Recent Advances in the Development of 1,4-Cyclohexanedimethanol (CHDM) and Cyclic-Monomer-Based Advanced Amorphous and Semi-Crystalline Polyesters for Smart Film Applications
Abstract
:1. Introduction
2. 1,4-Cyclohexandimethanol (CHDM) and Its Stereoisomers
2.1. Aliphatic Polyesters and Copolyesters Containing CHDM and Their Applications
2.2. Thermally Stable Aromatic Polyesters and Copolyesters Containing CHDM
3. Preparation of CHDM-Based Advanced Polymers
3.1. Solution Polymerization
3.2. Melt Polymerization
3.3. Ring-Opening Polymerization
3.4. Solid State Polycondensation (SSP) of Polyesters and Copolyesters
4. Synthesis of Cyclic Compound-Based Advanced Hompolyesters and Copolyesters
4.1. Synthesis and Properties of 1,4-Cyclohexanedimethanol (CHDM)-Based Conventional Homopolyesters (PCT and PCN)
4.2. Second Diol Modified PCT Copolyesters
4.3. Second Diacid-Modified PCT Copolyesters and Their Applications
4.4. Effect of Stereochemistry of Monomers on Synthesized Polyesters
5. Polymeric Substrates for Flexible Electronics
6. Future Recommendations for 1,4-Cycloheanedimethanol (CHDM) and Cyclic Monomer-Based Advanced Polyesters
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CHDM | 1,4-Cycloheanedimethanol | PET | Polyethylene Terephthalate |
PEN | Poly(ethylene Naphthalene 2,6-dicarboxylate) | NDA | 2,6-Naphthalenedicarbxylic Acid |
PCT | Poly(1,4-cyclohexanedimethylene terephthalate) | TPA | Terephthalic Acid |
IPA | Isophthalic Acid | PCTA | acid-modified PCT |
DMT | Dimethylene Terephthalate | DMCD | Dimethyl Cyclohexanedicarboxylate |
CHDA | 1,4-Cyclohexanedicarboxyklic Acid | PCCD | Poly(1,4-cyclohexylene 1,4-cyclohexanedicarboxylate) |
PBCC | Poly(butylene-co1,4-cyclohexanedimethylene carbonate) | ISB | Isosorbide |
LCP | Liquid Crystalline Polymers | PCTN | Poly(1-4,cyclohexane dimethylene terephthalate-co-naphthalene dicarboxylate) |
ROP | ring-opening polymerization | coPExCyT | Poly(ethylene-co-1,4-cyclohexanesimethylene terephthalate) copolyesters |
SSP | solid state polycondensation | Tc | Cold Crystallization Temperature |
Tm | melting temperature | PCN | Poly(cyclohexane dimethylene naphthalene dicarboxylate) |
Mw | Weight Average Molecular Weight | Mn | Number Average Molecular Weight. |
PEN-co-CN | Poly(ethylene 2,6-naphthalte-co-1,4-cyclohexanedimethanol 2,6-naphthalate) | PBN-co-CN | Poly(butylene 2,6-naphthalate-co-1,4-cyclohexanedimthylene 2,6-naphthalate) |
PHN-co-CN | Poly(hexamethylene 2,6-naphthalate-co-1,4-cyclohexanedimthylene 2,6-naphthalate) | PTCT | Poly(trimethylene-co-1,4-cyclohexanedimethylene terephthalate) |
PETG | Poly(ethylene glycol-co-1,4-cyclihexanedimethanil terephthalate) | P(CT-co-HT) | Poly(1,4-cyclohexylenedimethylene terephthalate-co-hexamethylene terephthalate) |
PCTIN | Poly(1,4-cyclohexane dimethylene isosorbide terephthalate naphthalate) | N | 2,6-NDA. |
S | succinic acid | SA | sebacic acid |
PECFs | Poly(ethylene 2,5-furandicarboxylate). | PCN | Poly(1,4-cyclohexanedimethylene 2,6-naphthalene) |
TFTs | Thin Film Transistor. | OLEDs | Organic Light-Emitting Diodes |
Tmax | Fabrication Process Temperature. | PC | Polycarbonate |
PES | Polyethersulphone | PAR | Polyarylate |
PI | Polyimide | PCE | Poly Cyclic Olefin |
CTE | Coefficient of Thermal Expansion |
References
- Carothers, B.W.H.; Hill, J.W. Studies of polymerization and ring formation. The use of molecular evaporation as a means for propagating chemical reactions. J. Am. Chem. Soc. 1932, 54, 1557–1559. [Google Scholar] [CrossRef]
- Hussain, F.; Shaban, S.M.; Kim, J.; Kim, D.-H. One-pot synthesis of highly stable and concentrated silver nanoparticles with enhanced catalytic activity. Korean J. Chem. Eng. 2019, 36, 988–995. [Google Scholar] [CrossRef]
- Ali, A.; Sattar, M.; Hussain, F.; Tareen, M.H.K.; Militky, J.; Noman, M.T. Single-step green synthesis of highly concentrated and stable colloidal dispersion of core-shell silver nanoparticles and their antimicrobial and ultra-high catalytic properties. Nanomaterials 2021, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.; Masek, A.; Zaborski, M. Polymer-based sensors: A review. Polym. Test. 2018, 67, 342–348. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Huang, Q.; Xu, Q.; Song, W. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014, 6, 1622–1628. [Google Scholar] [CrossRef]
- Hussain, F.; Khurshid, M.F.; Masood, R.; Ibrahim, W. Developing antimicrobial calcium alginate fibres from neem and papaya leaves extract. J. Wound Care 2017, 26, 778–783. [Google Scholar] [CrossRef]
- Awan, J.A.; Rehman, S.U.; Bangash, M.K.; Ali, U.; Asad, M.; Hussain, F.; Jaubert, J.-N. Development and characterization of electrospun curcumin-loaded antimicrobial nanofibrous membranes. Text. Res. J. 2021, 91, 1478–1485. [Google Scholar] [CrossRef]
- Bang, H.J.; Kim, H.Y.; Jin, F.L.; Park, S.J. Fibers spun from 1,4-cyclohexanedimethanol-modified polyethylene terephthalate resin. J. Ind. Eng. Chem. 2011, 17, 805–810. [Google Scholar] [CrossRef]
- McIntyre, J.E. The historical development of polyesters. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; Wiley Sussex: Chichester, UK, 2004; pp. 1–28. ISBN 0471498564. [Google Scholar]
- Bier, G. Polyarylates (polyesters from aromatic dicarboxylic acids and bisphenols). Polymer 1974, 15, 527–535. [Google Scholar] [CrossRef]
- Turner, S.R.; Walter, F.; Voit, B.I.; Mourey, T.H. Hyperbranched aromatic polyesters with carboxylic acid terminal groups. Macromolecules 1994, 27, 1611–1616. [Google Scholar] [CrossRef]
- Boland, C.S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M.S.; Mobius, M.E.; et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.K.; Arora, H. Surgical Gown: A Critical Review. J. Ind. Text. 2009, 38, 205–231. [Google Scholar] [CrossRef]
- Turner, S.R. Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5847–5852. [Google Scholar] [CrossRef]
- Rex, J.; Dickson, J.T.; Lothian, E. Polymeric Linear Terephthalic Esters. US Patent 2,465,319, 22 March 1949. [Google Scholar]
- Pech-May, N.W.; Vales-Pinzón, C.; Vega-Flick, A.; Cifuentes, Á.; Oleaga, A.; Salazar, A.; Alvarado-Gil, J.J. Study of the thermal properties of polyester composites loaded with oriented carbon nanofibers using the front-face flash method. Polym. Test. 2016, 50, 255–261. [Google Scholar] [CrossRef]
