Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,763)

Search Parameters:
Keywords = bio-technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1702 KB  
Article
Artificial Neural Network Elucidates the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism
by Niaz Bahar Chowdhury, Mark Kathol, Nabia Shahreen and Rajib Saha
Metabolites 2026, 16(1), 86; https://doi.org/10.3390/metabo16010086 (registering DOI) - 21 Jan 2026
Abstract
Background: Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic [...] Read more.
Background: Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic and anaerobic conditions. Methods: R. palustris was cultivated on multiple lignin breakdown products (LBPs), including p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p-coumarate, sodium ferulate, and kraft lignin. Condition-specific transcriptomics and proteomics datasets were generated and used as input features to train machine-learning models, with experimentally measured growth rates as the prediction target. Artificial Neural Networks (ANNs), Random Forest (RF), and Support Vector Machine (SVM) models were evaluated and compared. Permutation feature importance analysis was applied to identify genes and proteins most influential for growth. Results: Among the tested models, ANNs achieved the highest predictive performance, with accuracies of 94% for transcriptomics-based models and 96% for proteomics-based models. Feature importance analysis identified the top twenty growth-associated genes and proteins for each omics layer. Integrating transcriptomic and proteomic results revealed eight key transport proteins that consistently influenced growth across LBP conditions. Re-training ANN models using only these eight transport proteins maintained high predictive accuracy, achieving 86% for proteomics and 76% for transcriptomics. Conclusions: This study demonstrates the effectiveness of ANN-based models for predicting growth-associated genes and proteins in R. palustris. The identification of a small set of key transport proteins provides mechanistic insight into lignin catabolism and highlights promising targets for metabolic engineering aimed at improving lignin utilization. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

34 pages, 3582 KB  
Review
Metalloprotein-Based Nanomedicines: Design Strategies, Functional Mechanisms, and Biomedical Applications
by Tingting Ma, Zhongwei Mao, Bin Xue, Yi Cao and Wei Sun
Int. J. Mol. Sci. 2026, 27(2), 1076; https://doi.org/10.3390/ijms27021076 (registering DOI) - 21 Jan 2026
Abstract
Metalloprotein-based nanomedicines integrate the multifunctionality of metal centers with the engineerability of proteins to construct advanced nanoplatforms for targeted delivery, diagnostic imaging, and multimodal therapy. In these nanomedicines, metal ions or clusters act as functional cores, enabling imaging contrast enhancement, catalytic reactions, and [...] Read more.
Metalloprotein-based nanomedicines integrate the multifunctionality of metal centers with the engineerability of proteins to construct advanced nanoplatforms for targeted delivery, diagnostic imaging, and multimodal therapy. In these nanomedicines, metal ions or clusters act as functional cores, enabling imaging contrast enhancement, catalytic reactions, and modulation of pathological microenvironments, while protein frameworks provide structural stability, intrinsic biocompatibility, and programmable bio-interfaces. This review summarizes the design principles of three major metalloprotein-based nanomedicines, including native metalloproteins, engineered metalloproteins, and metal–protein hybrid nanostructures, with a focus on ferritin, transferrin, and heme/cytochrome proteins in the contexts of cancer therapy, imaging diagnostics, antimicrobial, and anti-resistance applications. Through discussion of representative metal- and metalloprotein-based nanomedicine candidates, this review highlights the current challenges and outlines opportunities brought by emerging technologies such as artificial intelligence-guided protein design. Collectively, these advances underscore metal- and metalloprotein-based nanomedicines as multifunctional, tunable, and clinically promising platforms that are poised to become an important pillar of future nanomedicine. Full article
(This article belongs to the Special Issue Nanoparticles in Molecular Pharmaceutics)
Show Figures

