Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = biochemical composition characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses
by Tomás Rodrigues, Ricardo Alexandre Barroso, Alexandre Campos, Daniela Almeida, Francisco A. Guardiola, Maria V. Turkina and Agostinho Antunes
Biomolecules 2025, 15(8), 1121; https://doi.org/10.3390/biom15081121 - 4 Aug 2025
Viewed by 62
Abstract
The white-spotted jellyfish, Phyllorhiza punctata, is an invasive species with significant ecological and economic relevance spreading across various regions. While its ecological impact is well-documented, its molecular and biochemical characteristics remain poorly understood. In this study, we integrate proteomic data generated by [...] Read more.
The white-spotted jellyfish, Phyllorhiza punctata, is an invasive species with significant ecological and economic relevance spreading across various regions. While its ecological impact is well-documented, its molecular and biochemical characteristics remain poorly understood. In this study, we integrate proteomic data generated by LC-MS/MS with publicly available transcriptomic information to characterize P. punctata, analyzing differential protein expression across three distinct tissues: oral arms, mantle, and gonads. A total of 2764 proteins and 25,045 peptides were identified, including several venom components such as jellyfish toxins (JFTs) and phospholipase A2 (PLA2), which were further investigated and compared to toxins from other species. Enrichment analyses revealed clear tissue-specific functions. Additionally, deep learning and machine learning tools identified 274 promising AMP candidates, including the α-helical, β-sheet, and αβ-motif peptides. This dataset provides new insights into the protein composition of P. punctata and highlights strong AMP candidates for further characterization, underscoring the biotechnological potential of underexplored cnidarian species. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

11 pages, 673 KiB  
Article
Genetic Parameters of Conilon Coffee Cultivated Under an Irrigation System in the Cerrado
by Felipe Augusto Alves Brige, Renato Fernando Amabile, Juaci Vitória Malaquias, Adriano Delly Veiga, Gustavo Barbosa Cobalchini Santos, Arlini Rodrigues Fialho and Marcelo Fagioli
Agronomy 2025, 15(8), 1863; https://doi.org/10.3390/agronomy15081863 - 31 Jul 2025
Viewed by 149
Abstract
Coffee beverage quality is determined by a complex interaction of genetic and environmental factors, including specific biochemical characteristics. In this context, the present study aimed to estimate the genetic parameters of elite irrigated Conilon coffee genotypes in the Cerrado over two consecutive years [...] Read more.
Coffee beverage quality is determined by a complex interaction of genetic and environmental factors, including specific biochemical characteristics. In this context, the present study aimed to estimate the genetic parameters of elite irrigated Conilon coffee genotypes in the Cerrado over two consecutive years based on the biochemical characteristics of the beans, assessed by near-infrared spectroscopy (NIRS). The research was conducted at the Embrapa Cerrados experimental field, using the unit’s elite collection. Levels of chlorogenic acid (5-ACQ), caffeine, sucrose, citric acid and trigonelline were analyzed in the raw beans of 18 genotypes harvested in two consecutive years. Data were subjected to analysis of variance in a time-subdivided plot design, considering genotypes as plots and years as subplots, with means grouped by the Scott-Knott test at 5% significance. Results showed significant genetic variability for caffeine, sucrose and trigonelline, while chlorogenic and citric acid levels did not differ significantly among genotypes. A significant genotype × year interaction was observed for caffeine, sucrose, and 5-ACQ. Estimated heritabilities were high for caffeine (85.5%), trigonelline (80.1%), sucrose (62%) and citric acid (60%). Selection gains were positive for sucrose (5.58%), citric acid (10.01%) and trigonelline (8.27%), and negative for caffeine (−6.87%) and 5-ACQ (−0.47%). It is concluded that among the compounds evaluated, caffeine shows the greatest potential for selection, enabling effective gains in raw bean composition, while sucrose and trigonelline present moderate potential for genetic improvement. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

