Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,416)

Search Parameters:
Keywords = biochemical applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 804 KiB  
Article
Application of Animal- and Plant-Derived Coagulant in Artisanal Italian Caciotta Cheesemaking: Comparison of Sensory, Biochemical, and Rheological Parameters
by Giovanna Lomolino, Stefania Zannoni, Mara Vegro and Alberto De Iseppi
Dairy 2025, 6(4), 43; https://doi.org/10.3390/dairy6040043 (registering DOI) - 1 Aug 2025
Abstract
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract [...] Read more.
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract (PC) with traditional bovine rennet rich in chymosin (AC) during manufacture and 60-day ripening of Caciotta cheese. Classical compositional assays (ripening index, texture profile, color, solubility) were integrated with scanning electron microscopy, three-dimensional surface reconstruction, and descriptive sensory analysis. AC cheeses displayed slower but sustained proteolysis, yielding a higher and more linear ripening index, softer body, greater solubility, and brighter, more yellow appearance. Imaging revealed a continuous protein matrix with uniformly distributed, larger pores, consistent with a dairy-like sensory profile dominated by milky and umami notes. Conversely, PC cheeses underwent rapid early proteolysis that plateaued, producing firmer, chewier curds with lower solubility and darker color. Micrographs showed a fragmented matrix with smaller, heterogeneous pores; sensory evaluation highlighted vegetal, bitter, and astringent attributes. The data demonstrate that thistle coagulant can successfully replace animal rennet but generates cheeses with distinct structural and sensory fingerprints. The optimization of process parameters is therefore required when targeting specific product styles. Full article
(This article belongs to the Section Milk Processing)
23 pages, 1268 KiB  
Article
Combining Stable Isotope Labeling and Candidate Substrate–Product Pair Networks Reveals Lignan, Oligolignol, and Chicoric Acid Biosynthesis in Flax Seedlings (Linum usitatissimum L.)
by Benjamin Thiombiano, Ahlam Mentag, Manon Paniez, Romain Roulard, Paulo Marcelo, François Mesnard and Rebecca Dauwe
Plants 2025, 14(15), 2371; https://doi.org/10.3390/plants14152371 (registering DOI) - 1 Aug 2025
Abstract
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in [...] Read more.
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in plants remains challenging due to the dynamic nature and interconnectedness of biosynthetic pathways. In this study, we present a synergistic approach combining stable isotopic labeling (SIL), Candidate Substrate–Product Pair (CSPP) networks, and a time-course study with high temporal resolution to reveal the biosynthetic fluxes shaping phenylpropanoid metabolism in young flax seedlings. By feeding the seedlings with 13C3-p-coumaric acid and isolating isotopically labeled metabolization products prior to the construction of CSPP networks, the biochemical validity of the connections in the network was supported by SIL, independent of spectral similarity or abundance correlation. This method, in combination with multistage mass spectrometry (MSn), allowed confident structural proposals of lignans, neolignans, and hydroxycinnamic acid conjugates, including the presence of newly identified chicoric acid and related tartaric acid esters in flax. High-resolution time-course analyses revealed successive waves of metabolite formation, providing insights into distinct biosynthetic fluxes toward lignans and early lignification intermediates. No evidence was found here for the involvement of chlorogenic or caftaric acid intermediates in chicoric acid biosynthesis in flax, as has been described in other species. Instead, our findings suggest that in flax seedlings, chicoric acid is synthesized through successive hydroxylation steps of p-coumaroyl tartaric acid esters. This work demonstrates the power of combining SIL and CSPP strategies to uncover novel metabolic routes and highlights the nutritional potential of flax sprouts rich in chicoric acid. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
Transforming Tomato Industry By-Products into Antifungal Peptides Through Enzymatic Hydrolysis
by Davide Emide, Lorenzo Periccioli, Matias Pasquali, Barbara Scaglia, Stefano De Benedetti, Alessio Scarafoni and Chiara Magni
Int. J. Mol. Sci. 2025, 26(15), 7438; https://doi.org/10.3390/ijms26157438 (registering DOI) - 1 Aug 2025
Abstract
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, [...] Read more.
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, (ii) optimizing the hydrolysis with different proteases, and (iii) characterizing the resulting peptides. This approach was instrumental for obtaining and selecting the most promising peptide mixture to test for antifungal activity. To this purpose, proteins from an alkaline extraction were treated with bromelain, papain, and pancreatin, and the resulting hydrolysates were assessed for their protein/peptide profiles via SDS-PAGE, SEC-HPLC, and RP-HPLC. Bromelain hydrolysate was selected for antifungal tests due to its greater quantity of peptides, in a broader spectrum of molecular weights and polarity/hydrophobicity profiles, and higher DPPH radical scavenging activity, although all hydrolysates exhibited antioxidant properties. In vitro assays demonstrated that the bromelain-digested proteins inhibited the growth of Fusarium graminearum and F. oxysporum f.sp. lycopersici in a dose-dependent manner, with a greater effect at a concentration of 0.1 mg/mL. The findings highlight that the enzymatic hydrolysis of tomato seed protein represents a promising strategy for converting food by-products into bioactive agents with agronomic applications, supporting sustainable biotechnology and circular economy strategies. Full article
Show Figures

