Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = biobased fertilizers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 460
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

21 pages, 1206 KiB  
Article
Evaluation of Olive Mill Waste Compost as a Sustainable Alternative to Conventional Fertilizers in Wheat Cultivation
by Ana García-Rández, Silvia Sánchez Méndez, Luciano Orden, Francisco Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, José A. Sáez-Tovar, Encarnación Martínez-Sabater, María Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Agriculture 2025, 15(14), 1543; https://doi.org/10.3390/agriculture15141543 - 17 Jul 2025
Viewed by 357
Abstract
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing [...] Read more.
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing three fertilization strategies: inorganic (MAP + Urea), sewage sludge (SS), and organic compost pellets (OCP), each providing 150 kg N ha−1. The parameters analyzed included wheat yield, grain quality, soil properties, and greenhouse gas (GHG) emissions. Inorganic fertilization yielded the highest productivity and nutrient uptake. However, the OCP treatment reduced grain yield by only 15%, while improving soil microbial activity and enzymatic responses. The SS and OCP treatments showed increased CO2 and N2O emissions compared to the control and inorganic plots. However, the OCP treatment also acted as a CH4 sink. Nutrient use efficiency was greatest under mineral fertilization, though the OCP treatment outperformed the SS treatment. These results highlight the potential of OCP as a circular bio-based fertilizer that can enhance soil function and partially replace mineral inputs. Optimizing application timing is critical to aligning nutrient release with crop demand. Further long-term trials are necessary to evaluate their impact on the soil and improve environmental outcomes. Full article
Show Figures

Figure 1

25 pages, 1824 KiB  
Article
Measuring the Circularity of Bio-Based Fertilizers: Applying the BIORADAR Product Circularity Monitoring Framework
by Hasler Iglesias, Ana Paredes Ortiz, Ángeles Pereira, David Fernández-Gutiérrez and Andrés J. Lara-Guillén
Appl. Sci. 2025, 15(14), 7701; https://doi.org/10.3390/app15147701 - 9 Jul 2025
Viewed by 297
Abstract
The transition to the circular economy (CE) is one of the EU’s current strategic policies to improve its competitiveness and sustainability. While the EU has developed a framework for monitoring overall progress toward the CE, there are gaps in monitoring specific priority sectors, [...] Read more.
The transition to the circular economy (CE) is one of the EU’s current strategic policies to improve its competitiveness and sustainability. While the EU has developed a framework for monitoring overall progress toward the CE, there are gaps in monitoring specific priority sectors, such as the bioeconomy. In order to support industry and policymakers in this sector, this paper presents the application of the BIORADAR’s product circularity monitoring framework to five bio-based fertilizers. The framework is composed of two publicly available indicators: the circular index and the circularity indicator of nutrient; and two new indicator proposals: the biodegradable content and the nutrient slow-release index. Making use of life cycle inventories and supplementary data from the scientific literature, these four indicators were calculated for algae biomass, compost, feather meal, spent mushroom substrate, and wood vinegar. The framework proved to be useful for measuring the circularity at the product level for bio-based fertilizers, especially shedding light on the virgin non-renewable materials consumption, waste generation, biodegradability, nutrient recovery process efficiency, and nutrient release speed. It constitutes the first approach to measuring circularity tailored to bio-based fertilizer. By incorporating it into eco-design, innovation, and managerial decision-making processes, key stakeholders can rely on guiding metrics to support their transition toward higher circularity levels. Full article
(This article belongs to the Special Issue Waste Valorization, Green Technologies and Circular Economy)
Show Figures