16 pages, 2234 KiB  
Article
Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators
by Hasan Saygin and Asli Baysal
Int. J. Mol. Sci. 2025, 26(15), 7178; https://doi.org/10.3390/ijms26157178 - 25 Jul 2025
Viewed by 157
Abstract
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation [...] Read more.
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation of these substances, comprising other risks to the ecosystem. However, the impacts of the co-occurrence of micro/nanoplastics and endotoxins in seawater remain unknown. We studied the effects of endotoxin at three concentration levels in seawater and its combined impact with micro/nanoplastics at three doses on biophysicochemical processes in seawater through spectroscopic analysis, leaching indicators (turbidity and humidification index), oxidative potential, antioxidant activity, and biofilm production. The results showed that the UV–VIS spectra of seawater changed with their co-occurrence. The co-presence of MNPs and endotoxins increased the turbidity in seawater, indicating the leaching of micro/nanoplastic in the presence of endotoxins. A higher humification index in seawater showed the formation of dissolved organic substances in micro/nanoplastic and endotoxin seawater compared to the results for untreated seawater. Dithioerythritol assay revealed the differences in oxidative potentials of plain seawater and seawater in the co-presence of micro/nanoplastics and endotoxins. An important biochemical reaction in seawater was tested using biofilm formation. The results showed higher biofilm formation in their co-presence. This study provides new insights into the effects of micro/nanoplastics and their composite pollution with endotoxins on biophysiochemical indicators in seawater. Full article
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Determination of Biochemical and Metabolomic Characteristics of Sheep Blood Serum and Their Application in Clinical Practice
by Peter Očenáš, Matej Baloga, Marcela Valko-Rokytovská and Sonja Ivašková
Life 2025, 15(7), 1141; https://doi.org/10.3390/life15071141 - 20 Jul 2025
Viewed by 406
Abstract
Due to advances in molecular technologies and the expanding knowledge of biomarkers, their use in patient screening, diagnosis, prognosis, and targeted therapy is continuously increasing. Biomarker characteristics play a crucial role across all areas of medical research/practice. Biomarkers often reflect changes in the [...] Read more.
Due to advances in molecular technologies and the expanding knowledge of biomarkers, their use in patient screening, diagnosis, prognosis, and targeted therapy is continuously increasing. Biomarker characteristics play a crucial role across all areas of medical research/practice. Biomarkers often reflect changes in the biochemical composition of biofluids, which can be qualitatively and quantitatively analyzed using methods such as high-performance liquid chromatography (HPLC) at various stages of clinical intervention. This study focuses on establishing physiological reference ranges for selected biochemical and metabolomic indicators by analyzing blood serum samples from domestic sheep. A total of sixty samples are examined using standard biochemical assays and HPLC, resulting in the determination of experimental reference values for twenty-one biochemical and eight metabolomic parameters. Reliable and reproducible preclinical testing is essential before any diagnostic method can be introduced into clinical use. A thorough understanding of the safety and efficacy of such methods in animal models is a prerequisite for initiating human trials. Species selection and the definition of physiological biomarker ranges are therefore critical components in the development of effective preclinical protocols. This work contributes to the foundation needed for further clinical testing by establishing reference values for relevant biomarkers in a commonly used animal model. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

16 pages, 391 KiB  
Systematic Review
High-Protein Dietary Interventions in Heart Failure: A Systematic Review of Clinical and Functional Outcomes
by Lorraine S. Evangelista, Rebecca Meraz, Kelly L. Wierenga, Angelina P. Nguyen, Alona D. Angosta and Jennifer Kawi
Nutrients 2025, 17(14), 2361; https://doi.org/10.3390/nu17142361 - 18 Jul 2025
Viewed by 513
Abstract
Background: Heart failure (HF) is frequently associated with skeletal muscle wasting, reduced functional capacity, and malnutrition. High-protein diets offer a promising nutritional intervention to improve these outcomes in individuals with HF. Objective: This systematic review evaluated randomized controlled trials of high-protein dietary interventions [...] Read more.
Background: Heart failure (HF) is frequently associated with skeletal muscle wasting, reduced functional capacity, and malnutrition. High-protein diets offer a promising nutritional intervention to improve these outcomes in individuals with HF. Objective: This systematic review evaluated randomized controlled trials of high-protein dietary interventions in HF populations, with emphasis on intervention characteristics, quantitative benefits, and risk of bias. Methods: We conducted a comprehensive search in PubMed, MEDLINE, Embase, and Cochrane CENTRAL from inception to June 2025. Eligible studies enrolled adults (≥18 years) with HF, implemented high-protein regimens (≥1.1 g/kg/day or ~25–30% of energy), and reported on functional capacity, body composition, muscle strength, clinical outcomes, or biochemical markers. Two reviewers independently screened, extracted data, and assessed bias (Cochrane RoB 2). Heterogeneity in dosing, duration, and outcomes precluded meta-analysis; we therefore provide a narrative synthesis. Results: Ten trials (nine randomized controlled trials, one pilot) involving 1080 patients (median n = 38; range 21–652) were included. High-protein interventions yielded mean improvements in six-minute walk distance of +32 ± 14 m, lean body mass gain of +1.6 ± 0.9 kg, and 9 ± 4% enhancement in quality-of-life scores; muscle strength effects varied from −2% to +11%. Two studies reported an 18% reduction in HF readmissions (p < 0.05). The risk-of-bias assessment identified two low-risk, three moderate-risk, and one high-risk study. Key limitations include small sample sizes, varied protein dosing (1.1–1.5 g/kg/day), short follow-up (2–6 months), and outcome heterogeneity. Conclusions: High-protein dietary strategies appear to confer modest, clinically relevant gains in functional capacity, nutritional status, and HF readmission risk. Larger, well-powered trials with standardized dosing and longer follow-up are necessary to establish optimal protein targets, long-term efficacy, and safety. Full article
Show Figures

