sergio Torres-Giner, Yaiza Flores, Jose M. Lagaron, Luis Cabedo and Jose Gamez-Perez
Polymers 2024, 16(16), 2325; https://doi.org/10.3390/polym16162325 - 16 Aug 2024
Cited by 2 | Viewed by 1713
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a very promising biodegradable copolyester of high interest in food packaging. Its inherent brittleness and narrow processing window make it necessary to blend it with flexible biopolyesters, such as poly(butylene succinate-co-adipate) (PBSA). However, the resultant biopolyester [...] Read more.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a very promising biodegradable copolyester of high interest in food packaging. Its inherent brittleness and narrow processing window make it necessary to blend it with flexible biopolyesters, such as poly(butylene succinate-co-adipate) (PBSA). However, the resultant biopolyester blends are thermodynamically immiscible, which impairs their performance and limits their applications. This study is the first to explore the use of poly(butylene succinate-co-adipate) grafted with maleic anhydride (PBS-g-MAH) as a novel reactive additive to compatibilize PHBV/PBSA blends. The compatibilizer was prepared by a reactive melt-mixing process of PBSA and maleic anhydride (MAH) using dicumyl peroxide (DCP) as an organic radical initiator, achieving a grafting degree (Gd) of 5.4%. Biopolyester blend films were thereafter prepared via cast extrusion and their morphological, thermal, mechanical, and barrier properties were characterized. Compatibilization by PBSA-g-MAH was confirmed by observing an improved phase interaction and lower dispersed domain sizes in the blends with 15 wt% PBSA. These compatibilized PHBV/PBSA blends were thermally stable up to 285 °C, showed enhanced ductility and toughness, as well as providing an improved barrier against water and limonene vapors and oxygen. These findings suggest that the use of MAH-grafted biopolyesters can represent an effective strategy to improve the properties of biopolyester blends and open up new opportunities for the application of PHBV-based formulations for food packaging. Full article
(This article belongs to the Collection Sustainable Plastics)
Show Figures

Graphical abstract

19 pages, 5721 KiB  
Article
Novel Biobased Copolymers Based on Poly(butylene succinate) and Cutin: In Situ Synthesis and Structure Properties Investigations
by Evangelia D. Balla, Panagiotis A. Klonos, Apostolos Kyritsis, Monica Bertoldo, Nathanael Guigo and Dimitrios N. Bikiaris
Polymers 2024, 16(16), 2270; https://doi.org/10.3390/polym16162270 - 10 Aug 2024
Cited by 3 | Viewed by 1797
Abstract
The present work describes the synthesis of poly(butylene succinate) (PBSu)-cutin copolymers by the two-stage melt polycondensation method, esterification and polycondensation. Cutin was added in four different concentrations, 2.5, 5, 10, and 20 wt%, in respect to succinic acid. The obtained copolymers were studied [...] Read more.
The present work describes the synthesis of poly(butylene succinate) (PBSu)-cutin copolymers by the two-stage melt polycondensation method, esterification and polycondensation. Cutin was added in four different concentrations, 2.5, 5, 10, and 20 wt%, in respect to succinic acid. The obtained copolymers were studied using a variety of techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy (PLM), as well as diffuse reflectance spectroscopy (DRS). A series of results, in agreement between different techniques, revealed the formation of PBSu-cutin interactions, confirming indirectly the successful in situ synthetic route of copolymers. DSC and XRD combined with PLM results provided indications that the crystallization temperature increases with the addition of small amounts of cutin and gradually decreases with increasing concentration. The crystallization process was easier and faster at 2.5%, 5%, and 10% concentrations, whereas at 20%, it was comparable to neat PBSu. The presence of cutin, in general, leads to the facilitated crystallizability of PBSu (direct effect), whereas a moderate drop in the glass transition temperature is recorded, the latter being an indirect effect of cutin via crystallization. The thermal stability improved in the copolymers compared to neat PBSu. Water contact angle measurements confirmed that the addition of cutin decreased the hydrophilicity. The local and segmental relaxation mapping is demonstrated for PBSu/cutin here for the first time. Enzymatic hydrolysis and soil degradation tests showed that, overall, cutin accelerated the decomposition of the polymers. The copolymers may be proven useful in several applications. Full article
Show Figures