- Shih, W.K. Shrinkage modeling of polyester shrink film. Polym. Eng. Sci. 1994, 34, 1121–1128. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Qiu, Y.; Wu, D. Mechanical properties of thermoplastic polyester elastomer controlled by blending with poly(butylene terephthalate). Polym. Test. 2016, 55, 152–159. [Google Scholar] [CrossRef]
- Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Thermal and mechanical properties of biodegradable polyester/silica nanocomposites. Energy Procedia 2013, 34, 705–713. [Google Scholar] [CrossRef]
- Bae, J.; Lee, S.; Kim, B.C.; Cho, H.H.; Chae, D.W. Polyester-based thermoplastic elastomer/MWNT composites: Rheological, thermal, and electrical properties. Fibers Polym. 2013, 14, 729–735. [Google Scholar] [CrossRef]
- Park, S.; Hussain, F.; Kang, S.; Jeong, J.; Kim, J. Synthesis and properties of copolyesters derived from 1,4-cyclohexanedimethanol, terephthalic acid, and 2,6-naphthalenedicarboxylic acid with enhanced thermal and barrier properties. Polymer 2018, 42, 662–669. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Wang, X.-L.; He, Q.-X.; Zhao, H.-B.; Wang, Y.-Z. A novel phosphorus-containing poly(1,4-cyclohexylenedimethylene terephthalate) copolyester: Synthesis, thermal stability, flammability and pyrolysis behavior. Polym. Degrad. Stab. 2014, 108, 12–22. [Google Scholar] [CrossRef]
- Koo, J.M.; Hwang, S.Y.; Yoon, W.J.; Lee, Y.G.; Kim, S.H.; Im, S.S. Structural and thermal properties of poly(1,4-cyclohexane dimethylene terephthalate) containing isosorbide. Polym. Chem. 2015, 6, 6973–6986. [Google Scholar] [CrossRef]
- Duking, I.N.; Chester, W. Popolyesters. US Patent 3,436,376, 1 April 1969. [Google Scholar]
- Kasmi, N.; Terzopoulou, Z.; Papageorgiou, G.Z.; Bikiaris, D.N. Poly(1,4-cyclohexanedimethylene 2,6-naphthalate) polyester with high melting point: Effect of different synthesis methods on molecular weight and properties. Express Polym. Lett. 2018, 12, 227–237. [Google Scholar] [CrossRef]
- Meehan, S.J.; Sankey, S.W.; Jones, S.M.; MacDonald, W.A.; Colquhoun, H.M. Cocrystalline Copolyimides of Poly(ethylene 2,6-naphthalate). ACS Macro Lett. 2014, 3, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, D.; Mileva, D.; Portale, G.; Zhang, L.; Balzano, L.; Alfonso, G.C.; Androsch, R. Mesophase-Mediated Crystallization of Poly(butylene-2,6-naphthalate): An Example of Ostwald’s Rule of Stages. ACS Macro Lett. 2012, 1, 1051–1055. [Google Scholar] [CrossRef]
- Hu, B.; Ottenbrite, R.M. Biaxially oriented poly(ethylene 2,6-naphthalene) film: Manufacture, properties and commercial applications. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; Wiley Sussex: Chichester, UK, 2004; pp. 335–359. ISBN 0471498564. [Google Scholar]
- Callander, D.D. Properties and Applications of Poly(Ethylene 2,6-Naphthalene), its Copolyesters and Blends. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; Wiley Sussex: Chichester, UK, 2004; pp. 323–334. ISBN 0471498564. [Google Scholar]
- Wu, W.; Wagner, M.H.; Qian, Q.; Pu, W.; Kheirandish, S. Morphology and barrier mechanism of biaxially oriented poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) blends. J. Appl. Polym. Sci. 2006, 101, 1309–1316. [Google Scholar] [CrossRef]
- Kibler, C.J.; Bell, A.; Smith, J.G. Polyesters of 1,4-cyclohexanedimethanol 1. J. Polym. Sci. Part A Gen. Pap. 1964, 2, 2115–2125. [Google Scholar] [CrossRef]
- Kasmi, N.; Majdoub, M.; Papageorgiou, G.Z.; Bikiaris, D.N. Synthesis and crystallization of new fully renewable resources-based copolyesters: Poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicarboxylate). Polym. Degrad. Stab. 2018, 152, 177–190. [Google Scholar] [CrossRef]
- Hussain, F.; Park, S.; Jeong, J.; Kang, S.; Kim, J. Structure–property relationship of poly(cyclohexane 1,4-dimethylene terephthalate) modified with high trans-1,4-cyclohexanedimethanol and 2,6-naphthalene dicarboxylicacid. J. Appl. Polym. Sci. 2020, 137, 48950. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, J.; Wang, J.; Liu, X.; Zhang, R.; Hu, G.; Na, H.; Zhu, J. Soft segment free thermoplastic polyester elastomers with high performance. J. Mater. Chem. A 2015, 3, 13637–13641. [Google Scholar] [CrossRef]
- Celli, A.; Marchese, P.; Sisti, L.; Dumand, D.; Sullalti, S.; Totaro, G. Effect of 1,4-cyclohexylene units on thermal properties of poly(1,4-cyclohexylenedimethylene adipate) and similar aliphatic polyesters. Polym. Int. 2013, 62, 1210–1217. [Google Scholar] [CrossRef]
- Kibler, C.J.; Alan, B.; James, G. Linear Polyesters and Polyester-Amides from 1,4-cyclohexanedimethanol. US Patent 2,901,466, 25 August 1959. [Google Scholar]
- Celli, A.; Marchese, P.; Sullalti, S.; Berti, C.; Barbiroli, G. Eco-friendly poly(butylene 1,4-cyclohexanedicarboxylate): Relationships between stereochemistry and crystallization behavior. Macromol. Chem. Phys. 2011, 212, 1524–1534. [Google Scholar] [CrossRef]
- Rosado, M.T.S.; Maria, T.M.R.; Castro, R.A.E.; Canotilho, J.; Silva, M.R.; Eusébio, M.E.S. Molecular structure and polymorphism of a cyclohexanediol: Trans-1,4-cyclohexanedimethanol. CrystEngComm 2014, 16, 10977–10986. [Google Scholar] [CrossRef]
- Turner, S.R.; Seymour, R.W.; Dombroski, J.R. Amorphous and crystalline polyesters based on 1,4-cyclohexanedimethanol. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; Wiley Sussex: Chichester, UK, 2004; pp. 267–292. ISBN 0471498564. [Google Scholar]
- Martínez de Ilarduya, A.; MuñToz Guerra, S. Polyesters Based on Cyclohexanedimethanol. In Handbook of Engineering and Specialty Thermoplastics; Thomas, S., Visakh, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2004; pp. 181–182. ISBN 978-0-470-63926-9. [Google Scholar]
- Robert, H.H.; Knowles, M.B.; Kingsport, T. Preparation of Trans-1,4-cyclohexanedimethanol. US Patent 2,917,549, 15 December 1949. [Google Scholar]
- Raja, R.; Khimyak, T.; Thomas, J.M.; Hermans, S.; Johnson, B.F.G. Single-Step, Highly Active, and Highly Selective Nanoparticle Catalysts for the Hydrogenation of Key Organic Compounds. Angew. Chemie Int. Ed. 2001, 40, 4638–4642. [Google Scholar] [CrossRef]