Figure 1

27 pages, 7955 KiB  
Article
Land Surface Condition-Driven Emissivity Variation and Its Impact on Diurnal Land Surface Temperature Retrieval Uncertainty
by Lijuan Wang, Ping Yue, Yang Yang, Sha Sha, Die Hu, Xueyuan Ren, Xiaoping Wang, Hui Han and Xiaoyu Jiang
Remote Sens. 2025, 17(14), 2353; https://doi.org/10.3390/rs17142353 - 9 Jul 2025
Viewed by 223
Abstract
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected [...] Read more.
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected from diverse underlying surfaces from 2017 to 2024 to analyze LSE variation characteristics across different surface types, spectral bands, and temporal scales. Key influencing factors are quantified to establish empirical relationships between LSE dynamics and environmental variables. Furthermore, the impact of LSE models on diurnal LST retrieval accuracy is systematically evaluated through comparative experiments, emphasizing the necessity of integrating time-dependent LSE corrections into radiative transfer equations. The results indicate that LSE in the 8–11 µm band is highly sensitive to surface composition, with distinct dual-valley absorption features observed between 8 and 9.5 µm across different soil types, highlighting spectral variability. The 9.6 µm LSE exhibits strong sensitivity to crop growth dynamics, characterized by pronounced absorption valleys linked to vegetation biochemical properties. Beyond soil composition, LSE is significantly influenced by soil moisture, temperature, and vegetation coverage, emphasizing the need for multi-factor parameterization. LSE demonstrates typical diurnal variations, with an amplitude reaching an order of magnitude of 0.01, driven by thermal inertia and environmental interactions. A diurnal LSE retrieval model, integrating time-averaged LSE and diurnal perturbations, was developed based on underlying surface characteristics. This model reduced the root mean square error (RMSE) of LST retrieved from geostationary satellites from 6.02 °C to 2.97 °C, significantly enhancing retrieval accuracy. These findings deepen the understanding of LSE characteristics and provide a scientific basis for refining LST/LSE separation algorithms in thermal infrared remote sensing and for optimizing LSE parameterization schemes in land surface process models for climate and hydrological simulations. Full article
Show Figures