Figure 1

16 pages, 591 KiB  
Review
Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature
by Jinling Wang, Yaling Wang, Hetian Jin, Yingzi Yu, Kai Mu and Yongxiang Kang
Curr. Issues Mol. Biol. 2025, 47(8), 601; https://doi.org/10.3390/cimb47080601 (registering DOI) - 1 Aug 2025
Abstract
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature [...] Read more.
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature stress, plants mitigate damage through physiological and biochemical adjustments, heat signal transduction, the regulation of transcription factors, and the synthesis of heat shock proteins. However, different plants exhibit varying regulatory abilities and temperature tolerances. Investigating the heat-resistance and regulatory mechanisms of plants can facilitate the development of heat-resistant varieties for plant genetic breeding and landscaping applications. This paper presents a systematic review of plant physiological and biochemical responses, regulatory substances, signal transduction pathways, molecular mechanisms—including the regulation of heat shock transcription factors and heat shock proteins—and the role of plant hormones under high-temperature stress. The study constructed a molecular regulatory network encompassing Ca2+ signaling, plant hormone pathways, and heat shock transcription factors, and it systematically elucidated the mechanisms underlying the enhancement of plant thermotolerance, thereby providing a scientific foundation for the development of heat-resistant plant varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 3308 KiB  
Article
Exogenous Melatonin Application Improves Shade Tolerance and Growth Performance of Soybean Under Maize–Soybean Intercropping Systems
by Dan Jia, Ziqing Meng, Shiqiang Hu, Jamal Nasar, Zeqiang Shao, Xiuzhi Zhang, Bakht Amin, Muhammad Arif and Harun Gitari
Plants 2025, 14(15), 2359; https://doi.org/10.3390/plants14152359 - 1 Aug 2025
Abstract
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study [...] Read more.
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study investigated the efficacy of applying foliar melatonin (MT) to enhance shade tolerance and yield performance of soybean under intercropping. Four melatonin concentrations (0, 50, 100, and 150 µM) were applied to soybean grown under mono- and intercropping systems. The results showed that intercropping significantly reduced growth, photosynthetic activity, and yield-related traits. However, the MT application, particularly at 100 µM (MT100), effectively mitigated these declines. MT100 improved plant height (by up to 32%), leaf area (8%), internode length (up to 41%), grain yield (32%), and biomass dry matter (30%) compared to untreated intercropped plants. It also enhanced SPAD chlorophyll values, photosynthetic rate, stomatal conductance, chlorophyll fluorescence parameters such as Photosystem II efficiency (ɸPSII), maximum PSII quantum yield (Fv/Fm), photochemical quenching (qp), electron transport rate (ETR), Rubisco activity, and soluble protein content. These findings suggest that foliar application of melatonin, especially at 100 µM, can improve shade resilience in soybean by enhancing physiological and biochemical performance, offering a practical strategy for optimizing productivity in intercropping systems. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