- Hungria, A.B.; Raja, R.; Adams, R.D.; Captain, B.; Thomas, J.M.; Midgley, P.A.; Golovko, V.; Johnson, B.F.G. Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew. Chemie Int. Ed. 2006, 45, 4782–4785. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Chao, S.Y.; Lin, H.N. Method for Preparing Dimethyl 1,4-Cyclohexanedicarboxylate and Method for Preparing 1,4-Cyclohexanedimethanol. US Patent 9,550,721,B2, 24 January 2017. [Google Scholar]
- Guo, X.; Xin, J.; Lu, X.; Ren, B.; Zhang, S. Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis(2-hydroxyethylene terephthalate). RSC Adv. 2015, 5, 485–492. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, Z.; Liu, Y.; Li, G.; Wang, A.; Cong, Y.; Zhang, T.; Wang, F.; Li, N. Synthesis of 1,4-cyclohexanedimethanol, 1,4-cyclohexanedicarboxylic acid and 1,2-cyclohexanedicarboxylates from formaldehyde, crotonaldehyde and acrylate/fumarate. Angew. Chemie Int. Ed. 2018, 57, 6901–6905. [Google Scholar] [CrossRef]
- Scarlett, J.; Michael, A.; Wood, C.R. Process for the Production of Cyclohexanedmethanol. US Patent 5,387,752, 7 February 1995. [Google Scholar]
- Xiao, X.; Xin, H.; Qi, Y.; Zhao, C.; Wu, P.; Li, X. One-pot conversion of dimethyl terephthalate to 1,4-cyclohexanedimethanol. Appl. Catal. A Gen. 2022, 632, 118510. [Google Scholar] [CrossRef]
- Liu, Y.; Turner, S.R. Synthesis and Properties of Cyclic Diester Based Aliphatic Copolyesters. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2162–2169. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, W.; Fang, Y. Kinetics of hydrogenation of dimethyl 1,4-cyclohexanedicarboxylate to 1,4-cyclohexanedimethanol. Int. J. Chem. Kinet. 2023, 55, 455–466. [Google Scholar] [CrossRef]
- Levin, S.; Diner, I.; Gurevich, G. Catalytic Hydrogenation of Dimethyl Production of Dimethyl Hexahydroterephthalate. All-Union Sci. Res. Inst. Pet. Chem. Process. 1962, 2, 566–572. [Google Scholar] [CrossRef]
- Lewandowski, G.; Wroblewska, A.; Milchert, E. Synthesis of 1, 4-cyclohexanedimethanol by hydrogenation of dimethyl terephthalate and its application as a substrate in syntheses of polyesters. Polimery 2007, 52, 39–43. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, Z.; Yang, L.; Du, W.; Hou, Z. Hydrogenation of waste PET degraded bis (2-hydroxyethyl) cyclohexane-1, 4-dicarboxylate to 1, 4-cyclohexanedimethanol over Cu-based catalysts. Fuel 2024, 363, 130944. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Chen, J.; Zhu, Y.; Zhang, F. One-pot conversion of dimethyl terephthalate into 1, 4-cyclohexanedimethanol with supported trimetallic RuPtSn catalysts. Ind. Eng. Chem. Res. 2014, 53, 619–625. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, K.; Lin, Q.; Guo, W.; Chen, M.; Chen, C.; Zhang, C.; Fei, J.; Zhu, Y.; Li, J. Value-added Upcycling of PET to 1, 4-Cyclohexanedimethanol by a Hydrogenation/Hydrogenolysis Relay Catalysis. Angew. Chemie Int. Ed. 2024, 63, e202408561. [Google Scholar] [CrossRef]
- Luo, J.; Qu, E.; Zhou, Y.; Dong, Y.; Liang, C. Re/AC catalysts for selective hydrogenation of dimethyl 1, 4- cyclohexanedicarboxylate to 1, 4-cyclohexanedimethanol: Essential roles of metal dispersion and chemical environment. Appl. Catal. A Gen. 2020, 602, 117669. [Google Scholar] [CrossRef]
- Lecomte, H.A.; Liggat, J.J.; Curtis, A.S.G. Synthesis and characterization of novel biodegradable aliphatic poly(ester amide)s containing cyclohexane units. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1785–1795. [Google Scholar] [CrossRef]
- Tsai, Y.; Jheng, L.C.; Hung, C.Y. Synthesis, properties and enzymatic hydrolysis of biodegradable alicyclic/aliphatic copolyesters based on 1,3/1,4-cyclohexanedimethanol. Polym. Degrad. Stab. 2010, 95, 72–78. [Google Scholar] [CrossRef]
- Hunsen, M.; Azim, A.; Mang, H.; Wallner, S.R.; Ronkvist, A.; Wenchun, X.; Gross, R.A. A cutinase with polyester synthesis activity. Macromolecules 2007, 40, 148–150. [Google Scholar] [CrossRef]
- Barrett, D.G.; Merkel, T.J.; Luft, J.C.; Yousaf, M.N. One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules 2010, 43, 9660–9667. [Google Scholar] [CrossRef]
- Cai, X.; Yang, X.; Zhang, H.; Wang, G. Modification of biodegradable poly(butylene carbonate) with 1,4-cyclohexanedimethylene to enhance the thermal and mechanical properties. Polym. Degrad. Stab. 2017, 143, 35–41. [Google Scholar] [CrossRef]
- Berti, C.; Celli, A.; Marchese, P.; Barbiroli, G.; Di Credico, F.; Verney, V.; Commereuc, S. Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1,4-cyclohexylene rings. Eur. Polym. J. 2009, 45, 2402–2412. [Google Scholar] [CrossRef]
- Park, S.A.; Choi, J.; Ju, S.; Jegal, J.; Lee, K.M.; Hwang, S.Y.; Oh, D.X.; Park, J. Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates. Polymer 2017, 116, 153–159. [Google Scholar] [CrossRef]
- Arévalo-Alquichire, S.; Valero, M. Castor Oil Polyurethanes as Biomaterials. In Elastomers; IntechOpen: London, UK, 2017; pp. 137–157. [Google Scholar]
- Brunelle, D.J.; Jang, T. Optimization of poly(1,4-cyclohexylidene cyclohexane-1,4-dicarboxylate) (PCCD) preparation for increased crystallinity. Polymer 2006, 47, 4094–4104. [Google Scholar] [CrossRef]
- Pal, R.S.; Pal, Y.; Singh, V. Isolation and characterization of n-octa decanoic acid from whole aerial parts of Centella asiatica Linn. Int. J. Pharm. Technol. 2016, 8, 18989–18994. [Google Scholar]
- Akbari, S.; Root, A.; Skrifvars, M.; Ramamoorthy, S.K.; Åkesson, D. Novel Bio-based Branched Unsaturated Polyester Resins for High-Temperature Applications. J. Polym. Environ. 2024, 32, 2031–2044. [Google Scholar] [CrossRef]
- Hoskins, J.N.; Grayson, S.M. Cyclic polyesters: Synthetic approaches and potential applications. Polym. Chem. 2011, 2, 289–299. [Google Scholar] [CrossRef]
- Yoon, H.N. Strength of fibers from wholly aromatic polyesters. Colloid Polym. Sci. 1990, 268, 230–239. [Google Scholar] [CrossRef]
- Bastioli, C.; Foa, M.; Floridi, G.; Cella, G.; Fernanda, F.; Milizia, T. Use of Polyester Resins for the Production of Articles Having Good Properties as Barriers to Water Vapor. US Patent 6,727,342 B1, 27 April 2004. [Google Scholar]
- Turner, S.R.; Seymour, R.W.; Smith, T.W. Cyclohexanedimethanol Polyesters. In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2003; Volume 2, pp. 127–134. ISBN 978-0-470-60955-2. [Google Scholar]
- Ki, H.C.; Park, O.O. Synthesis, characterization and biodegradability of the biodegradable aliphatic—Aromatic random copolyesters. Polymer 2001, 42, 1849–1861. [Google Scholar] [CrossRef]
