Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migwi, F.K.; Ogunah, J.A.; Kiratu, J.M. Occurrence and Spatial Distribution of Microplastics in the Surface Waters of Lake Naivasha, Kenya. Environ. Toxicol. Chem. 2020, 39, 765–774. [Google Scholar] [CrossRef]
- Plohl, O.; Sep, N.; Zemljic, L.F.; Vujanovic, A.; Colnik, M.; Fan, Y.V.; Škerget, M.; Klemeš, J.J.; Cucek, L.; Valh, J.V. Fragmentation of disposed plastic waste materials in different aquatic environments. Chem. Eng. Trans. 2022, 94, 1249–1254. [Google Scholar]
- Trevisan, R.; Ranasinghe, P.; Jayasundara, N.; Di Giulio, R.T. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. Toxics 2022, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Pourebrahimi, S.; Pirooz, M. Microplastic pollution in the marine environment: A review. J. Hazard. Mater. Adv. 2023, 10, 100327. [Google Scholar] [CrossRef]
- Esterhuizen, M.; Lee, S.A.; Kim, Y.; Järvinen, R.; Kim, Y.J. Ecotoxicological consequences of polystyrene naturally leached in pure, fresh, and saltwater: Lethal and nonlethal toxicological responses in Daphnia magna and Artemia salina. Front. Mar. Sci. 2024, 11, 1338872. [Google Scholar] [CrossRef]
- Mishra, S.; Swain, S.; Sahoo, M.; Mishra, S.; Das, A.P. Microbial colonization and degradation of microplastics in aquatic ecosystem: A review. Geomicrobiol. J. 2022, 39, 259–269. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, Y.; Li, Y.; Xiang, Y.; He, D.; Pan, X. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids. Sci. Total Environ. 2020, 714, 136862. [Google Scholar] [CrossRef]
- Mortula, M.M.; Atabay, S.; Fattah, K.P.; Madbuly, A. Leachability of microplastic from different plastic materials. J. Environ. Manag. 2021, 294, 112995. [Google Scholar] [CrossRef]
- Leiser, R.; Wu, G.M.; Neu, T.R.; Wendt-Potthoff, K. Biofouling, metal sorption and aggregation are related to sinking of microplastics in a stratified reservoir. Water Res. 2020, 176, 115748. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.W.; Jung, E.M.; Lee, E.H. Biosorption of sub-micron-sized polystyrene microplastics using bacterial biofilms. J. Hazard. Mater. 2023, 458, 131858. [Google Scholar] [CrossRef]
- Stapleton, M.J.; Ansari, A.J.; Hai, F.I. Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications. Water Res. 2023, 233, 119790. [Google Scholar] [CrossRef]
- Good, C.R.; White, A.; Brandao, J.; Jackson, S. Endotoxin, a novel biomarker for the rapid risk assessment of faecal contamination of coastal and transitional waters. J. Water Health 2024, 22, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.A.; Good, C.R.; Saletes, M.; Brandão, J.; Jackson, S.K. Endotoxin as a marker for water quality. Int. J. Environ. Res. Public. Health 2022, 19, 16528. [Google Scholar] [CrossRef]
- Rasuli, L.; Dehghani, M.H.; Aghaei, M.; Mahvi, A.H.; Mubarak, N.M.; Karri, R.R. Occurrence and fate of bacterial endotoxins in the environment (air, water, wastewater) and remediation technologies: An overview. Chemosphere 2022, 303 Pt 2, 135089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tian, F.; Zhang, M.; Zhang, Z.; Bai, M.; Guo, G.; Zheng, W.; Wang, Q.; Shi, Y.; Wang, L. Endotoxin contamination, a potentially important inflammation factor in water and wastewater: A review. Sci. Total Environ. 2019, 681, 365–378. [Google Scholar] [CrossRef]
- Tu, C.; Chen, T.; Zhou, Q.; Liu, Y.; Wei, J.; Waniek, J.J.; Luo, Y. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Sci. Total Environ. 2020, 734, 139237. [Google Scholar] [CrossRef] [PubMed]
- Romankevich, E.A.; Vetrov, A.A.; Ulyantsev, A.S. Organic Matter in the Ocean: Indicators of Biogeochemical Processes. Oceanology 2023, 63 (Suppl. S1), S131–S142. [Google Scholar] [CrossRef]
- Zompra, A.A.; Chasapi, S.A.; Twigg, M.S.; Salek, K.; Anestopoulos, I.; Galanis, A.; Pappa, A.; Gutierrez, T.; Banat, I.M.; Marchant, R.; et al. Multi-method biophysical analysis in discovery, identification, and in-depth characterization of surface-active compounds. Front. Mar. Sci. 2022, 9, 1023287. [Google Scholar] [CrossRef]