Graphical abstract

22 pages, 5538 KiB  
Article
Preparation and Biochemical and Microbial Behavior of Poly(Lactide) Composites with Polyethersulfone and Copper-Complexed Cellulose Phosphate
by Marcin H. Kudzin, Zdzisława Mrozińska, Anna Kaczmarek, Jerzy J. Chruściel, Martyna Gloc and Renata Żyłła
Materials 2025, 18(13), 2954; https://doi.org/10.3390/ma18132954 - 22 Jun 2025
Viewed by 462
Abstract
This research investigates the biochemical and microbiological characteristics of a composite comprising poly(lactide) (PLA) combined with polyethersulfone (PESf) and copper-complexed cellulose phosphate (CelP-Cu). The material was produced using the pneumothermic melt-blown method and then modified with polyethersulfone and cellulose phosphate, followed by complexation [...] Read more.
This research investigates the biochemical and microbiological characteristics of a composite comprising poly(lactide) (PLA) combined with polyethersulfone (PESf) and copper-complexed cellulose phosphate (CelP-Cu). The material was produced using the pneumothermic melt-blown method and then modified with polyethersulfone and cellulose phosphate, followed by complexation with copper ions using the dip-coating technique. Comprehensive physicochemical and biological evaluations were conducted to characterize the composite. The physicochemical assessments involved elemental analysis (C, O, Cu) and morphology examination. The biological evaluations encompassed microbiological testing and biochemical–hematological analysis, including activated partial thromboplastin time (aPTT) and prothrombin time (PT). Antimicrobial activity was assessed according to the EN ISO 20645:2006 and EN 14119:2005 standards, by placing material specimens on agar plates inoculated with representative microorganisms. The results revealed that the composites exhibited significant antimicrobial effects against model microorganisms: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus atrophaeus, Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, Chaetomium globosum. This study highlights the potential of PLA/PESf/CelP-Cu composites for novel biomedical applications, demonstrating their biocompatibility and their influence on hemostatic processes and antimicrobial properties. Full article
Show Figures

Figure 1

20 pages, 4009 KiB  
Article
Comparative Analysis of Nutritional, Textural, and Sensory Attributes of Butter Crab and Normal Female Mud Crab (Scylla paramamosain): Insights for Market Positioning and Consumer Preference
by Baojia Chen, Mingfei Feng, Kang Fang, Kun Wu, Hai Yang, Shaojian Chen, Haoji Guo, Shuangli Hao and Xiaobo Wen
Foods 2025, 14(12), 2101; https://doi.org/10.3390/foods14122101 - 15 Jun 2025
Viewed by 481
Abstract
In recent years, the butter crab (BC), a distinctive phenotypic variant of the female mud crab Scylla paramamosain, has garnered increasing market attention due to its perceived superior nutritional and sensory attributes. This study conducted a comprehensive comparative analysis of the nutritional [...] Read more.
In recent years, the butter crab (BC), a distinctive phenotypic variant of the female mud crab Scylla paramamosain, has garnered increasing market attention due to its perceived superior nutritional and sensory attributes. This study conducted a comprehensive comparative analysis of the nutritional composition, textural properties, and sensory characteristics of BC and normal female mud crab (NFMC). Results showed that the muscle and hepatopancreas of BC contained significantly higher lipid contents (0.77 and 22.14 g/100 g wet weight) and elevated levels of DHA + EPA (18.36% and 12.86% of total fatty acids), which contributed to its characteristic orange–yellow coloration, as reflected by colorimetric values (L* × a* × b* = 30.20 × 4.38 × 16.15). Sensory evaluation revealed that BC exhibited enhanced umami taste and aroma in both muscle and hepatopancreas, corresponding to higher concentrations of umami amino acids (0.75 and 1.95 mg/g wet weight) and aldehydes (35.06% and 34.37% of total volatiles), respectively. In addition, 80% of panelists preferred BC based on visual appearance, indicating its strong consumer appeal. Overall, this study advances our understanding of the biochemical and sensory profiles of BC and NFMC and provides important insights for market positioning of BC in the premium seafood sector. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

38 pages, 5968 KiB  
Article
Marine Jellyfish Collagen and Other Bioactive Natural Compounds from the Sea, with Significant Potential for Wound Healing and Repair Materials
by Ana-Maria Pesterau, Antoanela Popescu, Rodica Sirbu, Emin Cadar, Florica Busuricu, Ana-Maria Laura Dragan, Carolina Pascale, Ana-Maria Ionescu, Claudia Florina Bogdan-Andreescu, Marius-Daniel Radu and Cezar Laurentiu Tomescu
Mar. Drugs 2025, 23(6), 252; https://doi.org/10.3390/md23060252 - 13 Jun 2025
Viewed by 1074
Abstract
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study [...] Read more.
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study investigates the development and evaluation of a novel composite hydrogel formulated from collagen peptides extracted from the jellyfish Rhizostoma pulmo and hydroethanolic extracts from the brown alga Cystoseira barbata, both sourced from the Romanian Black Sea coast. Throughout the work, the characteristics due to the biochemical compositions of the extracts from the brown alga C. barbata and from the jellyfish R. pulmo are highlighted as important, emphasizing the content of polysaccharides, proteins, and lipids. Total phenol content was analyzed for three extracts from natural products. The biochemical composition, antioxidant, antimicrobial, and in vitro wound-healing properties of the components and their composite (JPC-ALG) were assessed. The rheological behavior and optical microscopy studies of collagen hydrogels were prepared. The general mechanisms of wound healing with the involvement of polysaccharides and collagen peptides existing in all categories of extracts were highlighted. The study of the effects of JPC-ALG composites and individual extracts on fibroblast and keratocyte cell lines is also presented. Results demonstrated that the composite exhibited synergistic effects, enhancing fibroblast and keratinocyte migration and proliferation, key factors in wound closure. The findings support the potential application of this marine-derived bioactive composite as a promising biomaterial for wound-healing therapies. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Graphical abstract