- Armentano, I.; Gigli, M.; Martino, S. Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine. Appl. Sci. 2018, 8, 1452. [Google Scholar] [CrossRef]
- Phan, D.-N.; Lee, H.; Choi, D.; Kang, C.-Y.; Im, S.; Kim, I.; Phan, D.-N.; Lee, H.; Choi, D.; Kang, C.-Y.; et al. Fabrication of Two Polyester Nanofiber Types Containing the Biobased Monomer Isosorbide: Poly (Ethylene Glycol 1,4-Cyclohexane Dimethylene Isosorbide Terephthalate) and Poly (1,4-Cyclohexane Dimethylene Isosorbide Terephthalate). Nanomaterials 2018, 8, 56. [Google Scholar] [CrossRef]
- Legrand, S.; Jacquel, N.; Amedro, H.; Saint-Loup, R.; Pascault, J.P.; Rousseau, A.; Fenouillot, F. Synthesis and properties of poly(1,4-cyclohexanedimethylene-co-isosorbide terephthalate), a biobased copolyester with high performances. Eur. Polym. J. 2019, 115, 22–29. [Google Scholar] [CrossRef]
- El-Ghazali, S.; Khatri, M.; Hussain, N.; Khatri, Z.; Yamamoto, T.; Kim, S.H.; Kobayashi, S.; Kim, I.S. Characterization and biocompatibility evaluation of artificial blood vessels prepared from pristine poly (Ethylene-glycol-co-1, 4-cyclohexane dimethylene-co-isosorbide terephthalate), poly (1, 4 cyclohexane di-methylene-co-isosorbide terephthalate) nanofi. Mater. Today Commun. 2021, 26, 102113. [Google Scholar] [CrossRef]
- Bhagia, S.; Bornani, K.; Ozcan, S.; Ragauskas, A.J. Terephthalic Acid Copolyesters Containing Tetramethylcyclobutanediol for High-Performance Plastics. ChemistryOpen 2021, 10, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Hussain, F.; Park, S.; Kang, S.-J.; Kim, J. High Thermal Stability, High Tensile Strength, and Good Water Barrier Property of Terpolyester Containing Biobased Monomer for Next-Generation Smart Film Application: Synthesis and Characterization. Polymers 2020, 12, 2458. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Park, S.; Jeong, J.; Jeong, E.; Kang, S.; Yoon, K.; Kim, J. Fabrication and characterization of poly(1,4-cyclohexanedimthylene terephthalate-co-1,4-cyclohxylenedimethylene 2,6-naphthalenedicarboxylate) (PCTN) copolyester film: A novel copolyester film with exceptional performances for next generation. J. Appl. Polym. Sci. 2021, 138, 49840. [Google Scholar] [CrossRef]
- Gonzalez-Vidal, N.; De Ilarduya, A.M.; Muñoz-Guerra, S. Poly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate) copolyesters obtained by ring opening polymerization. J. Polym. Sci. Part A Polym. Chem. 2009, 19, 5954–5966. [Google Scholar] [CrossRef]
- Velmathi, S.; Nagahata, R.; Takeuchi, K. Extremely Rapid Synthesis of Aliphatic Polyesters by Direct polycondensation of 1:1 mixtures of dicarboxylic acids and diols using microwaves. Polym. J. 2007, 39, 841–844. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Jo, W.H.; Lee, S.C. Synthesis and isodimorphic cocrystallization behavior of poly(1,4-cyclohexylenedimethylene terephthalate- co -1,4-cyclohexylenedimethylene 2,6-naphthalate) copolymers. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 177–187. [Google Scholar] [CrossRef]
- Hu, L.; Wu, L.; Song, F.; Li, B.G. Kinetics and modeling of melt polycondensation for synthesis of poly[(butylene succinate)-co-(butylene terephthalate)], 1—Esterification. Macromol. React. Eng. 2010, 4, 621–632. [Google Scholar] [CrossRef]
- Lodha, A.; Ghadage, R.S.; Ponrathnam, S. Polycondensation reaction kinetics of wholly aromatic polyesters. Polymer 1997, 38, 6167–6174. [Google Scholar] [CrossRef]
- Shah, T.; Bhatty, J.; Gamlen, G.; Dollimore, D. Aspects of the chemistry of poly(ethylene terephthalate): 5. Polymerization of bis(hydroxyethyl)terephthalate by various metallic catalysts. Polymer 1984, 25, 1333–1336. [Google Scholar] [CrossRef]
- Karayannidis, G.P.; Roupakias, C.P.; Bikiaris, D.N.; Achilias, D.S. Study of various catalysts in the synthesis of poly(propylene terephthalate) and mathematical modeling of the esterification reaction. Polymer 2003, 44, 931–942. [Google Scholar] [CrossRef]
- Shotyk, W.; Krachler, M. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. Environ. Sci. Technol. 2007, 41, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Kotek, R.; Tonelli, A. Review of conventional and novel polymerization processes for polyesters. Prog. Polym. Sci. 2006, 31, 1009–1037. [Google Scholar] [CrossRef]
- Muller, R. Keys to the trematoda. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 124. [Google Scholar] [CrossRef]
- Kwolek, S.L.; Morgan, P.W. Preparation of polyamides, polyurethanes, polysulfonamides, and polyesters by low temperature solution polycondensation. J. Polym. Sci. Part A Gen. Pap. 1964, 2, 2693–2703. [Google Scholar] [CrossRef]
- Giol, E.D.; Van den Brande, N.; Van Mele, B.; Van Vlierberghe, S.; Dubruel, P. Single-step solution polymerization of poly(alkylene terephthalate)s: Synthesis parameters and polymer characterization. Polym. Int. 2018, 67, 292–300. [Google Scholar] [CrossRef]
- Hussain, F.; Jeong, J.; Park, S.; Kang, S.-J.; Kim, J. Single-step solution polymerization and thermal properties of copolyesters based on high trans-1,4-cyclohexanedimethanol, terephthaloyl dichloride, and 2,6-naphthalene dicarboxylic chloride. Polym. 2019, 43, 475–484. [Google Scholar] [CrossRef]
- Jérôme, C.; Lecomte, P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Deliv. Rev. 2008, 60, 1056–1076. [Google Scholar] [CrossRef]
- Bednarek, M. Branched aliphatic polyesters by ring-opening (co)polymerization. Prog. Polym. Sci. 2016, 58, 27–58. [Google Scholar] [CrossRef]
- Macdonald, J.P.; Shaver, M.P. An aromatic/aliphatic polyester prepared via ring-opening polymerisation and its remarkably selective and cyclable depolymerisation to monomer. Polym. Chem. 2016, 7, 553–559. [Google Scholar] [CrossRef]
- Wan, X.H.; Yang, Y.; Tu, H.L.; Lan, H.; Tan, S.; Zhou, Q.F.; Turner, S.R. Synthesis, characterization, and ring opening polymerization of poly(1,4-cyclohexylenedimethylene terephthalate) cyclic oligomers. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1828–1833. [Google Scholar] [CrossRef]
- Achilias, D.S.; Chondroyiannis, A.; Nerantzaki, M.; Adam, K.V.; Terzopoulou, Z.; Papageorgiou, G.Z.; Bikiaris, D.N. Solid State Polymerization of Poly(Ethylene Furanoate) and Its Nanocomposites with SiO2 and TiO2. Macromol. Mater. Eng. 2017, 302, 1700012. [Google Scholar] [CrossRef]