Figure 1

15 pages, 1805 KB  
Article
Effect of Light and Cytokinin Modulators on Adventitious Shooting in Melia volkensii Gürke
by Nandini Bhogar Suresh, Lenka Plačková, Karel Doležal and Stefaan P. O. Werbrouck
Plants 2026, 15(2), 322; https://doi.org/10.3390/plants15020322 - 21 Jan 2026
Abstract
Adventitious shoot regeneration in woody species is regulated by interactions between plant growth regulators, endogenous hormone metabolism, and environmental cues such as light quality. Here, we investigated the effects of thidiazuron (TDZ) and the cytokinin oxidase/dehydrogenase (CKX) inhibitors INCYDE and phenyladenine (PA), in [...] Read more.
Adventitious shoot regeneration in woody species is regulated by interactions between plant growth regulators, endogenous hormone metabolism, and environmental cues such as light quality. Here, we investigated the effects of thidiazuron (TDZ) and the cytokinin oxidase/dehydrogenase (CKX) inhibitors INCYDE and phenyladenine (PA), in combination with different light spectra, on morphogenesis in Melia volkensii leaf explants. TDZ induced the highest frequencies of callus formation and adventitious shoot regeneration, particularly under white light. INCYDE promoted localized regeneration responses, including activation of dormant meristematic regions in secondary leaf axils, whereas PA showed limited regeneration efficiency. Light quality significantly influenced morphogenesis, with white and blue light favoring organized shoot development, while red and far-red light suppressed shoot regeneration and promoted callus formation. Cytokinin profiling revealed treatment-dependent shifts in endogenous cytokinin composition, most notably in isopentenyladenine (iP)-type cytokinins, which is consistent with altered cytokinin degradation dynamics. Cis-zeatin-type cytokinins were abundant across treatments, likely reflecting regulation associated with in vitro culture conditions. These findings indicate that cytokinin metabolism and light quality jointly influence organogenic competence in Melia volkensii Gürke, providing a physiological basis for optimizing regeneration strategies in woody plants. This study provides the first integrated analysis of cytokinin-modulating compounds and light spectra on adventitious shoot regeneration in Melia volkensii. The findings establish a physiological basis for improving regeneration protocols in recalcitrant woody species and support future biotechnological applications, including genetic improvement and advanced propagation strategies. Full article
Show Figures

Figure 1

27 pages, 2553 KB  
Article
Biotechnological Potential of Algerian Saffron Floral Residues: Recycling Phytochemicals with Antimicrobial Activity
by Nouria Meliani, Bouchra Loukidi, Larbi Belyagoubi, Nabila Belyagoubi-Benhammou, Salim Habi, Alessia D’Agostino, Antonella Canini, Saber Nahdi, Nassima Mokhtari Soulimane, Angelo Gismondi, Abdel Halim Harrath, Erdi Can Aytar and Gabriele Di Marco
Biology 2026, 15(2), 197; https://doi.org/10.3390/biology15020197 - 21 Jan 2026
Abstract
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the [...] Read more.
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the possible interactions between saffron tepal metabolites and bacterial target proteins. In parallel, antioxidant activity was assessed using radical scavenging assays, whereas antimicrobial potential (i.e., MIC, MBC, and MFC) was tested against selected bacterial strains. Results indicated that aqueous successive and crude extracts yielded the highest concentrations of polyphenols, flavonoids, and condensed tannins. In detail, HPLC-DAD analysis specifically identified significant levels of gallic acid, epicatechin, and various anthocyanins. These extracts demonstrated robust antioxidant and antimicrobial activities. This latter evidence was corroborated by the docking analyses, which revealed that chlorogenic acid and petunidin-3-glucoside exhibited high binding affinities for 2NRK and 2NZF, whereas epicatechin and pelargonidin effectively targeted 8ACR. These findings underscore the therapeutic potential of C. sativus tepals as natural bioactive agents, suggesting a promising role in overcoming antibiotic resistance and supporting their development for pharmaceutical applications. Full article
(This article belongs to the Special Issue Young Researchers in Plant Sciences)
Show Figures