Figure 1

21 pages, 5677 KiB  
Article
Multiscale Flotation Testing for the Recovery of REE-Bearing Fluorapatite from a Finnish Carbonatite Complex Deposit Using Conventional Collectors and Lignin Nanoparticles
by Panagiotis M. Angelopoulos, Xiao Sheng Yang, Georgios Anastassakis, Nikolaos Koukoulis, Paul Christakopoulos and Maria Taxiarchou
Minerals 2025, 15(6), 614; https://doi.org/10.3390/min15060614 - 7 Jun 2025
Viewed by 518
Abstract
Apatite and rare earth elements (REEs) are vital to the European Union’s economic growth and resource security, given their essential roles in fertilizers, green technologies, and high-tech applications. To meet rising demand and reduce reliance on imports, the exploitation of domestic deposits has [...] Read more.
Apatite and rare earth elements (REEs) are vital to the European Union’s economic growth and resource security, given their essential roles in fertilizers, green technologies, and high-tech applications. To meet rising demand and reduce reliance on imports, the exploitation of domestic deposits has become increasingly important. This study investigates the beneficiation potential of ore from a carbonatite complex (Finland), focusing on the recovery of fluorapatite concentrate through froth flotation. This research addresses two key objectives: evaluating the potential for REE enrichment alongside fluorapatite concentration using conventional anionic and amine-based reagents, and assessing separation efficiency when partially substituting the most effective conventional collectors with bio-based organosolv lignin nanoparticles. Adequate recovery rates for apatite and REEs were achieved using common anionic collectors, such as hydroxamate and sarcosine, yielding P grades of 23.4% and 21.5%, and recoveries of 96.4% and 89.2%, respectively. Importantly, concentrate quality remained stable with up to a 30% reduction in conventional collectors and the addition of organosolv lignin. Bench-scale trials further validated the approach, demonstrating that lanthanum and cerium recoveries exceeded 71%, alongside satisfactory apatite recovery. Lignin nanoparticles were observed to interact with both minerals; however, the interaction was more pronounced in the case of phlogopite, which exhibited a markedly greater increase in surface hydrophilicity following treatment, suggesting a stronger affinity or surface modification effect, which was beneficial to the performance of the separation process. Full article
(This article belongs to the Special Issue Advances in Reagents for Mineral Processing, 2nd Edition)
Show Figures

Figure 1

20 pages, 2764 KiB  
Article
Beyond Macronutrients Supply: The Effect of Bio-Based Fertilizers on Iron and Zinc Biofortification of Crops
by Juan Nieto-Cantero, Ana M. García-Lopez, Ramiro Recena, Jose M. Quintero and Antonio Delgado
Agronomy 2025, 15(6), 1388; https://doi.org/10.3390/agronomy15061388 - 5 Jun 2025
Viewed by 584
Abstract
Iron (Fe) and Zinc (Zn) deficiencies in crops pose indirect problems for human health. The risk of these deficiencies increases with high doses of phosphate fertilizers. Fertilizers obtained through recycling—so-called bio-based fertilizers (BBFs)—can contain significant amounts of Fe and Zn, which can contribute [...] Read more.
Iron (Fe) and Zinc (Zn) deficiencies in crops pose indirect problems for human health. The risk of these deficiencies increases with high doses of phosphate fertilizers. Fertilizers obtained through recycling—so-called bio-based fertilizers (BBFs)—can contain significant amounts of Fe and Zn, which can contribute to crop biofortification. Although the use of some organic BBFs has been shown to improve biofortification, an in-depth study on this effect and on the effect of P on Fe and Zn nutrition with the use of different kinds of bio-based P fertilizers is still lacking. A pot experiment with 11 different BBFs was conducted using two soils with different physicochemical properties that affect P, Fe, and Zn dynamics (one rich in CaCO3 and the other rich in Fe oxides) to assess their biofortification effects on wheat and sunflower. Although some BBFs increased Fe concentration in the edible parts, the overall trend was towards an increased P:Fe ratio (up to 62%), which decreased Fe digestibility. On the other hand, all BBFs led to Zn biofortification, with a 27% decrease in the P:Zn ratio in the CaCO3-rich soil, while in the Fe oxide-rich soil, the decrease was up to 61%. The supply of Zn and organic C, as well as the dominant P forms in BBFs, were the main factors explaining Zn biofortification. Bio-based fertilizers also decreased the antagonism between P and Zn and between Fe and Zn. The results demonstrated that the inclusion of BBFs in agrosystems management can contribute to improving the quality of human diets, at least with regard to Zn intake, while also contributing to more sustainable fertilization practices. Full article
Show Figures