17 pages, 1380 KiB  
Article
The Effect of Foliar Micronutrient Fertilization on Yield and Nutritional Quality of Maize Grain
by Wacław Jarecki, Ioana Maria Borza, Cristina Adriana Rosan, Cristian Gabriel Domuța and Simona Ioana Vicas
Agronomy 2025, 15(8), 1859; https://doi.org/10.3390/agronomy15081859 - 31 Jul 2025
Abstract
Foliar fertilization is an effective practice that improves both the yield and quality of maize, a crop with high and specific micronutrient demands. This study hypothesized that foliar application of Fe, Cu, Mn, Mo, Zn and B would improve grain size and quality [...] Read more.
Foliar fertilization is an effective practice that improves both the yield and quality of maize, a crop with high and specific micronutrient demands. This study hypothesized that foliar application of Fe, Cu, Mn, Mo, Zn and B would improve grain size and quality in GS210 maize compared to the control. The single-factor field experiment was conducted in 2023–2024 on Haplic Cambisol (Eutric) soil, under a variety of meteorological conditions. The application of Zn and B fertilizers significantly increased the soil plant analysis development (SPAD) index. Yield components (number of grains per ear, thousand-grain weight) and grain yield increased significantly following Zn foliar application compared to the control. Zn application increased grain yield by 0.59 t ha−1 and 0.49 t ha−1 in 2023 and 2024, respectively. Smaller but beneficial effects were observed with Cu and B applications. In contrast, the effects of fertilization with other micronutrients (Fe, Mn, Mo) were less pronounced than anticipated. Biochemical analyses revealed that foliar fertilization with Fe, Cu and Mo increased total phenolic content and antioxidant capacity, while Fe and Mo enhanced carotenoid accumulation, and Cu and B significantly influenced grain color parameters. The study highlights the potential of foliar fertilization to improve maize performance and grain quality, despite possible antagonisms between micronutrients. Full article
Show Figures

Figure 1

26 pages, 5192 KiB  
Review
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review
by Boyang Li, Yizhang Zhang, Jinzhe Du, Chen Liu, Guorui Zhou, Mingrui Li and Zhenguang Yan
Toxics 2025, 13(8), 653; https://doi.org/10.3390/toxics13080653 (registering DOI) - 31 Jul 2025
Abstract
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling [...] Read more.
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling the comprehensive and accurate analysis of biomolecular-level changes. The integration of multi-omics technologies can holistically reveal the molecular toxicity mechanisms of pollutants, representing a primary emphasis in current toxicological research. This paper introduces the fundamental concepts of genomics, transcriptomics, proteomics, and metabolomics, while reviewing recent advancements in integrated omics approaches within aquatic toxicology. Furthermore, it provides a reference framework for the implementation of multi-omics strategies in ecotoxicological investigations. While multi-omics integration enables the unprecedented reconstruction of pollutant-induced molecular cascades and earlier biomarker discovery (notably through microbiome–metabolome linkages), its full potential requires experimental designs, machine learning-enhanced data integration, and validation against traditional toxicological endpoints within environmentally relevant models. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 - 31 Jul 2025
Viewed by 32
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 215
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

24 pages, 5342 KiB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 202
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Figure 1

18 pages, 853 KiB  
Article
Elucidating Genotypic Variation in Quinoa via Multidimensional Agronomic, Physiological, and Biochemical Assessments
by Samreen Nazeer and Muhammad Zubair Akram
Plants 2025, 14(15), 2332; https://doi.org/10.3390/plants14152332 - 28 Jul 2025
Viewed by 253
Abstract
Quinoa (Chenopodium quinoa Willd.) has emerged as a climate-resilient, nutrient-dense crop with increasing global popularity because of its adaptability under current environmental variations. To address the limited understanding of quinoa’s genotypic performance under local agro-environmental conditions, this study hypothesized that elite genotypes [...] Read more.
Quinoa (Chenopodium quinoa Willd.) has emerged as a climate-resilient, nutrient-dense crop with increasing global popularity because of its adaptability under current environmental variations. To address the limited understanding of quinoa’s genotypic performance under local agro-environmental conditions, this study hypothesized that elite genotypes would exhibit significant variation in agronomic, physiological, and biochemical traits. This study aimed to elucidate genotypic variability among 23 elite quinoa lines under field conditions in Faisalabad, Pakistan, using a multidimensional framework that integrated phenological, physiological, biochemical, root developmental, and yield-related attributes. The results revealed that significant variation was observed across all measured parameters, highlighting the diverse adaptive strategies and functional capacities among the tested genotypes. More specifically, genotypes Q4, Q11, Q15, and Q126 demonstrated superior agronomic potential and canopy-level physiological efficiencies, including high biomass accumulation, low infrared canopy temperatures and sustained NDVI values. Moreover, Q9 and Q52 showed enhanced accumulation of antioxidant compounds such as phenolics and anthocyanins, suggesting potential for functional food applications and breeding program for improving these traits in high-yielding varieties. Furthermore, root trait analysis revealed Q15, Q24, and Q82 with well-developed root systems, suggesting efficient resource acquisition and sufficient support for above-ground plant parts. Moreover, principal component analysis further clarified genotype clustering based on trait synergistic effects. These findings support the use of multidimensional phenotyping to identify ideotypes with high yield potential, physiological efficiency and nutritional value. The study provides a foundational basis for quinoa improvement programs targeting climate adaptability and quality enhancement. Full article
Show Figures