- Culbert, B.; Christel, A. Continuous solid-state polycondensation of polyesters. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; Wiley Sussex: Chichester, UK, 2004; pp. 143–194. ISBN 9780470090688. [Google Scholar]
- Tate, S.; Watanabe, Y.; Chiba, A. Synthesis of ultra-high molecular weight poly(ethylene terephthalate) by swollen-state polymerization. Polymer 1993, 34, 4974–4977. [Google Scholar] [CrossRef]
- Willem, F.; Borman, H.; Pittsfield, M. Solid State Polymerization of Poly (1,4-Butylene Terephthalate). US Patent 3,953,404, 27 April 1976. [Google Scholar]
- Kasmi, N.; Papageorgiou, G.Z.; Achilias, D.S.; Bikiaris, D.N. Solid-State polymerization of poly(Ethylene Furanoate) biobased Polyester, II: An efficient and facile method to synthesize high molecular weight polyester appropriate for food packaging applications. Polymers 2018, 10, 471. [Google Scholar] [CrossRef]
- Dröscher, M.; Wegner, G. Poly(ethylene terephthalate): A solid state condensation process. Polymer 1978, 19, 43–47. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.J.; Zhang, J.; Feng, L.F.; Wang, J.J. Experimental and modeling study of the solid state polymerization of poly(ethylene terephthalate) over a wide range of temperatures and particle sizes. J. Appl. Polym. Sci. 2013, 127, 3814–3822. [Google Scholar] [CrossRef]
- Göltner, W. Solid-State Polycondensation of Polyester Resins: Fundamentals and Industrial Production. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; Wiley Sussex: Chichester, UK, 2004; pp. 195–242. ISBN 9780470090688. [Google Scholar]
- Papaspyrides, C.D.; Vouyiouka, S.N. Solid-state polymerization. Prog. Polym. Sci. 2005, 30, 10–37. [Google Scholar] [CrossRef]
- Steinborn-Rogulska, I.; Rokicki, G. Solid-state polycondensation (SSP) as a method to obtain high molecular weight polymers: Part II. Synthesis of polylactide and polyglycolide via SSP. Polimery 2013, 58, 85–92. [Google Scholar] [CrossRef]
- Youssef, A.-R.M.A. Solution and Bulk Polimerization. High. Technol. Inst. Tenth Ramadan City 2019, 1–7. [Google Scholar] [CrossRef]
- Geeta; Preetam. A Review on Polymer Technology. Int. J. Eng. Technol. Res. 2016, 4, 9–14. [Google Scholar]
- Naeimirad, M.; Krins, B.; Gruter, G.J.M. A Review on Melt-Spun Biodegradable Fibers. Sustainability 2023, 15, 14474. [Google Scholar] [CrossRef]
- Kricheldorf, H. Polycondensation: History and New Results; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Steinborn-Rogulska, I.; Rokicki, G. Solid-state polycondensation (SSP) as a method to obtain high molecular weight polymers. Part I. Parameters influencing the SSP process. Polimery 2013, 58, 3–13. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Jo, W.H.; Lee, S.C. Synthesis and Crystallization Behavior of Poly( m -methylene 2,6-naphthalate- c o -1,4-cyclohexylenedimethylene 2,6-naphthalate) Copolymers. Macromolecules 2003, 36, 4051–4059. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Yu, A.; Xi, P.; Huang, X.; Li, S. Sequence distribution, thermal properties, and crystallization studies of poly(trimethylene terephthalate-co-1,4-cyclohexylene dimethylene terephthalate) copolyesters. J. Appl. Polym. Sci. 2008, 111, 2751–2760. [Google Scholar] [CrossRef]
- Hill, A.J.; Weinhold, S.; Stack, G.M.; Tant, M.R. Effect of copolymer composition on free volume and gas permeability in poly(ethylene terephthalate)-poly(1,4 cyclohexylenedimethylene terephthalate) copolyesters. Eur. Polym. J. 1996, 32, 843–849. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, W.; Zhang, J. Alkali resistance of poly(ethylene terephthalate) (PET) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) copolyesters: The role of composition. Polym. Degrad. Stab. 2015, 120, 232–243. [Google Scholar] [CrossRef]
- Young, G.J.; Won, H.J.; Sang, C.L. Cocrystallization of poly(1,4-cyclohexylenedimethylene terephthalate-co- hexamethylene terephthalate) copolymers. Macromol. Res. 2004, 12, 459–465. [Google Scholar] [CrossRef]
- Kliesh, H.; Oliver Klein, M.K.; Kuhmann, B. White, Biaxially Oriented Polyester Film with a High Portion of Cyclohexanedimethanol and a Primary and Secondary Dicarboxylic Acid Portion and a Method for Its Production and Its Use. US Patent 2012/0196111 A1, 2 August 2012. [Google Scholar]
- Sublett, B.J. Orientable, Heat Setable Semi-Crystalline Copolyesters. US Patent 5,616,404, 1 April 1997. [Google Scholar]
- Dickerson, J.P.; Brink, A.E.; Oshinski, A.J.; Seo, K.S. Copolyesters Based on 1,4-Cyclohexanedmethanol Having Improved Stability. US Patent 5,656,715, 12 August 1997. [Google Scholar]
- Sublett, B.J. Thermoplastic Copolyesters Having Improved Gas Barrier Properties. US Patent 5,552,512, 3 September 1997. [Google Scholar]
- Gandini, A.; Lacerda, T.M.; Carvalho, A.J.F.; Trovatti, E. Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chem. Rev. 2016, 116, 1637–1669. [Google Scholar] [CrossRef]
- Delidovich, I.; Hausoul, P.J.C.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chem. Rev. 2016, 116, 1540–1599. [Google Scholar] [CrossRef]
- Pellis, A.; Herrero Acero, E.; Gardossi, L.; Ferrario, V.; Guebitz, G.M. Renewable building blocks for sustainable polyesters: New biotechnological routes for greener plastics. Polym. Int. 2016, 65, 861–871. [Google Scholar] [CrossRef]
- Hussain, F.; Jeong, J.; Park, S.; Kang, S.J.; Khan, W.Q.; Kim, J. Synthesis and unique characteristics of biobased high Tg copolyesters with improved performance properties for flexible electronics and packaging applications. J. Ind. Eng. Chem. 2021, 100, 119–125. [Google Scholar] [CrossRef]
- Vanhaecht, B.; Teerenstra, M.N.; Suwier, D.R.; Willem, R.; Biesemans, M.; Koning, C.E. Controlled stereochemistry of polyamides derived fromcis/trans-1,4-cyclohexanedicarboxylic acid. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 833–840. [Google Scholar] [CrossRef]
- Tsai, Y.; Fan, C.H.; Hung, C.Y.; Tsai, F.J. Amorphous copolyesters based on 1,3/1,4-cyclohexanedimethanol: Synthesis, characterization and properties. J. Appl. Polym. Sci. 2008, 109, 2598–2604. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Jia, Z.; Sun, L.; Zhang, Y.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: Influence of stereochemistry of 1,4-cyclohexylene units. Polymer 2018, 137, 173–185. [Google Scholar] [CrossRef]