Graphical abstract

21 pages, 949 KB  
Article
Antimicrobial Activity of Submerged Cultures of Endophytic Fungi Isolated from Three Chilean Nothofagus Species
by Héctor Valenzuela, Daniella Aqueveque-Jara, Mauricio Sanz, Margarita Ocampo, Karem Henríquez-Aedo, Mario Aranda and Pedro Aqueveque
J. Fungi 2026, 12(1), 77; https://doi.org/10.3390/jof12010077 - 21 Jan 2026
Abstract
Endophyte fungi (EF) are considered a new and valuable reservoir of bioactive molecules of biotechnological interest for pharmacy, agricultural and forestry industries. In this study, thirty EFs, isolated from three Chilean Nothofagus species (N. alpina, N. dombeyi, N. oblicua) [...] Read more.
Endophyte fungi (EF) are considered a new and valuable reservoir of bioactive molecules of biotechnological interest for pharmacy, agricultural and forestry industries. In this study, thirty EFs, isolated from three Chilean Nothofagus species (N. alpina, N. dombeyi, N. oblicua) were identified and cultured in submerged liquid fermentations aimed at searching for natural active substances. The extracts obtained were evaluated against pathogenic bacteria and fungi. Sixteen extracts (53.3%) presented antibacterial and fourteen (46.6%) presented antifungal activities in different intensities. Extracts from isolates Coryneum sp.-72 and P. cinnamomea-78 exhibited the highest antimicrobial activity. Using bioautography, the compounds responsible for the antimicrobial activity exhibited by Coryneum sp.-72 and P. cinnamomea-78 were detected and characterized. Coryneum sp.-72 showed bactericidal properties at 200 μg/mL and bacteriostatic effects at 50 μg/mL against B. cereus, B. subtilis, L. monocytogenes and S. aureus. MIC values indicated that P. cinnamomea-78 exhibited a strong fungistatic and fungicidal effect against B. cinerea and C. gloesporioides at 10–50 μg/mL. Isolates were grouped in the following order: Botryosphaeriales, Diaporthales, Eurotiales, Helotiales, Hypocreales, Pleosporales, Magnaporthales, Sordariales and Polyporales. EF isolated, identified and evaluated constitute the first report for Chilean Nothofagus genus. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

17 pages, 3146 KB  
Article
Edible Film Preparation Using Chitosan/Gelatin/Phlorotannin-Embedded Limosilactobacillus fermentum FUA033 for Strawberry Preservation
by Jiaxuan Wang, Wenyue Ma, Yajian Su, Shu Liu, Ruyu Xu, Han Zhang, Xiaoyue Hou, Qiran Gu, Xu Zhao, Jiayi Hu and Yaowei Fang
Foods 2026, 15(2), 381; https://doi.org/10.3390/foods15020381 - 21 Jan 2026
Abstract
In this study, we prepared edible films using chitosan/gelatin/phlorotannins (CGPs) embedded with probiotics and evaluated their preservation effects on strawberries. Edible films encapsulating Limosilactobacillus fermentum FUA033 (CGPFUA033) were prepared using the casting method. The intermolecular interactions, crystal structure, thermal stability, and morphology of [...] Read more.
In this study, we prepared edible films using chitosan/gelatin/phlorotannins (CGPs) embedded with probiotics and evaluated their preservation effects on strawberries. Edible films encapsulating Limosilactobacillus fermentum FUA033 (CGPFUA033) were prepared using the casting method. The intermolecular interactions, crystal structure, thermal stability, and morphology of the films, both prior to and following the incorporation of L. fermentum FUA033, were characterized using FT-IR, XRD, TG, and SEM analyses. The preservation efficacy of the edible films, with and without encapsulated L. fermentum FUA033, was assessed by monitoring the physical, chemical, and microbial properties, as well as the visual quality, of strawberries during a eight-day storage period. The results showed that encapsulation of L. fermentum FUA033 enhanced intermolecular interactions and thermal stability within the film matrix but did not significantly affect the crystalline structure of the edible film. At 0, 2, 4, 6, and 8 days, the CGPFUA033 treatment had preservation effects: the weight loss was 30.70 ± 1.53%, the total soluble solid content was 8.83 ± 0.28%, the decay index was 45.33 ± 1.53%, the malondialdehyde content was 7.44 ± 0.13 μmol/g, firmness was 21.49 ± 0.83 N, and the ascorbic acid content was 43.51 ± 0.79 mg/100 g. The shelf life of strawberries was extended by six days in the CGPFUA033 treatment group. Therefore, the chitosan/gelatin/phlorotannin edible film embedded with L. fermentum FUA033 has high preservation effects on strawberries, highlighting that L. fermentum FUA033 can be used as a probiotic for enhancing food preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