Figure 1

32 pages, 2113 KiB  
Review
Agricultural Waste: Challenges and Solutions, a Review
by Maximilian Lackner and Maghsoud Besharati
Waste 2025, 3(2), 18; https://doi.org/10.3390/waste3020018 - 3 Jun 2025
Cited by 2 | Viewed by 2662
Abstract
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such [...] Read more.
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such as those from sugarcane, rice, and wheat, contribute to pollution when improperly disposed of through burning or burying, contaminating soil, water, and air. However, these residues also represent untapped resources for bioenergy production, composting, mulching, and the creation of value-added products like biochar, bioplastics, single-cell protein and biobased building blocks. The paper highlights various solutions, including integrating agricultural waste into livestock feed formulations to reduce competition for human food crops, producing biofuels like ethanol and biodiesel from lignocellulosic materials, and adopting circular economy practices to upcycle waste into high-value products. Technologies such as anaerobic digestion for biogas production and gasification for synthesis gas offer renewable energy alternatives and ample feedstocks for gas fermentation while addressing waste management issues. Composting and vermicomposting enhance soil fertility, while mulching improves moisture retention and reduces erosion. Moreover, the review emphasizes the importance of policy frameworks, public-private partnerships, and farmer education in promoting effective waste management practices. By implementing these strategies, agricultural waste can be transformed into a resource, contributing to food security, environmental conservation, and economic growth. Full article
Show Figures

Figure 1

22 pages, 2500 KiB  
Review
A Vegetable-Oil-Based Polyurethane Coating for Controlled Nutrient Release: A Review
by Lyu Yao, Azizah Baharum, Lih Jiun Yu, Zibo Yan and Khairiah Haji Badri
Coatings 2025, 15(6), 665; https://doi.org/10.3390/coatings15060665 - 30 May 2025
Viewed by 691
Abstract
Bio-based polyurethane (PU) is synthesized either via the prepolymerization or addition polymerization of bio-based polyols and isocyanates. PU synthesized from vegetable-oil-based polyols has excellent properties for various application needs. Bio-based PU coatings from renewable vegetable oil show good degradability in soil while controlling [...] Read more.
Bio-based polyurethane (PU) is synthesized either via the prepolymerization or addition polymerization of bio-based polyols and isocyanates. PU synthesized from vegetable-oil-based polyols has excellent properties for various application needs. Bio-based PU coatings from renewable vegetable oil show good degradability in soil while controlling the nutrient release process. Castor oil, soybean oil, palm oil, olive oil, linseed oil, rapeseed oil, cottonseed oil, and recycled oil have been explored in the study of bio-based PU coatings for controlled nutrient release. Castor oil as a natural polyol has been widely studied. Generally, the epoxidation ring opening method is preferred to prepare bio-based polyols. Almost all of these studies used a drum coating machine to complete the coating process. To obtain better controlled release performance, a vegetable-oil-based PU (VPU) coating was modified by increasing the degrees of crosslinking and hydrophobicity and improving the coating uniformity. The nutrient release duration of the modified castor-oil-based PU-coated fertilizer reached 200 days. VPU-coated fertilizers, in contrast to traditional fertilizers, effectively reduce the detrimental impact on the environment. Although the preparation of VPU-coated fertilizers is still at the laboratory scale, application research has been carried out in field crops. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Graphical abstract