Figure 1

14 pages, 556 KiB  
Review
Animal Venom in Modern Medicine: A Review of Therapeutic Applications
by Euikyung Kim, Du Hyeon Hwang, Ramachandran Loganathan Mohan Prakash, Ravi Deva Asirvatham, Hyunkyoung Lee, Yunwi Heo, Al Munawir, Ramin Seyedian and Changkeun Kang
Toxins 2025, 17(8), 371; https://doi.org/10.3390/toxins17080371 - 28 Jul 2025
Viewed by 266
Abstract
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of [...] Read more.
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of medical conditions. This review provides a comprehensive analysis of the pharmacological potential of venom-derived compounds, highlighting their mechanisms of action, such as ion channel modulation, receptor targeting, and enzyme inhibition. Successful venom-derived drugs like captopril and ziconotide exemplify the translational potential of this biological arsenal. We discuss therapeutic applications in cardiovascular diseases, chronic pain, cancer, thrombosis, and infectious diseases, as well as emerging peptide candidates in clinical development. Technological advancements in omics, structural biology, and synthetic peptide engineering have significantly enhanced the discovery and optimization of venom-based therapeutics. Despite challenges related to stability, immunogenicity, and ecological sustainability, the integration of AI-driven drug discovery and personalized medicine is expected to accelerate progress in this field. By synthesizing current findings and future directions, this review underscores the transformative potential of animal venoms in modern pharmacotherapy and drug development. We also discuss current therapeutic limitations and how venom-derived compounds may address unmet needs in specific disorders. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 185
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

35 pages, 6389 KiB  
Article
Towards Sustainable Construction: Experimental and Machine Learning-Based Analysis of Wastewater-Integrated Concrete Pavers
by Nosheen Blouch, Syed Noman Hussain Kazmi, Mohamed Metwaly, Nijah Akram, Jianchun Mi and Muhammad Farhan Hanif
Sustainability 2025, 17(15), 6811; https://doi.org/10.3390/su17156811 - 27 Jul 2025
Viewed by 347
Abstract
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has [...] Read more.
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has not been thoroughly investigated—especially in developing nations where treatment expenses frequently impede actual implementation, even for non-structural uses. While prior research has focused on treated wastewater, the potential of untreated or partially treated wastewater from diverse industrial sources remains underexplored. This study investigates the feasibility of incorporating wastewater from textile, sugar mill, service station, sewage, and fertilizer industries into concrete paver block production. The novelty lies in a dual approach, combining experimental analysis with XGBoost-based machine learning (ML) models to predict the impact of key physicochemical parameters—such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Hardness—on mechanical properties like compressive strength (CS), water absorption (WA), ultrasonic pulse velocity (UPV), and dynamic modulus of elasticity (DME). The ML models showed high predictive accuracy for CS (R2 = 0.92) and UPV (R2 = 0.97 direct, 0.99 indirect), aligning closely with experimental data. Notably, concrete pavers produced with textile (CP-TXW) and sugar mill wastewater (CP-SUW) attained 28-day compressive strengths of 47.95 MPa and exceeding 48 MPa, respectively, conforming to ASTM C936 standards and demonstrating the potential to substitute fresh water for non-structural applications. These findings demonstrate the viability of using untreated wastewater in concrete production with minimal treatment, offering a cost-effective, sustainable solution that reduces fresh water dependency while supporting environmentally responsible construction practices aligned with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Additionally, the model serves as a practical screening tool for identifying and prioritizing viable wastewater sources in concrete production, complementing mandatory laboratory testing in industrial applications. Full article
Show Figures

Figure 1

Back to TopTop