24 pages, 1456 KB  
Review
Genome Editing and Integrative Breeding Strategies for Climate-Resilient Grapevines and Sustainable Viticulture
by Carmine Carratore, Alessandra Amato, Mario Pezzotti, Oscar Bellon and Sara Zenoni
Horticulturae 2026, 12(1), 117; https://doi.org/10.3390/horticulturae12010117 - 21 Jan 2026
Abstract
Climate change introduces a critical threat to global viticulture, compromising grape yield, quality, and the long-term sustainability of Vitis vinifera cultivation. Addressing these challenges requires innovative strategies to enhance grapevine resilience. The integration of multi-omics data, predictive breeding, and physiological insights into ripening [...] Read more.
Climate change introduces a critical threat to global viticulture, compromising grape yield, quality, and the long-term sustainability of Vitis vinifera cultivation. Addressing these challenges requires innovative strategies to enhance grapevine resilience. The integration of multi-omics data, predictive breeding, and physiological insights into ripening and stress responses is refining our understanding of grapevine adaptation mechanisms. In parallel, recent advances in plant biotechnology have accelerated progress from marker-assisted and genomic selection to targeted genome editing, with CRISPR/Cas systems and other New Genomic Techniques (NGTs) offering advanced precision tools for sustainable improvement. This review synthesizes the major achievements in grapevine genetic improvement over time, tracing the evolution of strategies from traditional breeding to modern genome editing technologies. Overall, we highlight how combining genetics, biotechnology, and physiology is reshaping grapevine breeding towards more sustainable viticulture. The convergence of these disciplines establishes a new integrated framework for developing resilient, climate-adapted grapevines that maintain yield and quality while preserving varietal identity in the face of environmental change. Full article
Show Figures

Figure 1

21 pages, 3615 KB  
Article
Eicosapentaenoic Acid Improves Porcine Oocyte Cytoplasmic Maturation and Developmental Competence via Antioxidant and Mitochondrial Regulatory Mechanisms
by Yibo Sun, Xinyu Li, Chunyu Jiang, Guian Huang, Junjie Wang, Yu Tian, Lin Jiang, Xueping Shi, Jianguo Zhao and Jiaojiao Huang
Antioxidants 2026, 15(1), 137; https://doi.org/10.3390/antiox15010137 - 21 Jan 2026
Abstract
Oocytes cultured in vitro are exposed to high oxygen tension and lack follicular antioxidants, leading to redox imbalance. Eicosapentaenoic acid (EPA), a marine long-chain n-3 polyunsaturated fatty acid, possesses strong antioxidant activity. Here, using pigs as a model, we examined the effects of [...] Read more.
Oocytes cultured in vitro are exposed to high oxygen tension and lack follicular antioxidants, leading to redox imbalance. Eicosapentaenoic acid (EPA), a marine long-chain n-3 polyunsaturated fatty acid, possesses strong antioxidant activity. Here, using pigs as a model, we examined the effects of EPA on oocyte in vitro maturation (IVM) and subsequent developmental competence. Cumulus–oocyte complexes were cultured with EPA, followed by assessment of nuclear and cytoplasmic maturation and embryonic development; transcriptomic and proteomic analyses were conducted to explore underlying mechanisms. Supplementation with 10 µM EPA significantly improved maturation and blastocyst rates by reducing spindle defects, facilitating a more uniform organization of cortical granules and mitochondria. EPA increased resolvin E1 accumulation and reduced cumulus-cell apoptosis through downregulation of TNF-α and BAX and upregulation of BCL2. In MII oocytes, EPA lowered apoptosis, DNA damage, and ROS levels while enhancing SOD2 and GPX4 expression. Mitochondrial quality and turnover were improved via upregulation of PPARGC1A, NDUFS2, PINK1, LC3, FIS1, MUL1, and OPA1, alongside strengthened ER–mitochondria contacts. These findings demonstrate that EPA alleviates oxidative stress, optimizes mitochondrial function, and enhances porcine oocyte maturation and developmental competence in a parthenogenetic model, highlighting its potential as a marine-derived functional additive for reproductive biotechnology. Future studies will be required to validate these effects under fertilization-based embryo production systems and to further refine dose–response relationships using expanded embryo-quality endpoints. Full article
Show Figures