20 pages, 1295 KiB  
Article
Phenolic Profile, Fatty Acid Composition, and Antioxidant Activity of Italian Riesling Grape Pomace from Two Transylvanian Microclimates
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Comșa, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Horia Silviu Răcoare, Corina Ioana Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Plants 2025, 14(12), 1809; https://doi.org/10.3390/plants14121809 - 12 Jun 2025
Viewed by 1360
Abstract
Italian Riesling is a grapevine (Vitis vinifera) cultivar widely grown in Transylvania vineyards. During the winemaking process, grape pomace (GP) is generated. This study aimed to exploit the potential of the Italian Riesling GP through its composition in polyphenols and fatty [...] Read more.
Italian Riesling is a grapevine (Vitis vinifera) cultivar widely grown in Transylvania vineyards. During the winemaking process, grape pomace (GP) is generated. This study aimed to exploit the potential of the Italian Riesling GP through its composition in polyphenols and fatty acids, as well as its antioxidant activity. Thus, two Italian Riesling GPs from two distinct Transylvanian microclimates (Crăciunelu de Jos and Ciumbrud) were analysed in terms of their phenolic and fatty acid composition and antioxidant activity while considering the influence of their respective microclimates. Every vineyard has unique geographical and meteorological characteristics that significantly influence grape production and consequently the structure of the resultant pomace. For example, Ciumbrud has a warmer, drier microclimate, whereas Crăciunelu de Jos has a colder, more humid environment. Biochemically, GP from Ciumbrud Italian Riesling grapes (RICI) contained greater amounts of gallic acid, total phenolic acids, and procyanidins and presented improved antioxidant activities, as reflected by DPPH˙, ABTS˙+, CUPRAC, and FRAP assays. RICI pomace also possessed a better fatty acid profile with higher oleic and linolenic acid levels, leading to a lower thrombogenicity index (TI) and a better PUFAω-6/PUFA ω-3 ratio. However, GP produced from Crăciunelu de Jos Italian Riesling grapes (RICR) possessed more catechin, epicatechin, epicatechin gallate, total flavanols, and higher COX values. The findings demonstrate that the two GPs have significant and distinct nutritional content, highlighting them as valuable resources for food consumption, providing benefits to consumers’ health. Full article
Show Figures

Graphical abstract

14 pages, 1109 KiB  
Article
Sustainable Production of Medium-Chain Fatty Acids from Fresh Leachates in the District of Abidjan: Study of the Feasibility of the Process and Environmental Benefits
by Akeyt Richmond Hervé Koffi, Alessio Campitelli, Daniel Stanojkovski, Edi Guy-Alain Serges Yapo, Alane Romaric N’guessan, Franck Orlando Yebouet and N’Dédé Théodore Djeni
Fermentation 2025, 11(6), 330; https://doi.org/10.3390/fermentation11060330 - 8 Jun 2025
Viewed by 702
Abstract
Leachate management remains a major environmental challenge, especially in rapidly urbanizing cities of developing countries. Traditionally considered toxic and useless, it is a sustainable organic resource with the potential for high-value biochemical production through bioprocessing. This study investigated the characteristics of fresh leachates [...] Read more.
Leachate management remains a major environmental challenge, especially in rapidly urbanizing cities of developing countries. Traditionally considered toxic and useless, it is a sustainable organic resource with the potential for high-value biochemical production through bioprocessing. This study investigated the characteristics of fresh leachates from three solid waste transfer stations (SWTS) in the Abidjan district, Côte d’Ivoire, and assessed their potential as substrates for medium-chain fatty acid (MCFA) production via microbial chain elongation. The MCFA synthesis was carried out in anaerobic bioreactors operated under methanogenesis inhibition conditions. The leachates from Bingerville, Abobo-Dokui, and Yopougon exhibited acidic and high organic content, particularly volatile fatty acids (VFAs), key precursors for MCFA synthesis. High concentrations of microbial communities associated with chain elongation were observed, including Clostridium (sulphite-reducing), Lactobacillus, Bacillus, and Pseudomonas (greater than 5 log10 CFU/mL). MCFA production ranged from 5 to 10 g/L, mainly C6, C7, and C8, with compositional variation depending on the SWTS. Notably, leachates from higher-income areas demonstrated higher MCFA productivity compared to those from lower-income areas. These findings highlight the potential of fresh SWTS leachates in the Abidjan district for sustainable MCFA production, paving the way for industrial applications. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