21 pages, 2439 KiB  
Article
Farmers’ Preferences and Practices Regarding Bio-Based Fertilizers: A Croatian Perspective
by Mihaela Šatvar Vrbančić, Lepomir Čoga, Ana Marija Špicnagel, Natalija Vugrin, Erik Meers and Tajana Čop
Sustainability 2025, 17(8), 3367; https://doi.org/10.3390/su17083367 - 9 Apr 2025
Viewed by 727
Abstract
Sustainable agriculture requires a shift from mineral to bio-based fertilizers (BBFs), but farmer adoption has not been sufficiently studied in Croatia. This study examines Croatian farmers’ preferences, practices and barriers to adopting BBFs using a nationwide survey and regression analysis, filling gaps in [...] Read more.
Sustainable agriculture requires a shift from mineral to bio-based fertilizers (BBFs), but farmer adoption has not been sufficiently studied in Croatia. This study examines Croatian farmers’ preferences, practices and barriers to adopting BBFs using a nationwide survey and regression analysis, filling gaps in research on fertilizer use. The results show that while farmers are satisfied with conventional options, they want more variety and express concerns about nutrient concentration and soil impact. Interest in BBFs is high—particularly for low-cost or high-impact products—but uptake is hindered by financial constraints and limited information. Notably, most farmers are willing to pay more for environmentally friendly fertilizers, despite being price sensitive. By highlighting key drivers and barriers, this study provides actionable insights that could provide strategies for policy makers, farmers and industry representatives to support Croatia’s transition to sustainable fertilizer practices, with implications for similar agricultural regions. Full article
Show Figures

Figure 1

36 pages, 202656 KiB  
Article
Fiber Hemp Biomass Yield and Quality on Shallow Stony Soil in Southwest Germany
by Beatrice E. Greiner, Jana Kunisch, Galina Krauße, Theresa Thiel, Klaus Schwadorf and Moritz von Cossel
Land 2025, 14(4), 720; https://doi.org/10.3390/land14040720 - 27 Mar 2025
Viewed by 691
Abstract
Shallow arable soils (<35 cm depth) are classified as marginal for common agriculture but may still support biomass production from industrial crops like fiber hemp, which has a low indirect land-use change risk. However, little is known about hemp’s performance under such conditions. [...] Read more.
Shallow arable soils (<35 cm depth) are classified as marginal for common agriculture but may still support biomass production from industrial crops like fiber hemp, which has a low indirect land-use change risk. However, little is known about hemp’s performance under such conditions. Therefore, this study investigated the biomass yield and quality of fiber hemp and other crops on a shallow (<35 cm), stony (>15% stone content), and clay-rich (>50% clay content) soil at 800 m above sea level in Southwest Germany (2018–2021). A randomized field trial tested different row widths and nitrogen (N) fertilization levels to assess low-input options for the given type of marginal land. Across years and row widths, hemp achieved average grain dry matter (DM) yields of 1.3 Mg/ha at a fertilization rate of 40 kg N/ha and 1.6 Mg/ha at 120 kg N/ha (with on average 30.9 ± 1.4% crude fat content across treatments). The average stem DM yields accounted for 5.11 Mg/ha (40 kg N/ha) and 6.08 Mg/ha (120 kg N/ha), respectively. Reduced N fertilization (40 kg/ha) lowered DM yields by up to 16% compared to full fertilization (120 kg/ha), but the effect was not significant and weaker at wider row spacing (45 cm). Additionally, maize reached acceptable DM yields (>17 Mg/ha). These findings suggest that shallow soils classified as marginal require reassessment, as they may offer viable opportunities for sustainable industrial hemp cultivation and contribute to a bio-based economy. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