Figure 1

20 pages, 923 KB  
Review
Practical Insights and Emerging Trends for Strategic Cloning of Large Biosynthetic Gene Clusters from Bacteria
by Louise Davison, Zoë Alice Bell and Hong Gao
Appl. Microbiol. 2026, 6(1), 19; https://doi.org/10.3390/applmicrobiol6010019 - 21 Jan 2026
Abstract
Cloning large biosynthetic gene clusters (BGCs) is fundamental to unlocking microbial natural product potential for drug discovery and biotechnology. These clusters encode diverse bioactive compounds, but their size, high GC content, and complex architecture pose significant technical challenges. This review scrutinises recent advances [...] Read more.
Cloning large biosynthetic gene clusters (BGCs) is fundamental to unlocking microbial natural product potential for drug discovery and biotechnology. These clusters encode diverse bioactive compounds, but their size, high GC content, and complex architecture pose significant technical challenges. This review scrutinises recent advances in BGC cloning strategies, categorising them into three major groups: (1) direct release-and-capture methods, (2) genome-integrated preconditioning systems, and (3) CRISPR-assisted hybrid platforms. This review compares the strengths, limitations, and reported efficiencies of BGC cloning strategies, highlighting trade-offs in precision, scalability, and workflow complexity. Emerging trends, such as AI-driven genome mining, modular synthetic biology toolkits, and high-throughput automation, are reshaping the cloning landscape, enabling predictive design and streamlined assembly of clusters exceeding 100 kb. By integrating comparative analysis with future perspectives, this review provides outlines on how next-generation strategies will accelerate heterologous expression, natural product discovery, and sustainable biomanufacturing. Full article
Show Figures