Graphical abstract

18 pages, 3113 KiB  
Article
Assessment of Yield and Quality of Eggplant (Solanum melongena L.) Fruits Improved by Biodegradable Mulching Film in Two Different Regions of Southern Italy
by Giuseppe Di Miceli, Nicolò Iacuzzi, Claudio Leto, Eugenio Cozzolino, Ida Di Mola, Lucia Ottaiano, Mauro Mori and Salvatore La Bella
Agronomy 2024, 14(4), 867; https://doi.org/10.3390/agronomy14040867 - 20 Apr 2024
Cited by 7 | Viewed by 3408
Abstract
Low-density polyethylene (LDPE) mulching films have an important function in crop cultivation; at the end of their life, however, their removal and disposal become both an economic and environmental problem. One possible alternative to low-density polyethylene (LDPE) mulch is provided by certified soil-biodegradable [...] Read more.
Low-density polyethylene (LDPE) mulching films have an important function in crop cultivation; at the end of their life, however, their removal and disposal become both an economic and environmental problem. One possible alternative to low-density polyethylene (LDPE) mulch is provided by certified soil-biodegradable mulch films, such as those produced by Novamont and commercially available under the trade name MaterBi®. MaterBi is a biodegradable thermoplastic material made with starch and a biodegradable copolyester based on proprietary technology. In this study, we compared two biodegradable MaterBi®-based films (commercial and experimental films) with bare soil and a low-density polyethylene to evaluate their effect on yield and on a number of qualitative characteristics (organoleptic and nutraceutical composition) of eggplant fruits (cv Mirabelle F1) grown in two different regions in Southern Italy (Sicily and Campania). In our study, the use of biodegradable MaterBi® films improved not only yield and production parameters, such as the number and average weight of fruits, but also lipophilic and hydrophilic antioxidant activity and phenolic and ascorbic acid content. For many parameters, responses differed according to the cultivation environment and, in particular, the site’s pedoclimatic conditions. Our results suggest that biodegradable MaterBi®-based mulching films are a potentially valid alternative to traditional LDPEs, providing the production and quality benefits reported above and promoting environmental sustainability, thanks to their positive biodegradable properties. Full article
Show Figures

Figure 1

20 pages, 3724 KiB  
Article
Ductile Copolyesters Prepared Using Succinic Acid, 1,4-Butanediol, and Bis(2-hydroxyethyl) Terephthalate with Minimizing Generation of Tetrahydrofuran
by Sang Uk Park, Hyeon Jeong Seo, Yeong Hyun Seo, Ju Yong Park, Hyunjin Kim, Woo Yeon Cho, Pyung Cheon Lee and Bun Yeoul Lee
Polymers 2024, 16(4), 519; https://doi.org/10.3390/polym16040519 - 14 Feb 2024
Cited by 1 | Viewed by 2459
Abstract
Poly(1,4-butylene succinate) (PBS) is a promising sustainable and biodegradable synthetic polyester. In this study, we synthesized PBS-based copolyesters by incorporating 5–20 mol% of –O2CC6H4CO2– and –OCH2CH2O– units through the polycondensation of [...] Read more.
Poly(1,4-butylene succinate) (PBS) is a promising sustainable and biodegradable synthetic polyester. In this study, we synthesized PBS-based copolyesters by incorporating 5–20 mol% of –O2CC6H4CO2– and –OCH2CH2O– units through the polycondensation of succinic acid (SA) with 1,4-butanediol (BD) and bis(2-hydroxyethyl) terephthalate (BHET). Two different catalysts, H3PO4 and the conventional catalyst (nBuO)4Ti, were used comparatively in the synthesis process. The copolyesters produced using the former were treated with M(2-ethylhexanoate)2 (M = Mg, Zn, Mn) to connect the chains through ionic interactions between M2+ ions and either –CH2OP(O)(OH)O or (–CH2O)2P(O)O groups. By incorporating BHET units (i.e., –O2CC6H4CO2– and –OCH2CH2O–), the resulting copolyesters exhibited improved ductile properties with enhanced elongation at break, albeit with reduced tensile strength. The copolyesters prepared with H3PO4/M(2-ethylhexanoate)2 displayed a less random distribution of –O2CC6H4CO2– and –OCH2CH2O– units, leading to a faster crystallization rate, higher Tm value, and higher yield strength compared to those prepared with (nBuO)4Ti using the same amount of BHET. Furthermore, they displayed substantial shear-thinning behavior in their rheological properties due to the presence of long-chain branches of (–CH2O)3P=O units. Unfortunately, the copolyesters prepared with H3PO4/M(2-ethylhexanoate)2, and hence containing M2+, –CH2OP(O)(OH)O, (–CH2O)2P(O)O groups, did not exhibit enhanced biodegradability under ambient soil conditions. Full article
Show Figures