24 pages, 7672 KiB  
Review
Turning Waste Wool into a Circular Resource: A Review of Eco-Innovative Applications in Agriculture
by Francesca Camilli, Marco Focacci, Aldo Dal Prà, Sara Bortolu, Francesca Ugolini, Enrico Vagnoni and Pierpaolo Duce
Agronomy 2025, 15(2), 446; https://doi.org/10.3390/agronomy15020446 - 11 Feb 2025
Cited by 1 | Viewed by 3028
Abstract
Agriculture significantly impacts the environment in terms of greenhouse gas emissions, soil nutrient depletion, water consumption, and pollution and waste produced by intensive farming. Wool has great potential and can be a valuable resource for agriculture due to its high nitrogen, carbon, and [...] Read more.
Agriculture significantly impacts the environment in terms of greenhouse gas emissions, soil nutrient depletion, water consumption, and pollution and waste produced by intensive farming. Wool has great potential and can be a valuable resource for agriculture due to its high nitrogen, carbon, and sulfur content and good water absorption and retention properties, benefiting soil carbon storage and fertility, as well as decreasing the risk of water contamination due to the slow decomposition and nitrogen release. This review aims to provide an overview of bio-based solutions that can benefit agroecosystems as a circular bioeconomy practice. Raw wool and wool hydrolysate are the most common applications, but also wool pellets, wool compost, and wool mats are interesting treatments for plant growing. Waste wool showed positive effects on soil fertility by primarily increasing nitrogen and sulfur content. Improved water retention capacity and microbial activity were also recorded in several studies. The use of wool as mulching is effective for weed control. Attention to the plant species tested aimed at identifying the most promising cultivations in terms of treatment efficiency, possibly lowering environmental impact on the agroecosystem. To eco-design and scale-up processes that strengthen the circular use of wool into widespread practices, further research should be encouraged in conjunction with environmental impact assessments and economic evaluations. Full article
(This article belongs to the Special Issue Organic Improvement in Agricultural Waste and Byproducts)
Show Figures

Figure 1

28 pages, 1935 KiB  
Review
Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate
by Magdalena Zielińska and Katarzyna Bułkowska
Membranes 2025, 15(2), 45; https://doi.org/10.3390/membranes15020045 - 2 Feb 2025
Cited by 6 | Viewed by 2704
Abstract
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration [...] Read more.
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and new tools and techniques such as membrane contactors (MCs) with gas-permeable membranes (GPMs) and electrodialysis (ED). Key aspects that are analyzed include the nutrient concentration efficiency, integration with biological processes and strategies to mitigate challenges such as fouling, high energy requirements and scalability. In addition, innovative hybrid systems and pretreatment techniques are examined for their potential to improve the recovery rates and sustainability. The review also addresses the economic and technical barriers to the full-scale application of these technologies and identifies future research directions, such as improving the membrane materials and reducing the energy consumption. The comprehensive assessment of these processes highlights their contribution to sustainable nutrient management and bio-based fertilizer production. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

22 pages, 3313 KiB  
Article
Evaluation of Biogas Production from Anaerobic Digestion of Biopolymeric Films and Potential Environmental Implications
by Nicolò Montegiove, Roberto Petrucci, Leonardo Bacci, Giovanni Gigliotti, Debora Puglia, Luigi Torre and Daniela Pezzolla
Sustainability 2024, 16(22), 10146; https://doi.org/10.3390/su162210146 - 20 Nov 2024
Cited by 1 | Viewed by 1674
Abstract
The increasing environmental pollution resulting from plastic waste and the need to reuse agro-industrial wastes as a source of discarding has led to the development of innovative biobased products. In the frame of this context, the use of neat polylactic acid (PLA) and [...] Read more.
The increasing environmental pollution resulting from plastic waste and the need to reuse agro-industrial wastes as a source of discarding has led to the development of innovative biobased products. In the frame of this context, the use of neat polylactic acid (PLA) and its blend with polybutylene succinate (PBS) with or without cellulose nanocrystals (CNCs) extracted from hemp fibers is explored here. This study aimed to assess the biogas production of different biopolymeric films. In parallel, life cycle assessment (LCA) analysis was performed on the same films, focusing on their production phase and potential end-of-life scenarios, regardless of film durability (i.e., single-use packaging) and barrier performance, to counteract possible soil health threats. Specifically, this study considered three specific systems: PLA, PLA_PBS (PLA/PBS blend 80:20 w/w), and PLA_PBS_3CNC (PLA/PBS blend + 3% CNCs) films. The assessment involved a batch anaerobic digestion (AD) process at 52 °C, using digestate obtained from the anaerobic treatment of municipal waste as the inoculum and cellulose as a reference material. The AD process was monitored over about 30 days, revealing that reactors containing cellulose showed inherent biodegradability and enhanced biogas production. On the other hand, biopolymeric films based on PLA and its blends with PBS and CNCs exhibited an inhibitory effect, likely due to their recalcitrant nature, which can limit or delay microbial activity toward biomass degradation and methanogenesis. LCA analysis was performed taking into consideration the complex environmental implications of both including biopolymers in the production of renewable energy and the use of post-composting digestate as an organic fertilizer. Remarkably, the PLA_PBS_3CNC formulation revealed slightly superior performance in terms of biodegradability and biogas production, mainly correlated to the presence of CNCs in the blend. The observed enhanced biodegradability and biogas yield, coupled with the reduced environmental impact, confirm the key role of optimized biopolymeric formulations in mitigating inhibitory effects on AD processes while maximizing, at the same time, the utilization of naturally derived energy sources. Full article
Show Figures