- Berti, C.; Celli, A.; Marchese, P.; Marianucci, E.; Barbiroli, G.; Di Credico, F. Influence of molecular structure and stereochemistry of the 1,4-cyclohexylene ring on thermal and mechanical behavior of poly(butylene 1,4-cyclohexanedicarboxylate). Macromol. Chem. Phys. 2008, 209, 1333–1344. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Jo, W.H.; Lee, S.C. Crystal structure determination of poly(1,4-trans-cylcohexylenedimethylene 2,6-naphthalate) by X-ray diffraction and molecular modeling. Macromolecules 2003, 36, 5201–5207. [Google Scholar] [CrossRef]
- Lyman, D.J. Polyurethanes. II. Effect of cis-trans isomerism on properties of polyurethanes. J. Polym. Sci. 1961, 55, 507–514. [Google Scholar] [CrossRef]
- Sakellarides, S.L. Poly(ethylene naphthalate) (PEN). In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2004; Volume 11, pp. 88–114. [Google Scholar]
- Light, R.R.; Seymour, R.W. Effect of sub-Tg relaxations on the gas transport properties of polyesters. Polym. Eng. Sci. 1982, 22, 857–864. [Google Scholar] [CrossRef]
- Boye, C.A. X-ray diffraction studies of poly (1,4-cyclohexylenedimethylene terephthalate). J. Polym. Sci. 1961, 55, 275–284. [Google Scholar] [CrossRef]
- Sandhya, T.E.; Ramesh, C.; Sivaram, S. Copolyesters Based on Poly(butylene terephthalate)s Containing Cyclohexyl Groups: Synthesis, Structure and Crystallization. Macromol. Symp. 2003, 199, 467–482. [Google Scholar] [CrossRef]
- MacDonald, W.A. Engineered films for display technologies. J. Mater. Chem. 2004, 14, 4–10. [Google Scholar] [CrossRef]
- Cheng, I.C.; Wagner, S. Overview of Flexible Electronics. In Flexible Electronics: Materials and Applications Electronic Materials: Science and Technology; Wong, W.S., Salleo, A., Eds.; Springer: New York, NY, USA, 2009; pp. 1–28. ISBN 0387743626. [Google Scholar]
- MacDonald, W.A.; Looney, M.K.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 2007, 15, 1075. [Google Scholar] [CrossRef]
- Lewis, J.S.; Weaver, M.S. Thin film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 45–57. [Google Scholar] [CrossRef]
- Hussain, F.; Jeong, J.; Park, S.; Jeong, E.; Kang, S.-J.; Yoon, K.; Kim, J. Fabrication and characterization of a novel terpolyester film: An alternative substrate polymer for flexible electronic devices. Polymer 2020, 210, 123019–123026. [Google Scholar] [CrossRef]
- Hussain, F.; Fayzan Shakir, H.M.; Ali, A.; Rehan, Z.A.; Zubair, Z. Development and characterization of cyclic compound-based biaxially stretched smart polymeric film for futuristic flexible electronic devices. Eur. Polym. J. 2022, 172, 111243. [Google Scholar] [CrossRef]
Sr. No. | Catalyst | Summary | Yield (%) | Ref. |
---|---|---|---|---|
1 | physically mixed Pd-Cu-based | This research work involves the one-pot synthesis of CHDM from DMT using mixture of Pd-Cu as an active catalyst. The step of the conversion process is discussed in detail, and the impact of catalysts is studied in detail. | 82 | [48] |
2 | Ru/AL03 for 1st step CuO/Cr203 2nd step | This work indicates the 2-step conversion process of DMT into CHDM in the presence of suitable solvent, methanol. Initially, DMT is converted into dimethyl cyclohexanedicarboxylate in excess solvent and then final product, and CHDM is achieved in the subsequent process. Various factors that affect the yield of the CHDM synthesis are also highlighted. | 98 | [49] |
3 | CuMnAl | Focuses on the use of palladium catalysts for the hydrogenation of DMT to CHDM, emphasizing the role of catalyst preparation and reaction conditions in achieving high yields. | 95 | [50] |
4 | Pd | This work highlights the synergic effect of palladium catalysts for the preparation of CHDM from DMT, a starting chemical. In order to achieve high yields, it also emphasizes the significance of catalyst preparation and reaction conditions. | 95 | [51] |
5 | Rh/Al2O3 | This work focuses on the effects of reaction parameters on the yield of CHDM during the hydrogenation of DMT using rhodium on alumina (Rh/Al2O3) catalysts. | 88–93 | [52] |
6 | Cu1.55/Mg2.45Al2O7 | This work focuses on the high-yield process (98%) for CHDM synthesis in the presence of Cu1.55/Mg2.45Al2O7 catalyst. The catalyst was highly efficient in the hydrogenation of BHCD to CHDM. The high selectivity and activity of the catalyst were attributed to its high dispersion and basicity. | 98 | [53] |
7 | Ru4Pt2Sn8/Al2O3 | This study investigates the use of supported trimetallic RuPtSn/Al2O3 catalysts in the one-pot conversion of dimethyl terephthalate (DMT) to 1,4-cyclohexanedimethanol (CHDM). This study emphasizes how well the catalysts work to achieve high levels of efficiency and selectivity throughout the hydrogenation process. For CHDM, the reported response yield is almost 92%. | 92 | [54] |
8 | reduced graphene oxide (Pd/r-GO) and oxalate-gel-derived copper-zinc oxide (og-CuZn) | This work represents the novel 2-step process for the synthesis of trans-isomer-enriched 1,4-CHDM, an essential constituent of specialty polymers, from PET, using dual catalysts, Pd/r-GO and og-CuZn. The yield of the reaction was 95%. Furthermore, the isolated yield of 87% and a high trans/cis ratio on a 10 g scale was achieved, and the process efficiently transforms post-consumer PET plastics with yields ranging from 78% to 89%. This method increases selectivity in catalytic processes and provides a sustainable path for PET recycling. | 95 | [55] |
9 | Cu/Zn/Al | The present research proposed the synthesis of CHDM, 1,4-cyclohexanedicarboxylic acid, and 1,2-cyclohexanedicarboxylates using formaldehyde, crotonaldehyde, and acrylate/fumarate as starting materials. This work investigates a unique method for producing these compounds, which are crucial intermediates in the synthesis of polymers, using catalytic hydrogenation processes. This study emphasizes the catalytic system’s efficiency and potential for industrial use. | 85 | [46] |
10 | Re/AC (rhenium on activated carbon) | The purpose of this work is to investigate the selective hydrogenation of dimethyl 1,4-cyclohexanedicarboxylate to 1,4-cyclohexanedimethanol (CHDM) using Re/AC catalysts. It highlights how important the chemical environment and metal dispersion are to obtaining good catalytic activity. This study shows that improving these variables improves the hydrogenation process’s efficiency and selectivity. | 97 | [56] |