Figure 1

18 pages, 8078 KiB  
Article
Synthesis and Characterization of Poly(Butylene Sebacate-Co-Terephthalate) Copolyesters with Pentaerythritol as Branching Agent
by Hyunho Jang, Sangwoo Kwon, Sun Jong Kim, Young-Teck Kim and Su-il Park
Int. J. Mol. Sci. 2024, 25(1), 55; https://doi.org/10.3390/ijms25010055 - 19 Dec 2023
Cited by 2 | Viewed by 1938
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) copolyesters are prepared by melt polymerization via two-step transesterification and polycondensation using pentaerythritol (PE) as a branching agent. The effects of the incorporated PE on its chemical, thermal, mechanical, and degradation properties, along with the rheological properties of its melt, [...] Read more.
Poly(butylene sebacate-co-terephthalate) (PBSeT) copolyesters are prepared by melt polymerization via two-step transesterification and polycondensation using pentaerythritol (PE) as a branching agent. The effects of the incorporated PE on its chemical, thermal, mechanical, and degradation properties, along with the rheological properties of its melt, are investigated. The highest molecular weight and intrinsic viscosity along with the lowest melt flow index were achieved at a PE content of 0.2 mol%, with minimal reduction in the tensile strength and the highest tear strength. The addition of PE did not significantly influence the thermal behavior and stability of the PBSeT copolyesters; however, the elongation at break decreased with increasing PE content. The sample with 0.2 mol% PE exhibited a higher storage modulus and loss modulus as well as a lower loss angle tangent than the other samples, indicating improved melt elasticity. The incorporation of more than 0.2 mol% PE enhanced the enzymatic degradation of copolyesters. In summary, including within 0.2 mol%, PE effectively improved both the processability-related characteristics and degradation properties of PBSeT copolyesters, suggesting their potential suitability for use in agricultural and packaging materials. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

12 pages, 2546 KiB  
Article
Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from CO2 via pH-Stat Jar Cultivation of an Engineered Hydrogen-Oxidizing Bacterium Cupriavidus necator
by Kenji Tanaka, Izumi Orita and Toshiaki Fukui
Bioengineering 2023, 10(11), 1304; https://doi.org/10.3390/bioengineering10111304 - 10 Nov 2023
Cited by 7 | Viewed by 2575
Abstract
The copolyester of 3-hydroxybutyrate (3HB) and 3-hydoxyhexanoate (3HHx), PHBHHx, is a biodegradable plastic characterized by high flexibility, softness, a wide process window, and marine biodegradability. PHBHHx is usually produced from structurally related carbon sources, such as vegetable oils or fatty acids, but not [...] Read more.
The copolyester of 3-hydroxybutyrate (3HB) and 3-hydoxyhexanoate (3HHx), PHBHHx, is a biodegradable plastic characterized by high flexibility, softness, a wide process window, and marine biodegradability. PHBHHx is usually produced from structurally related carbon sources, such as vegetable oils or fatty acids, but not from inexpensive carbon sources such as sugars. In previous studies, we demonstrated that engineered strains of a hydrogen-oxidizing bacterium, Cupriavidus necator, synthesized PHBHHx with a high cellular content not only from sugars but also from CO2 as the sole carbon source in the flask culture. In this study, the highly efficient production of PHBHHx from CO2 was investigated via pH-stat jar cultivation of recombinant C. necator strains while feeding the substrate gas mixture (H2/O2/CO2 = 80:10:10 v/v%) to a complete mineral medium in a recycled-gas, closed-circuit culture system. As a result, the dry cell mass and PHBHHx concentration with the strain MF01/pBPP-ccrMeJAc-emd reached up to 59.62 ± 3.18 g·L−1 and 49.31 ± 3.14 g·L−1, respectively, after 216 h of jar cultivation with limited addition of ammonia and phosphate solutions. The 3HHx composition was close to 10 mol%, which is suitable for practical applications. It is expected that the autotrophic cultivation of the recombinant C. necator can be feasible for the mass production of PHBHHx from CO2. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, 4th Edition)
Show Figures