Figure 1

26 pages, 8706 KiB  
Article
The Effect of Biobased N and P Fertilizers in a Winter Wheat–Ryegrass Crop Rotation
by Benedikt Müller, Michelle Natalie Herrmann, Iris Lewandowski, Torsten Müller, Jens Hartung and Andrea Bauerle
Agronomy 2024, 14(10), 2424; https://doi.org/10.3390/agronomy14102424 - 19 Oct 2024
Cited by 1 | Viewed by 1602
Abstract
Novel recycled fertilizers could help close environmental nutrient cycles in the circular economy. To better understand their performance and residual value, commercially available biobased nitrogen (N) and phosphorus (P) fertilizers (BBFs) were tested in a two-year crop cycle of winter wheat and ryegrass. [...] Read more.
Novel recycled fertilizers could help close environmental nutrient cycles in the circular economy. To better understand their performance and residual value, commercially available biobased nitrogen (N) and phosphorus (P) fertilizers (BBFs) were tested in a two-year crop cycle of winter wheat and ryegrass. The N fertilizer replacement value of N-BBFs ranged from 47 to 80% in the main crop. Not all BBFs led to a similarly high N concentration as the mineral reference in the wheat straw. However, full and early fertilization with incorporation could make the fertilizing effect of N-BBFs more reliable. The P fertilizer replacement value ranged between 105 and 161% for the crop cycle. We assume that the N contained in biobased phosphorus fertilizers can be seen as unproblematic for losses during winter and can serve as a starter fertilizer already present in the soil for the succeeding crop in spring. In general, biobased P fertilizers had a higher residual value than biobased N fertilizers. However, these residual values were comparable to those of mineral fertilizer references. While P-BBFs proved to be a sustainable and reliable nutrient source for a crop cycle, the N-BBFs used as the main crop fertilizer were found to be more prone to environmental influences. Full article
Show Figures