Figure 1

20 pages, 349 KB  
Review
Prokaryotic Molecular Defense Mechanisms and Their Potential Applications in Cancer Biology: A Special Consideration for Cyanobacterial Systems
by Nermin Adel Hussein El Semary, Ahmed Fadiel, Kenneth D. Eichenbaum and Sultan A. Alhusayni
Curr. Issues Mol. Biol. 2026, 48(1), 105; https://doi.org/10.3390/cimb48010105 (registering DOI) - 19 Jan 2026
Viewed by 29
Abstract
Cyanobacteria harbor sophisticated molecular defense systems that have evolved over billions of years to protect against viral invasion and foreign genetic elements. These ancient photosynthetic organisms possess a diverse array of restriction-modification (R-M) systems and CRISPR-Cas arrays that present challenges for genetic engineering, [...] Read more.
Cyanobacteria harbor sophisticated molecular defense systems that have evolved over billions of years to protect against viral invasion and foreign genetic elements. These ancient photosynthetic organisms possess a diverse array of restriction-modification (R-M) systems and CRISPR-Cas arrays that present challenges for genetic engineering, but also offer unique opportunities for cancer-targeted biotechnological applications. These systems exist in prokaryotes mainly as defense mechanisms but they are currently used in molecular applications as gene editing tools. Moreover, latest developments in nucleases such as zinc finger nucleases (ZFNs), TALENs (transcription-activator-like effector nucleases) are discussed. A comprehensive genomic analysis of 126 cyanobacterial species found 89% encode multiple R-M systems, averaging 3.2 systems per genome, creating formidable barriers to transformation but also providing molecular machinery that could be harnessed for precise recognition and targeting of cancer cells. This review critically examines the dual nature of these defense systems, their ecological functions, and the emerging strategies to translate their molecular precision into advanced anticancer therapeutics. Hence, the review main objectives are to explore the recent understanding of these mechanisms and to exploit the knowledge gained in opening new avenues for cancer-focused targeted interventions, while acknowledging the significant challenges to translate these systems from laboratory curiosities to practical applications. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
24 pages, 1100 KB  
Review
Licorice (Glycyrrhiza glabra): Botanical Aspects, Multisectoral Applications, and Valorization of Industrial Waste for the Recovery of Natural Fiber in a Circular Economy Perspective
by Luigi Madeo, Anastasia Macario, Federica Napoli and Pierantonio De Luca
Fibers 2026, 14(1), 14; https://doi.org/10.3390/fib14010014 - 19 Jan 2026
Viewed by 18
Abstract
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. [...] Read more.
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. This review integrates botanical knowledge with engineering and industrial perspectives, highlighting the role of licorice fiber in advancing sustainable innovation. The natural fiber obtained from licorice roots exhibits notable physical and mechanical qualities, including lightness, biodegradability, and compatibility with bio-based polymer matrices. These attributes make it a promising candidate for biocomposites used in green building and other sectors of the circular economy. Developing efficient recovery processes requires collaboration across disciplines, combining expertise in plant science, materials engineering, and industrial technology. The article also examines the economic and regulatory context driving the transition toward more circular and traceable production models. Increasing interest from companies, research institutions, and public bodies in valorizing licorice fiber and its derivatives is opening new market opportunities. Potential applications extend to agroindustry, eco-friendly cosmetics, bioeconomy, and sustainable construction. By linking botanical insights with innovative waste management strategies, licorice emerges as a resource capable of supporting integrated, competitive, and environmentally responsible industrial practices. Full article
46 pages, 1076 KB  
Review
Bio-Based Fertilizers from Waste: Nutrient Recovery, Soil Health, and Circular Economy Impacts
by Moses Akintayo Aborisade, Huazhan Long, Hongwei Rong, Akash Kumar, Baihui Cui, Olaide Ayodele Oladeji, Oluwaseun Princess Okimiji, Belay Tafa Oba and Dabin Guo
Toxics 2026, 14(1), 90; https://doi.org/10.3390/toxics14010090 - 19 Jan 2026
Viewed by 41
Abstract
Bio-based fertilisers (BBFs) derived from waste streams represent a transformative approach to sustainable agriculture, addressing the dual challenges of waste management and food security. This comprehensive review examines recent advances in BBF production technologies, nutrient recovery mechanisms, soil health impacts, and the benefits [...] Read more.
Bio-based fertilisers (BBFs) derived from waste streams represent a transformative approach to sustainable agriculture, addressing the dual challenges of waste management and food security. This comprehensive review examines recent advances in BBF production technologies, nutrient recovery mechanisms, soil health impacts, and the benefits of a circular economy. This review, based on an analysis of peer-reviewed studies, demonstrates that BBFs consistently improve the physical, chemical, and biological properties of soil while reducing environmental impacts by 15–45% compared to synthetic alternatives. Advanced biological treatment technologies, including anaerobic digestion, vermicomposting, and biochar production, achieve nutrient recovery efficiencies of 60–95% in diverse waste streams. Market analysis reveals a rapidly expanding sector projected to grow from $2.53 billion (2024) to $6.3 billion by 2032, driven by regulatory support and circular economy policies. Critical research gaps remain in standardisation, long-term performance evaluation, and integration with precision agriculture systems. Future developments should focus on AI-driven optimisation, climate-adaptive formulations, and nanobioconjugate technologies. Full article
(This article belongs to the Special Issue Study on Biological Treatment Technology for Waste Management)
23 pages, 2777 KB  
Article
Isolation and Biophysical Characterization of Lipoxygenase-1 from Soybean Seed, a Versatile Biocatalyst for Industrial Applications
by Ioanna Gerogianni, Antiopi Vardaxi, Ilias Matis, Maria Karayianni, Maria Zoumpanioti, Thomas Mavromoustakos, Stergios Pispas and Evangelia D. Chrysina
Biomolecules 2026, 16(1), 162; https://doi.org/10.3390/biom16010162 - 19 Jan 2026
Viewed by 69
Abstract
Lipoxygenases are enzymes found in plants, mammals, and other organisms that catalyse the hydroperoxidation of polyunsaturated fatty acids, such as arachidonic, linoleic, and linolenic acids. They have attracted a lot of attention as molecular targets for industrial and biomedical applications, due to their [...] Read more.
Lipoxygenases are enzymes found in plants, mammals, and other organisms that catalyse the hydroperoxidation of polyunsaturated fatty acids, such as arachidonic, linoleic, and linolenic acids. They have attracted a lot of attention as molecular targets for industrial and biomedical applications, due to their implication in key biological processes, such as plant development and defence, cell growth, as well as immune response and inflammation. Soybean (Glycine max) lipoxygenase (LOX) is a versatile biocatalyst used in biotechnology, pharmaceutical, and food industries. sLOX1, a soybean LOX isoform, is central in various industrial applications; thus, it is of particular interest to develop an efficient sLOX1 isolation process, control its activity, and leverage its potential as an effective industrial biocatalyst, tailoring it to a specific desired outcome. In this study, sLOX1 was extracted and purified from soybean seeds using an optimized protocol that yielded an enzyme preparation with higher activity compared to the commercially available lipoxygenase. Comprehensive biophysical characterization employing dynamic and electrophoretic light scattering, fluorescence, and Fourier-transform infrared spectroscopies revealed that sLOX1 exhibits remarkable structural and functional stability, particularly in sodium borate buffer (pH 9), where it retains activity and integrity up to at least 55 °C and displays minimal aggregation under thermal, ionic, and temporal stress. In contrast, sLOX1 in sodium phosphate buffer (pH 6.8) remained relatively stable against ionic strength and time but showed thermally induced aggregation above 55 °C, while in sodium acetate buffer (pH 4.6), the enzyme exhibited a pronounced aggregation tendency under all tested conditions. Overall, this study provides physicochemical and stability assessments of sLOX1. The combination of enhanced catalytic activity, high purity, and well-defined stability profile across diverse buffer systems highlights sLOX1 as a promising and adaptable biocatalyst for industrial applications, offering valuable insights into optimizing lipoxygenase-based bioprocesses. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