- Peez, N.; Janiska, M.C.; Imhof, W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). Anal. Bioanal. Chem. 2019, 411, 823–833. [Google Scholar] [CrossRef]
- Bridson, J.H.; Masterton, H.; Theobald, B.; Risani, R.; Doake, F.; Wallbank, J.A.; Maday, S.D.M.; Lear, G.; Abbel, R.; Smith, D.A.; et al. Leaching and transformation of chemical additives from weathered plastic deployed in the marine environment. Mar. Pollut. Bull. 2024, 198, 115810. [Google Scholar] [CrossRef]
- Sikder, M.; Lead, J.R.; Chandler, G.T.; Baalousha, M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis. Sci. Total Environ. 2018, 618, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Wang, J. Interaction of micro (nano) plastics with extracellular and intracellular biomolecules in the freshwater environment. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4241–4265. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Wu, Y.; Zhu, S.; Su, J. Interactions of micro- and nanoplastics with biomolecules: From public health to protein corona effect and beyond. J. Phys. Chem. B. 2025, 129, 5355–5374. [Google Scholar] [CrossRef] [PubMed]
- Macan, G.P.F.; Munhoz, D.R.; Willems, L.A.J.; Monkley, C.; Lloyd, C.E.M.; Hageman, J.; Geissen, V.; Landa, B.B.; Harkes, P. Macro- and microplastics leachates: Characterization and impact on seed germination. J. Hazard. Mater. 2024, 480, 136013. [Google Scholar] [CrossRef]
- Li, Q.; Guo, X.; Chen, L.; Li, Y.; Yuan, D.; Dai, B.; Wang, S. Investigating the spectral characteristic and humification degree of dissolved organic matter in saline-alkali soil using spectroscopic techniques. Front. Earth Sci. 2017, 11, 76–84. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, N.; Qu, R.; Ge, F. High salinity promotes the photoaging of polystyrene microplastics with humic acid in seawater. Sci. Total Environ. 2023, 901, 165741. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Biswas, S.; Datta, A.G. Mode of action of endotoxin: Role of free radicals and antioxidants. Curr. Med. Chem. 2004, 11, 359–368. [Google Scholar] [CrossRef]
- Farasat, M.; Nabavi, S.M.B.; Namjoyan, F.; Khavari-Nejad, R.A.; Shushizadeh, M.R.; Sabet, I.; Kajkolahi, A. Effect of physicochemical parameters of seawater on antioxidant capacity in green, brown, and red macroalgae from the Persian Gulf. Iran. J. Fish. Sci. 2023, 22, 423–449. [Google Scholar]
- Velez, C.; Figueira, E.; Soares, A.M.; Freitas, R. Effects of seawater temperature increase on economically relevant native and introduced clam species. Mar. Environ. Res. 2017, 123, 62–70. [Google Scholar] [CrossRef]
- Jiao, Y.; Cody, G.D.; Harding, A.K.; Wilmes, P.; Schrenk, M.; Wheeler, K.E.; Banfield, J.F.; Thelen, M.P. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl. Environ. Microbiol. 2010, 76, 2916–2922. [Google Scholar] [CrossRef]
- Pan, M.; Zhu, L.; Chen, L.; Qiu, Y.; Wang, J. Detection techniques for extracellular polymeric substances in biofilms: A review. BioResources 2016, 11, 8092. [Google Scholar] [CrossRef]
- Santschi, P.H.; Xu, C.; Schwehr, K.A.; Lin, P.; Sun, L.; Chin, W.C.; Kamalanathan, M.; Bacosa, H.P.; Quigg, A. Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their ‘stickiness’ and aggregation propensity? Mar. Chem. 2020, 218, 103734. [Google Scholar] [CrossRef]
- Saygin, H.; Baysal, A. Biofilm formation of clinically important bacteria on bio-based and conventional micro/submicron-sized plastics. Bull. Environ. Contam. Toxicol. 2020, 105, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Saygin, H.; Tilkili, B.; Kayisoglu, P.; Baysal, A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. Environ. Res. 2024, 248, 118349. [Google Scholar] [CrossRef] [PubMed]
- Saygin, H.; Tilkili, B.; Karniyarik, S.; Baysal, A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. Sci. Total Environ. 2024, 922, 171103. [Google Scholar] [CrossRef]