22 pages, 2364 KiB  
Article
Assessing Energy Consumption and Treatment Efficiency Correlation: The Case of the Metamorphosis Wastewater Treatment Plant in Attica, Greece
by Nikolaos Tsalas, Spyridon K. Golfinopoulos and Stylianos Samios
Urban Sci. 2025, 9(6), 201; https://doi.org/10.3390/urbansci9060201 - 2 Jun 2025
Viewed by 1763
Abstract
Wastewater treatment plants (WWTPs) are crucial for environmental protection and public health; however, they are among the most energy-intensive facilities in the water sector. This study examines the correlation between energy consumption and treatment efficiency at the Metamorphosis WWTP (MWWTP) in Attica, Greece, [...] Read more.
Wastewater treatment plants (WWTPs) are crucial for environmental protection and public health; however, they are among the most energy-intensive facilities in the water sector. This study examines the correlation between energy consumption and treatment efficiency at the Metamorphosis WWTP (MWWTP) in Attica, Greece, during the years 2022 and 2023. By analyzing influent and effluent characteristics, energy consumption patterns, and the removal efficiencies of key pollutants—Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), and Suspended Solids (SS)—this research provides valuable insights into optimizing wastewater treatment operations. The findings reveal that, despite seasonal variations and fluctuations in influent composition, the facility consistently achieved high pollutant removal rates while maintaining stable energy consumption. The influent BOD5 increased from 992.8 mg L−1 in 2022 to 1122.3 mg L−1 in 2023. COD rose from 1925.4 mg L−1 to 2594.4 mg L−1, SS from 1280.8 mg L−1 to 1421.2 mg L−1, and total phosphorus from 14.2 mg L−1 to 17.0 mg L−1. Effluent concentrations remained consistently low, with BOD5 at 6.1 mg L−1 in 2022 and 4.7 mg L−1 in 2023; COD at 23.8 mg L−1 and 25.2 mg L−1, respectively; total nitrogen at 20.2 mg L−1 and 16.7 mg L−1; total phosphorus at 2.4 mg L−1 and 2.6 mg L−1; and SS at 2.4 mg L−1 and 3.5 mg L−1. These results indicate removal efficiencies exceeding 90%. Energy consumption remained stable, recorded at 13,044.9 kWh (0.593 kWh m−3 influent) in 2022 and 13,126.1 kWh (0.598 kWh m−3 influent) in 2023. These results highlight the importance of integrating energy-efficient strategies and renewable energy solutions to enhance wastewater treatment plant (WWTP) sustainability. This study contributes to ongoing efforts to improve energy optimization in wastewater treatment, supporting global initiatives for carbon footprint reduction and advancing the principles of a circular economy. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