36 pages, 3438 KB  
Review
Classical Food Fermentations as Modern Biotechnological Platforms: Alcoholic, Acetic, Butyric, Lactic and Propionic Pathways and Applications
by Anna Rymuszka and Wiktoria Gorczynska
Molecules 2026, 31(2), 333; https://doi.org/10.3390/molecules31020333 - 19 Jan 2026
Viewed by 52
Abstract
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal [...] Read more.
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal metabolic routes (EMP/ED glycolysis; oxidative ethanol metabolism; butyrate-forming pathways; and the Wood–Werkman, acrylate, and 1,2-propanediol routes to propionate) and relate them to the dominant microbial groups involved, including yeasts, acetic acid bacteria, lactic acid bacteria, clostridia, and propionibacteria. We highlight how the resulting metabolite spectra—ethanol, acetic acid, butyrate, lactate, propionate, and associated secondary metabolites—underpin product quality and safety in fermented foods and beverages and enable the industrial synthesis of platform chemicals, polymers, and biofuels. Finally, we discuss current challenges and opportunities for sustainable fermentation, including waste stream valorization, process intensification, and the integration of systems biology and metabolic engineering within circular economy frameworks. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

47 pages, 1794 KB  
Review
Microbial Fermentation: A Sustainable Strategy for Producing High-Value Bioactive Compounds for Agriculture, Animal Feed, and Human Health
by Victor Eduardo Zamudio-Sosa, Luis Angel Cabanillas-Bojórquez, Evangelina García-Armenta, Marilyn Shomara Criollo-Mendoza, José Andrés Medrano-Felix, Alma Haydee Astorga-Gaxiola, José Basilio Heredia, Laura Aracely Contreras-Angulo and Erick Paul Gutiérrez-Grijalva
Appl. Microbiol. 2026, 6(1), 17; https://doi.org/10.3390/applmicrobiol6010017 - 18 Jan 2026
Viewed by 72
Abstract
Microbial fermentation is a key biotechnological tool for producing bioactive metabolites such as alkaloids, carotenoids, essential oils, and phenolic compounds, among others, with applications in human health, agriculture, and food industries. This review comprehensively reviews recent information on the synthesis of valuable compounds [...] Read more.
Microbial fermentation is a key biotechnological tool for producing bioactive metabolites such as alkaloids, carotenoids, essential oils, and phenolic compounds, among others, with applications in human health, agriculture, and food industries. This review comprehensively reviews recent information on the synthesis of valuable compounds and enzymes through fermentation processes. Here, we discuss the advantages of the different types of fermentation, such as submerged and solid-state fermentation, in optimizing metabolite production by bacteria, fungi, and yeast. The role of microbial metabolism, enzymatic activity, and fermentation conditions in enhancing the bioavailability and functionality of these compounds is discussed. Integrating fermentation with emerging biotechnologies, including metabolic engineering, further enhances yields and specificity. The potential of microbial-derived bioactive compounds in developing functional foods, pharmaceuticals, and eco-friendly agricultural solutions positions fermentation as a pivotal strategy for future biotechnological advancements. Therefore, microbial fermentation is a sustainable tool to obtain high-quality metabolites from different sources that can be used in agriculture, animal, and human health. Full article
Show Figures

Figure 1

Back to TopTop