Figure 1

31 pages, 27482 KiB  
Article
The Influence of Thermoplastic Composite Recycling on the Additive Manufacturing Process and In-Use Phase as Candidate Materials for Wearable Devices Applications
by Alexandra Papatheodorou, Iakovos Gavalas, Despoina Ntenekou and Anna Karatza
Polymers 2023, 15(18), 3775; https://doi.org/10.3390/polym15183775 - 15 Sep 2023
Cited by 2 | Viewed by 2227
Abstract
Fused filament fabrication (FFF) is a popular additive manufacturing (AM) method for creating thermoplastic parts with intricate geometrical designs. Pure thermoplastic materials utilized in FFF, whose polymeric matrix is reinforced with other materials, such as carbon fibers (CFs), introduce products with advanced mechanical [...] Read more.
Fused filament fabrication (FFF) is a popular additive manufacturing (AM) method for creating thermoplastic parts with intricate geometrical designs. Pure thermoplastic materials utilized in FFF, whose polymeric matrix is reinforced with other materials, such as carbon fibers (CFs), introduce products with advanced mechanical properties. However, since not all of these materials are biodegradable, the need for recycling and reuse immediately emerges to address the significant problem of how to dispose of their waste. The proposed study evaluates the printability, surface morphology and in vitro toxicity of two thermoplastic-based composite materials commonly used in wearable device manufacturing to provide enhanced properties and functionalities, making them suitable for various applications in the field of wearable devices. Tritan Copolyester TX1501 with 7.3% chopped CFs (cCFs) and Polyamide 12 (PA12) with 8.6%cCFs and 7.5% iron Magnetic Nanoparticles (MNPs)—Fe4O3 were used in the discrete ascending cycles of recycling, focusing on the surface quality performance optimization of the printed parts. Through stereoscopy evaluation, under-extrusion, and over-extrusion defects, as well as non-uniform material flow, are assessed in order to first investigate the influence of various process parameters’ application on the printing quality of each material and, second, to analyze the optimal value fluctuation of the printing parameters throughout the recycling cycles of the materials. The results indicate that after applying certain adjustments to the main printing parameter values, the examined recycled reinforced materials are still effectively 3D printed even after multiple cycles of recycling. A morphology examination using scanning electron microscope (SEM) revealed surface alterations, while a cytotoxicity assessment revealed the adverse effects of both materials in the form of cell viability and the release of proinflammatory cytokines in the cell culture medium. Full article
(This article belongs to the Special Issue Additive Manufacturing of Reinforced Polymers)
Show Figures