38 pages, 2898 KiB  
Review
Moringa oleifera Lam.: A Nutritional Powerhouse with Multifaceted Pharmacological and Functional Applications
by Natalina Panova, Anelia Gerasimova, Galia Gentscheva, Stoyanka Nikolova, Lubomir Makedonski, Margarita Velikova, Abdessamad Beraich, Abdelmonaem Talhaoui, Nadezhda Petkova, Daniela Batovska and Krastena Nikolova
Life 2025, 15(6), 881; https://doi.org/10.3390/life15060881 - 29 May 2025
Viewed by 2374
Abstract
Moringa oleifera, often referred to as the “miracle tree”, has gained widespread recognition for its exceptional nutritional profile and broad pharmacological potential. This review provides a comprehensive synthesis of the plant’s botanical characteristics, taxonomy, cultivation practices, and biochemical composition. Special emphasis is [...] Read more.
Moringa oleifera, often referred to as the “miracle tree”, has gained widespread recognition for its exceptional nutritional profile and broad pharmacological potential. This review provides a comprehensive synthesis of the plant’s botanical characteristics, taxonomy, cultivation practices, and biochemical composition. Special emphasis is placed on its rich content of bioactive secondary metabolites-such as flavonoids, alkaloids, phenolic acids, saponins, isothiocyanates, and glucosinolates-which underlie its diverse therapeutic effects. The paper compiles and analyzes evidence from over 200 peer-reviewed studies, documenting antioxidant, anti-inflammatory, antimicrobial, antidiabetic, anticancer, hepatoprotective, neuroprotective, and anti-obesity effects, among others. For instance, leaf extracts have demonstrated potent antioxidant and antidiabetic effects in both animal models and clinical trials, while seed-derived isothiocyanates have shown significant antibacterial and anticancer activity. In addition, clinical and in vivo data support M. oleifera’s role in fertility regulation, cardiovascular protection, and neurodegenerative disease mitigation. Beyond its medicinal applications, the review highlights its growing use in functional foods, dietary supplements, and cosmeceutical products, reflecting its commercial and industrial relevance. By consolidating findings across disciplines, this review underscores the multifaceted value of M. oleifera as a nutraceutical and therapeutic resource. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

21 pages, 5582 KiB  
Article
Effect of Harvest Seasons on Biochemical Components and Volatile Compounds in White Teas from Two Cultivars
by Fan Huang, Haijun Wu, Fan Luo, Yingchun Wang, Yulong Ye, Yiyun Gong and Xianlin Ye
Foods 2025, 14(10), 1795; https://doi.org/10.3390/foods14101795 - 18 May 2025
Viewed by 514
Abstract
The flavor profile of white tea emerges from the natural biochemical composition of its tender leaves, a delicate balance profoundly shaped by seasonal growing conditions and tea cultivars. However, the effects of harvest seasons on biochemical and volatile compounds in white teas in [...] Read more.
The flavor profile of white tea emerges from the natural biochemical composition of its tender leaves, a delicate balance profoundly shaped by seasonal growing conditions and tea cultivars. However, the effects of harvest seasons on biochemical and volatile compounds in white teas in southwestern China have not been fully analyzed at present. This study investigated the sensory characteristics, biochemical components, and volatile compounds of ‘Sanhua1951’ spring white tea (SH-S), ‘Sanhua1951’ autumn white tea (SH-A), ‘Fudingdabai’ spring white tea (FD-S), and ‘Fudingdabai’ autumn white tea (FD-A). The results showed that the sensory quality (appearance, taste, and aroma) scores of spring tea were higher than those of autumn tea. Spring teas exhibited significantly higher epigallocatechin, soluble sugar, and amino acid levels than autumn teas (p < 0.05), whereas autumn teas contained greater contents of epicatechin gallate, catechin, caffeine, and polyphenols (p < 0.05), which were responsible for the differences in taste quality observed between samples with different harvest seasons. A total of 90 volatile compounds in four groups were identified through HS-SPME–GC–MS analysis, and spring white teas contained higher contents of and variability in volatile compounds than autumn white teas. According to the OPLS-DA model, 52 and 57 differential volatile compounds (VIP > 1, p < 0.05, and fold change ≥ 2 or ≤0.5) were identified in SH-S vs. SH-A and FD-S vs. FD-A, including (Z)-linalool oxide, (E)-linalool oxide, styrene, phenylethyl alcohol, (Z)-citral, etc. The odor active value (OAV) results indicated that 30 key differential volatile compounds (OAV > 1) were determined in four groups, among which β-ionone, 5,6-epoxy-β-ionone, linalool, and (E)-linalool oxide exhibited particularly high OAVs and contributed more pekoe aroma and floral sensory characteristics. Notably, (E)-linalool oxide, (Z)-jasmone, and δ-cadinene were identified in each cultivar. These findings suggest their potential as seasonal markers, paving the way for the development of white tea ’Sanhua1951’ and ’Fudingdabai’. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

Back to TopTop