Sr. # | CHDM Based Polyester | Unique Characteristics | Suitable Applications Area | Ref. |
---|---|---|---|---|
1 | Poly(1,4-cyclohexandimethanol terephthalate (PCT) | High molecular weight and high melting and glass transition temperature | High temperature fiber, textile, electrical connectors | [71] |
2 | Isophthalic acid-modified (IPA) PCT (PCTA) | Tune-able processing properties, wide processing window, and amorphous nature suitable for molding applications | Injection molding applications, Extrusion molding applications, High-temperature applications such as electronic connector edge card connectors, grid arrays, memory modules, thermoformed trays for foods, transparent toys, and monofilament in paper machine belts | [71] |
3 | Glycol-modified amorphous PCT copolyesters (PETG/PCTG) | Transparent and glassy surface, ease of processing, good mechanical properties, and biocompatible | Mug container, crisper, heavy gauge sheet products, blister packages, and medical devices with good resistance to lipid solutions | [14,71] |
4 | 1. Poly(butylene cyclohexanedimethylene succinate terephthalates) (PBCSTs) 2. Poly(butylene succinate-co-cyclohexanedimethanol succinate) | Moderate melting temperature, partially biodegradable, acceptable resistance against hydrolysis, tune-able, good thermal stability, etc. | Biodegradable packaging, textiles and fibers, agricultural mulch films, etc. | [58,72] |
5 | Poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) | Resistance against hydrolysis and environmental stress cracks, biocompatible with limited biodegradability, etc. | Tissue engineering, engineering plastic, and flexible packaging film | [73] |
6 | Cycloaliphatic diesters: dimethyl-1,4-cyclohexane: dimethyl-1,4-cyclohexane dicarboxylate (DMCD), dimethyl bicyclo heptane-1,4-dicarboxylate (DMCD-1), dimethyl bicyclooctane-1,4-dicarboxy-late (DMCD-2), dimethyl bicyclononane-1,5-dicarboxylate (DMCD-3), 1,4-dimethoxycarbonyl-1,4-dimethylcyclohexane (DMCD-M), and the aliphatic diols: ethylene glycol (EG) and 1,4-cyclohexane dimethanol (CHDM)-based poly[x(DMCD-2)y(DMCD) 30(EG)70(CHDM)] copolyester | Good optical, mechanical, chemical, and thermal stability; good glass transition temperature and flexibility; etc. | Outdoor applications, stable substrates for flexible displays and solar cells, and used as substrates for microfluidic devices | [49] |
7 | Poly (Ethylene Glycol 1,4-Cyclohexane Dimethylene Isosorbide Terephthalate) and Poly (1,4-Cyclohexane Dimethylene Isosorbide Terephthalate) | Moderate glass transition temperature along with acceptable melting temperature, good toughness and flexibility, good resistance against hydrolysis, chemicals and solvents, etc. | Tissue engineering, separators, filtration, and scaffolding | [74] |
8 | poly(1,4-cyclohexanedimethylene-co-isosorbide terephthalate) | Good thermal stability with high glass transition temperature, partially sustainable, resistance against hydrolysis and environmental stress cracks, etc. | Transparent rigid packaging, biodegradable and sustainable plastics, and medical and healthcare devices | [75] |
9 | poly (Ethylene-glycol-co-1, 4-cyclohexane dimethylene-co-isosorbide terephthalate) | Moderate to high glass transition temperature, biocompatible, good resistance to hydrolysis especially in humid environment, etc. | Artificial scaffold and artificial blood vessel | [76] |
10 | Poly(terephthalate-co-1,4-cyclohexanedimethanol/1,4-bis(hydroxymethyl)cyclohexane diester) | Moderate to high glass transition temperature, good thermal stability, high tensile strength and rigidity, good optical and chemical resistance properties, etc. | Durable household, kitchen, dishwasher container, and electronic device parts | [77] |
11 | Poly(cyclohexanedimethylene isosorbide terephthalate-co-naphthalate) | High glass transition, wide processing window, good water barrier, good thermal and dimensional stability, and good optical properties | Transparent substrate for flexible electronic devices and flexible packaging film | [78] |
12 | Poly(1,4-cyclohexanedimthylene terephthalate-co-1,4-cyclohxylenedimethylene 2,6-naphthalenedicarboxylate) | Good thermal degradation, good water barrier and optical behavior, and low coefficient of thermal expansion | Next-Generation Smart Film application and electronics packaging | [79] |
Sr. # | Synthesis Technique | Pros. | Cons | Ref. |
---|---|---|---|---|
1 | Solution polymerization This is a process in which all the monomers are reacted together in the presence of suitable catalyst or/and stabilizers. These chemicals and resultant polymer are dissolved in suitable solvent. The solvent facilitates heat transfer along with the control of the viscosity of the reaction mixture. The final polymeric product is dissolved in the solvent, which is recovered by suitable filtration or separation process. | Ease of synthesis, uniform and good control over the reaction temperature, suitable for various polymer synthesis that have high melt viscosity, ease of separation of final product from solvent, etc. | Requires solvent-recovery system, environmental concerns due to solvent, low yield of polymer-synthesis process, risk of the presence of solvent in the final product, significant amount of energy is required (making it energy-intensive process), etc. | [92,107,108] |
2 | Melt polymerization This is the process in which two or more monomers react together in the presence of suitable initiator/catalyst and stabilizer. In this process, molten monomers react together under inert conditions in the absence of any solvent. The molten product is achieved at the end of the process. | Solvent-free synthesis process, high-molecular and pure product, energy efficient as no solvent extraction system is required, simple and straight forward process, high yield, etc. | High synthesis temperature is required, which sometime leads to thermal degradation of monomers/product; high viscosity of the products leads to difficulty in handling (especially at the extrusion from reactor stage); if reaction conditions are not optimized, it leads to incomplete polymerization. | [92,108,109,110] |