Figure 1

90 pages, 4409 KiB  
Review
Current Trends of Polymer Materials’ Application in Agriculture
by Kamila Lewicka, Izabela Szymanek, Diana Rogacz, Magdalena Wrzalik, Jakub Łagiewka, Anna Nowik-Zając, Iwona Zawierucha, Sergiu Coseri, Ioan Puiu, Halina Falfushynska and Piotr Rychter
Sustainability 2024, 16(19), 8439; https://doi.org/10.3390/su16198439 - 27 Sep 2024
Cited by 15 | Viewed by 8058
Abstract
In light of the growing plastic waste problem worldwide, including in agriculture, this study focuses on the usefulness of both conventional, non-degradable plastics and environmentally friendly bioplastics in the agricultural sector. Although conventional plastic products are still essential in modern, even ecological agriculture, [...] Read more.
In light of the growing plastic waste problem worldwide, including in agriculture, this study focuses on the usefulness of both conventional, non-degradable plastics and environmentally friendly bioplastics in the agricultural sector. Although conventional plastic products are still essential in modern, even ecological agriculture, the increasing contamination by these materials, especially in a fragmented form, highlights the urgent need to search for alternative, easily biodegradable materials that could replace the non-degradable ones. According to the literature, polymers are widely used in agriculture for the preparation of agrochemicals (mostly fertilizers) with prolonged release. They also play a role as functional polymers against pests, serve as very useful super absorbents of water to improve crop health under drought conditions, and are commonly used as mulching films, membranes, mats, non-woven fabrics, protective nets, seed coatings, agrochemical packaging, or greenhouse coverings. This widespread application leads to the uncontrolled contamination of soil with disintegrated polymeric materials. Therefore, this study highlights the possible applications of bio-based materials as alternatives to conventional polyolefins or other environmentally persistent polymers. Bio-based polymers align with the strategy of innovative agricultural advancements, leading to more productive farming by reducing plastic contamination and adverse ecotoxicological impacts on aquatic and terrestrial organisms. On the other hand, advanced polymer membranes act as catching agents for agrochemicals, protecting against environmental intoxication. The global versatility of polymer applications in agriculture will not permit the elimination of already existing technologies involving polymers in the near future. However, in line with ecological trends in modern agriculture, more “green” polymers should be employed in this sector. Moreover, we highlight that more comprehensive legislative work on these aspects should be undertaken at the European Union level to guarantee environmental and climate protection. From the EU legislation point of view, the implementation of a unified, legally binding system on applications of bio-based, biodegradable, and compostable plastics should be a priority to be addressed. In this respect, the EU already demonstrates an initial action plan. Unfortunately, these are still projected directions for future EU policy, which require in-depth analysis. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

13 pages, 4217 KiB  
Article
Effect of Fatty Acids on Vegetable-Oil-Derived Sustainable Polyurethane Coatings for Controlled-Release Fertilizer
by Minhui Pang, Zirui Liu, Hongyan Li, Lina Liang and Lixia Li
Coatings 2024, 14(9), 1183; https://doi.org/10.3390/coatings14091183 - 12 Sep 2024
Cited by 4 | Viewed by 1786
Abstract
Vegetable-oil-based polyurethane has become a promising sustainable candidate for controlled-release fertilizer based on green chemistry. The purpose of this study was to prepare a series of coatings from selective feedstocks including five vegetable oils with a high saturation degree, mono-unsaturation degree, or poly-unsaturation [...] Read more.
Vegetable-oil-based polyurethane has become a promising sustainable candidate for controlled-release fertilizer based on green chemistry. The purpose of this study was to prepare a series of coatings from selective feedstocks including five vegetable oils with a high saturation degree, mono-unsaturation degree, or poly-unsaturation degree, considering that vegetable oil fatty acids played a key role in the synthesis of polyol and polyurethane. The effect of the type and proportion of fatty acids on the physicochemical properties, microstructure, and macro-properties of vegetable-oil-derived polyols and their resulting coatings was characterized and discussed. The position and number of the hydroxy groups were determined by the type and proportion of fatty acid, and polyol from linseed oil with a high poly-unsaturation degree and three carbon–carbon double bonds had a high hydroxyl value and functionality, whereas polyol from palm oil with a high saturation degree possessed the lowest hydroxyl value and functionality. The resultant coating from linseed-oil-based polyol had a good cross-linking density, and the nitrogen release longevity of coated urea was 56 days at a coating percentage of 3%, and its nitrogen use efficiency was increased by 27.15% compared with conventional urea. Although the palm-oil-based coating had good hydrophobicity, its coated urea was not ideal. Overall, this study has enriched theories of bio-based polyurethane coatings for controlled-release fertilizers; using vegetable oil with a poly-unsaturation degree, it is easy to obtain an excellent coating for controlled-release fertilizer, and this will help provide economic and environmental benefits. Full article
Show Figures

Graphical abstract

Back to TopTop