Figure 1

21 pages, 5567 KiB  
Article
Influence of Cross-Linking and Crystalline Morphology on the Shape-Memory Properties of PET/PEN/PCL Copolyesters Using Trimesic Acid and Glycerol
by Fu-Ting Yang, Yu-Ming Chen and Syang-Peng Rwei
Polymers 2023, 15(9), 2082; https://doi.org/10.3390/polym15092082 - 27 Apr 2023
Cited by 1 | Viewed by 3053
Abstract
PCL-based biodegradable shape-memory polymers (SMPs) are limited in strength, which restricts their practical applications. In this study, a series of novel SMPs, composed of poly(ethylene terephthalate) (PET), poly(ethylene naphthalate) (PEN), and poly(ε-caprolactone) (PCL), were synthesized and cross-linked using planar (benzene-1,3,5-tricarboxylic acid, BTC) or [...] Read more.
PCL-based biodegradable shape-memory polymers (SMPs) are limited in strength, which restricts their practical applications. In this study, a series of novel SMPs, composed of poly(ethylene terephthalate) (PET), poly(ethylene naphthalate) (PEN), and poly(ε-caprolactone) (PCL), were synthesized and cross-linked using planar (benzene-1,3,5-tricarboxylic acid, BTC) or non-planar (glycerol, GC) cross-linkers via the one-pot method. The influence of different kinds of cross-linkers and hard segments of copolyesters on the thermal properties, crystallization behavior, mechanical properties, shape-memory performance, and degradability was investigated by FT-IR, 1H-NMR, DSC, DMA, TGA, XRD, tensile test, intrinsic viscosity measurement, and in vitro enzymatic degradation test. The results indicate that the tensile strength of the copolyester can be significantly improved from 27.8 to 53.2 MPa by partially replacing PET with PEN while maintaining its shape-memory characteristics. Moreover, a small amount of cross-linking modification leads to higher temperature sensitivity, improved shape recovery rate at third round (Rr(3) = 99.1%), and biodegradability in the cross-linked PET/PEN/PCL shape-memory polymers. By changing the crystallization morphology and cross-linking forms of the material, we have developed a shape-memory polymer with both high strength and a high shape recovery rate, which provides a new strategy for the development of shape-memory materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 1338 KiB  
Article
Effects of Biodegradable Plastic Mulch Film on Cabbage Agronomic and Nutritional Quality Traits, Soil Physicochemical Properties and Microbial Communities
by Wei Zhang, Jinjun Ma, Zhongli Cui, Langtao Xu, Qian Liu, Jianbin Li, Shenyun Wang and Xiaoping Zeng
Agronomy 2023, 13(5), 1220; https://doi.org/10.3390/agronomy13051220 - 26 Apr 2023
Cited by 9 | Viewed by 3420
Abstract
The long-term use of polyethylene mulch (PEM) films can cause plastic film residual pollution that has an adverse effect on soil health and crop quality. To address this issue, poly(butylene adipate-co-terephthalate) (PBAT), an aliphatic–aromatic copolyester, is widely used in the production of commercially [...] Read more.
The long-term use of polyethylene mulch (PEM) films can cause plastic film residual pollution that has an adverse effect on soil health and crop quality. To address this issue, poly(butylene adipate-co-terephthalate) (PBAT), an aliphatic–aromatic copolyester, is widely used in the production of commercially biodegradable plastic mulch (BDM) films. The use of BDMs can alleviate soil plastic pollution and reduce the labor cost of retrieving plastic film residues from the field. The effects of BDM and PEM on the agronomic and nutritional quality traits of cabbage cultivar ‘Sugan No. 35’, as well as the physicochemical properties and microbial communities of the soil were analyzed during two consecutive years of the experiment. No significant difference was observed in the cabbage agronomic and nutritional quality traits among three mulching treatments. Nonetheless, the mulching and degradation of BDM reduced the pH value and increased the organic matter content of the soil samples compared with PEM mulching. In the soil bacterial and fungal communities, Proteobacteria and Ascomycota were the most abundant bacterial phylum and fungal phylum across all the soil samples, respectively; the use of BDM increased the relative abundance of soil Proteobacteria and Ascomycota compared with PEM mulching. The overall cost of BDM mulching was much lower than that of PEM mulching during the cabbage production. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 2869 KiB  
Article
Study on Properties and Degradation Behavior of Poly (Adipic Acid/Butylene Terephthalate-Co-Glycolic Acid) Copolyester Synthesized by Quaternary Copolymerization
by Yanning Wang, Boyou Hou, Liping Huang, Bingjian Li, Shi Liu, Mingyang He, Qun Chen and Jinchun Li
Int. J. Mol. Sci. 2023, 24(7), 6451; https://doi.org/10.3390/ijms24076451 - 29 Mar 2023
Cited by 7 | Viewed by 2820
Abstract
At present, the development and usage of degradable plastics instead of traditional plastics is an effective way to solve the pollution of marine microplastics. Poly (butylene adipate-co-terephthalate) (PBAT) is known as one of the most promising biodegradable materials. Nevertheless, the degradation rate of [...] Read more.
At present, the development and usage of degradable plastics instead of traditional plastics is an effective way to solve the pollution of marine microplastics. Poly (butylene adipate-co-terephthalate) (PBAT) is known as one of the most promising biodegradable materials. Nevertheless, the degradation rate of PBAT in water environment is slow. In this work, we successfully prepared four kinds of high molecular weight polyester copolyesters (PBATGA) via quaternary copolymerization. The results showed that the intrinsic viscosity of PBATGA copolymers ranged from 0.74 to 1.01 dL/g with a glycolic acid content of 0–40%. PBATGA copolymers had excellent flexibility and thermal stability. The tensile strength was 5~40 MPa, the elongation at break was greater than 460%, especially the elongation at break of PBATGA10 at 1235%, and the thermal decomposition temperature of PBATGA copolyesters was higher than 375 °C. It was found that PBATGA copolyester had a faster hydrolysis rate than PBAT, and the weight loss of PBATGA copolymers showed a tendency of pH = 12 > Lipase ≈ pH = 7 > pH = 2. The quaternary polymerization of PBAT will have the advantage of achieving industrialization, unlike the previous polymerization process. In addition, the polymerization of PBATGA copolyesters not only utilizes the by-products of the coal chemical industry, but also it can be promising in the production of biodegradable packaging to reduce marine plastic pollution. Full article
(This article belongs to the Special Issue Biodegradable Polymer: From Design to Applications 2.0)
Show Figures