3 | Solid state polymerization (SSP) This is the process that is generally carried out after the polymer synthesis is at a suitable temperature between glass transition temperature and melting temperature. In this process, polymer undergoes heating, which promotes the polymerization and improves the cross-linking that leads to the increased molecular weight of the final product. | High-molecular-weight product, no need of any kind of toxic solvent, improved thermal, mechanical, and degradation stability characteristics, energy efficient and controlled process. | This is slow process generally completed in 24 h; risk of thermal degradation of polymeric pallets; it is not applicable to all polymers, and special equipment coupled with inert atmosphere is required; and there is challenge in uniform distribution of heat during the process, etc. | [105,111] |
Properties | PET [24] | PCT [36] | PEN [26] | PCN [39,40] |
---|---|---|---|---|
Monomers | EG, TPA | CHDM, TPA | EG, NDA | CHDM, NDA |
Tg (°C) | 80 | 88 | 122 | 139 |
Tm (°C) | 260 | 297 | 269 | 320 |
Tc (°C) | 140 | - | 189 | - |
Mw | 44,800 | 53,200 | 50,600 | 49,195 |
Mn | 20,600 | 23,600 | 23,600 | 28,821 |
Polymer disparity index | 2.17 | 2.25 | 2.14 | 1.71 |
Lattice structure | Triclinic | Triclinic | Triclinic | triclinic |
Density (g/cm3) | 1.337 | 1.197 | 1.198 | 1.313 |
Intrinsic Viscosity (dL/g) | 0.70 | 0.79 | 0.84 | 0.70 |
Young’s modulus, MPa | 3900 | 3660 | 5200 | - |
Tensile strength, MPa | 45 | 52 | 60 | - |
Break elongation, % | 150 | 250 | 65 | - |
UV absorbance (360 nm, %) | 1 | 0.90 | 17 | - |
Oxygen permeability (cm3-mil/100 in.2-24 h-atm) | 9.0 | 40 | 3.1 | 1.47 |
Hydrolysis resistance, h | 50 | - | 200 | - |
Samples | Tg (°C) a | Tm (°C) b | ∆Hm (J g−1) c | Crystallinity (%) | Reference |
---|---|---|---|---|---|
PCTN_0 | 83.79 | 285.76 | 48.53 | 47.6 | [92] |
PCTN_18 | 84.75 | 261.69 | 31.94 | 31.3 | [92] |
PCTN_26 | 85.12 | 246.81 | 31.43 | 30.81 | [92] |
PCTN_36 | 85.35 | 235.85 | 39.49 | 38.7 | [92] |
PCTN_47 | 88.62 | 238.21 | 35.54 | 34.8 | [92] |
PCTN_56 | 92.62 | 255.17 | 27.16 | 26.6 | [92] |
PCTN_65 | 107.54 | 278.61 | 28.33 | 27.8 | [92] |
PCTN_83 | 114.30 | 310.21 | 39.37 | 38.6 | [92] |
Copolyester Composition | Tg (°C) | Tm (°C) | IV (dL g−1) | Reference |
---|---|---|---|---|
PCT | 88.0 | 295.3 | 0.85 | [36] |
PCTA-48 | 66 | 225 | 0.75 | [125] |
PCTN_30 | 97.91 | 244.88 | 0.79 | [82] |
PCTN_70 | 110.28 | 279.76 | 0.76 | [82] |
PCTS_17 | - | 286.0 | 1.04 | [126] |
PCTS_25 | - | 280.0 | 0.93 | [126] |
PCTSA_17 | - | 268 | 0.91 | [126] |
PCTSA_25 | - | 270 | 0.94 | [126] |
PETg30N-30 | 85 | - | 0.73 | [126] |
PETg30S-30 | 44 | - | 0.65 | [126] |
Property | PET (Malinex) [135,136,137] | PEN (Teonex) [135,136,137] | Glass [136] | PI (Kapton) [135] | Steel [136] |
---|---|---|---|---|---|
Optical property (% transmission for 400–700 nm) | >85 | 0.85 | >92 | yellow | 0.0 |
Tg (°C) | 80 | 121 | - | 410 | - |
Water absorption (%) | 0.4 | 0.4 | 0.0 | 1.8 | 0.0 |
Permeable to oxygen | yes | yes | no | yes | no |
Young’s modulus (GPa) | 5.3 | 6.1 | 80 | 2.5 | 200 |
Tensile strength, (MPa) | 225 | 275 | 27–62 | 231 | 370 |
CLTE −55 to 85 °C (ppm/°C) | 15 | 13 | 4 | 30–60 | 10 |
Maximum processing temperature (°C) | 80 | 180 | 600 | 300 | 1000 |
Deform after device fabrication | yes | yes | no | yes | no |
Roll to roll processing? | likely | likely | unlikely | likely | yes |
Prebake required? | yes | yes | maybe | yes | no |
Electrical conductivity | none | none | none | none | high |
Upper working temperature | 115–170 | 155 | 600 | 250–320 | 1400 |
Thermal conductivity (W/m °C) | 0.1 | 0.1 | 1 | 0 | 16 |
Safe bending radius (cm) | - | 4 | 40 | 4 | 4 |
Refractive index | 1.66 | 1.75 | 1.52 | 1.50 | 2.76 |
Coefficient of hydrolytic expansion (ppm/%RH) | - | 11 | 0 | 11 | 0 |
Thermal conductivity (W/m °C) | 0.1 | 0.1 | 1 | 0.1–0.2 | 16 |
Density g/cm3 | 1.4 | 1.36 | 2.70 | 1.43 | 7.8 |
Property | PI (Kapton) [135] | PCTN (Uniaxially Stretched) [79] | PCTN (Biaxially Stretched) [140] | PCITN (Randomly Oriented) [124] | PCITN (Uniaxially Stretched) [78] |
---|---|---|---|---|---|
Glass transition temperature (°C) | 360 | 127 | 124.3 | 120.4 | 140 |
Melting temperature (°C) | - | 279 | 276.8 | 279 | 275 |
Commercial availability | Yes | No | No | No | No |
Transmission (300–800 nm), % | Yellow | 87 | 94 | 86.7 | 86 |
CTE (−55 to 85 °C) (ppm °C−1) | 30–60 | 6.0 | 13.6 | - | 5.8 |
Young’s modulus (GPa) | 2.5 | 2.1 | 2.8 | 2.2 | 2.6 |
Birefringence (△n) | - | 0.09 | 0.003 | 0.08 | 0.09 |
Water absorption (%) (Randomly Oriented) | 1.8 | 0.37 | 0.16 | 0.21 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, F.; Khan, N.; Howari, H.; Fatima, M.; Farooq, A.; Awais, M.; Ayyoob, M.; Tusief, M.Q.; Virk, R.; Hussain, F. Recent Advances in the Development of 1,4-Cyclohexanedimethanol (CHDM) and Cyclic-Monomer-Based Advanced Amorphous and Semi-Crystalline Polyesters for Smart Film Applications. Materials 2024, 17, 4568. https://doi.org/10.3390/ma17184568
Irshad F, Khan N, Howari H, Fatima M, Farooq A, Awais M, Ayyoob M, Tusief MQ, Virk R, Hussain F. Recent Advances in the Development of 1,4-Cyclohexanedimethanol (CHDM) and Cyclic-Monomer-Based Advanced Amorphous and Semi-Crystalline Polyesters for Smart Film Applications. Materials. 2024; 17(18):4568. https://doi.org/10.3390/ma17184568
Chicago/Turabian StyleIrshad, Farida, Nayab Khan, Haidar Howari, Mahvish Fatima, Assad Farooq, Muhammad Awais, Muhammad Ayyoob, Muhammad Qamar Tusief, Razia Virk, and Fiaz Hussain. 2024. "Recent Advances in the Development of 1,4-Cyclohexanedimethanol (CHDM) and Cyclic-Monomer-Based Advanced Amorphous and Semi-Crystalline Polyesters for Smart Film Applications" Materials 17, no. 18: 4568. https://doi.org/10.3390/ma17184568
APA StyleIrshad, F., Khan, N., Howari, H., Fatima, M., Farooq, A., Awais, M., Ayyoob, M., Tusief, M. Q., Virk, R., & Hussain, F. (2024). Recent Advances in the Development of 1,4-Cyclohexanedimethanol (CHDM) and Cyclic-Monomer-Based Advanced Amorphous and Semi-Crystalline Polyesters for Smart Film Applications. Materials, 17(18), 4568. https://doi.org/10.3390/ma17184568