- Baysal, A.; Saygin, H.; Soyocak, A. A Comparative study on the interaction between protein and PET micro/nanoplastics: Structural and surface characteristics of particles and impacts on lung carcinoma cells (A549) and Staphylococcus aureus. Environ. Toxicol. 2024, 39, 4899–4926. [Google Scholar] [CrossRef]
- Good, C.; White, A.; Brandão, J.; Seymour, C.; Jackson, S.K. Water quality assessment: Endotoxin brings real-time measurements and non-faecally transmitted bacteria to the table. Water 2025, 17, 1674. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Wang, Y.; Zhang, G.; Jiang, X.; Li, X. Passage and community changes of filterable bacteria during microfiltration of a surface water supply. Environ. Int. 2019, 131, 104998. [Google Scholar] [CrossRef]
- Anderson, W.B.; Slawson, R.M.; Mayfield, C.I. A review of drinking-water-associated endotoxin, including potential routes of human exposure. Can. J. Microbiol. 2002, 48, 567–587. [Google Scholar] [CrossRef]
- Nunes, B.Z.; Huang, Y.; Ribeiro, V.V.; Wu, S.; Holbech, H.; Moreira, L.B.; Xu, E.G.; Castro, I.B. Microplastic contamination in seawater across global marine protected areas boundaries. Environ. Pollut. 2023, 316 Pt 1, 120692. [Google Scholar] [CrossRef]
- Qu, J.; Wu, P.; Pan, G.; Li, J.; Jin, H. Microplastics in seawater, sediment, and organisms from Hangzhou Bay. Mar. Pollut. Bull. 2022, 181, 113940. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus aureus biofilm quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
Exposure | MP1 | MP2 | MP3 |
---|---|---|---|
Seawater-MP + EndoxC1 | 57.1 ± 2.6 | 2.3 ± 4.1 | 3.2 ± 1.8 |
Seawater-MP + EndoxC2 | 24.5 ± 3.3 | 9.1 ± 2.5 | 5.2 ± 4.1 |
Seawater-MP + EndoxC3 | 29.3 ± 4.9 | 7.8 ± 2.7 | 8.6 ± 2.3 |
Exposure | MP1 | MP2 | MP3 |
---|---|---|---|
Control-Seawater | 1.00 | 1.00 | 1.00 |
Control-Seawater + MP | 0.99 | 0.98 | 1.00 |
Control-Seawater + EndoxC1 | 1.02 * | 1.02 * | 1.02 |
Control-Seawater + EndoxC2 | 0.95 * | 0.95 * | 0.95 * |
Control-Seawater + EndoxC3 | 0.95 * | 0.95 * | 0.95 * |
Seawater-MP + EndoxC1 | 0.91 *,**,*** | 1.20 *,**,*** | 0.99 *** |
Seawater-MP + EndoxC2 | 0.87 *,**,*** | 0.91 *,**,*** | 1.09 *,**,*** |
Seawater-MP + EndoxC3 | 0.88 *,**,*** | 0.89 *,**,*** | 1.01 *** |
Parameter | Seawater | Control Seawater (Filtered) |
---|---|---|
pH | 7.48 ± 0.35 | 7.51 ± 0.27 |
Salinity, % | 24.62 ± 1.63 | 25.43 ± 1.07 |
Dissolved O2, mg/L | 8.93 ± 0.51 | 8.80 ± 0.43 |
Total suspended solids, mg/L | <LOD (<10) | <LOD (<10) |
Total phosphorus, μg/L | <LOD (<50) | <LOD (<50) |
Nitrite, μg/L | <LOD (<2) | <LOD (<2) |
Ammonium, μg/L | <LOD (<10) | <LOD (<10) |
Al, mg/L | 9.3 ± 1.1 | 9.1 ± 0.78 |
Ca, mg/L | 496 ± 29 | 512 ± 36 |
Cd, mg/L | <LOD (<0.003) | <LOD (<0.001) |
Cr, mg/L | <LOD (<0.01) | <LOD (<0.01) |
Cu, mg/L | 4.3 ± 0.9 | 4.4 ± 0.3 |
Na, mg/L | 14,905 ± 1208 | 13,897 ± 1907 |
Ni, mg/L | <LOD (<0.002) | <LOD (<0.002) |
Mg, mg/L | 1167 ± 225 | 1203 ± 341 |
Pb, mg/L | <LOD (<0.001) | <LOD (<0.001) |
Zn, mg/L | 17.8 ± 4.9 | 16.9 ± 3.8 |
Total microorganism count | 238 ± 81 | ND |
Turbidity, a.u. | 0.040 ± 0.002 | 0.042 ± 0.001 |
Protein, mg/mL | 0.09 ± 0.12 | 0.28 ± 0.08 |
Carbohydrate, mg/mL | 0.21 ± 0.09 | 0.34 ± 0.03 |
Antioxidant, µM Trolox | 0.091 ± 0.006 | 0.086 ± 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saygin, H.; Baysal, A. Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators. Int. J. Mol. Sci. 2025, 26, 7178. https://doi.org/10.3390/ijms26157178
Saygin H, Baysal A. Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators. International Journal of Molecular Sciences. 2025; 26(15):7178. https://doi.org/10.3390/ijms26157178
Chicago/Turabian StyleSaygin, Hasan, and Asli Baysal. 2025. "Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators" International Journal of Molecular Sciences 26, no. 15: 7178. https://doi.org/10.3390/ijms26157178
APA StyleSaygin, H., & Baysal, A. (2025). Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators. International Journal of Molecular Sciences, 26(15), 7178. https://doi.org/10.3390/ijms26157178