Figure 1

13 pages, 993 KiB  
Article
Synthesis, Properties, and Biodegradability of Novel Sequence-Controlled Copolyesters Composed of Glycolic Acid, Dicarboxylic Acids, and C3 or C4 Diols
by Yuushou Nakayama, Keitaro Fukumoto, Yuji Kusu, Ryo Tanaka, Takeshi Shiono, Norioki Kawasaki, Naoko Yamano and Atsuyoshi Nakayama
Polymers 2023, 15(5), 1155; https://doi.org/10.3390/polym15051155 - 24 Feb 2023
Cited by 1 | Viewed by 2539
Abstract
We have previously reported that sequence-controlled copolyesters such as poly((ethylene diglycolate) terephthalate) (poly(GEGT)) showed higher melting temperatures than those of the corresponding random copolymers and high biodegradability in seawater. In this study, to elucidate the effect of the diol component on their properties, [...] Read more.
We have previously reported that sequence-controlled copolyesters such as poly((ethylene diglycolate) terephthalate) (poly(GEGT)) showed higher melting temperatures than those of the corresponding random copolymers and high biodegradability in seawater. In this study, to elucidate the effect of the diol component on their properties, a series of new sequence-controlled copolyesters composed of glycolic acid, 1,4-butanediol or 1,3-propanediol, and dicarboxylic acid units was studied. 1,4-Butylene diglycolate (GBG) and 1,3-trimethylene diglycolate (GPG) were prepared by the reactions of 1,4-dibromobutane or 1,3-dibromopropane with potassium glycolate, respectively. Polycondensation of GBG or GPG with various dicarboxylic acid chlorides produced a series of copolyesters. Terephthalic acid, 2,5-furandicarboxylic acid, and adipic acid were used as the dicarboxylic acid units. Among the copolyesters bearing terephthalate or 2,5-furandicarboxylate units, the melting temperatures (Tm) of the copolyesters containing 1,4-butanediol or 1,2-ethanediol units were substantially higher than those of the copolyester containing the 1,3-propanediol unit. Poly((1,4-butylene diglycolate) 2,5-furandicarboxylate) (poly(GBGF)) showed a Tm at 90 °C, while the corresponding random copolymer was reported to be amorphous. The glass-transition temperatures of the copolyesters decreased as the carbon number of the diol component increased. Poly(GBGF) was found to show higher biodegradability in seawater than that of poly(butylene 2,5-furandicarboxylate) (PBF). On the other hand, the hydrolysis of poly(GBGF) was suppressed in comparison with that of poly(glycolic acid). Thus, these sequence-controlled copolyesters have both improved biodegradability compared to PBF and lower hydrolyzability than PGA. Full article
(This article belongs to the Special Issue Recent Advances in Biodegradable Polymers and Their Applications)
Show Figures

Figure 1

Back to TopTop