Genome Editing and Integrative Breeding Strategies for Climate-Resilient Grapevines and Sustainable Viticulture
Abstract
1. Introduction
1.1. Scope and Novelty of This Review
1.2. Goals of Sustainable Viticulture
1.2.1. Resilience to Abiotic Stress
1.2.2. Disease Resistance and Reduced Pesticide Dependence
1.2.3. Resource Efficiency and Reduced Environmental Footprint
2. From Classical Breeding to Next-Generation Precision Biotechnology
2.1. Classical and Marker-Assisted Breeding in the Multi-Omics Era: From Genetic Resources to Molecular Precision
2.2. Genome Editing in Modern Grapevine Improvement: From Selection to Design
| Authors | Target Gene(s) | Function/Pathway | Delivery System * | Regenerated Plant(s) * | Type of Mutation * |
|---|---|---|---|---|---|
| Malnoy et al., 2016 [96] | VvMLO-7 | S-gene to PM | PEG + RNPs | NA | NA |
| Osakabe et al., 2018 [97] | VvALS1 | Aminoacis biosynthesis | PEG + RNPs | NA | NA |
| Najafi et al., 2022 [98] | GFP | Green fluorescent protein | PEG + RNPs | 9 Thompson seedless | NA |
| Scintilla et al., 2022 [99] | VvDMR6 | S-gene to DM | Lipo + RNPs | 5 Crimson seedless 9 Sugraone | Monoallelic and Biallelic |
| Scintilla et al., 2022 [99] | VvMLO6 | S-gene to PM | Lipo + RNPs | 2 Crimson seedless 6 Sugraone | Monoallelic |
| Scintilla et al., 2022 [99] | VvMLO6 + VvDMR6 | S-genes to PM and DM | Lipo + RNPs | 2 Sugraone | Monoallelic |
| Tricoli and Debernardi, 2023 [91] | VvPDS | Carotenoid biosynthesis | PEG + RNPs | 1 Thompson seedless 55 Colombard 11 Merlot 5 V. arizonica | Biallelic |
| Gambino et al., 2024 [100] | VvPDS | Carotenoid biosynthesis | Lipo + RNPs | 7 Nebbiolo | Monoallelic and Biallelic |
| EDIVITE S.R.L. Patent number: WO 2024/052866 A1 [103] | VvMLO17 | S-gene to PM | PEG + RNPs | 1 Chardonnay | Biallelic |
| Böttcher et al., 2025 [101] | VvDMR6-1 + VvDMR6-2 | S-genes to DM | PEG + RNPs | 330 Chardonnay 47 Cabernet sauvignon 79 Shiraz 63 Sauvignon blanc | Monoallelic and Biallelic |
3. Physiological Bases and Molecular Targets for Grapevine Improvement Under Climate Stress
From Physiological Trade-Offs to Molecular Targets for Genome Editing
4. Open Challenges of NGTs
4.1. Regulatory Landscape
4.2. Farmer and Public Perception
5. Final Considerations and Future Perspectives
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| FAO | Food and Agriculture Organization of the United Nations |
| DM | Downy mildew |
| PM | Powdery mildew |
| PIWI | “Pilzwiderstandsfähig” |
| QTLs | Quantitative Trait Loci |
| HSP | Heat Shock Proteins |
| MAS | Marker-Assisted Selection |
| SNP | Single Nucleotide Polymorphism |
| GWAS | Genome-Wide Association Study |
| NGTs | New Genomics Techniques |
| RNP | Ribonucleoprotein |
| PEG | Polyethylene glycol |
| ABA | Abscisic acid |
| GMOs | Genetically modified organisms |
References
- Organisation Internationale de la Vigne et du Vin Organisation Internationale de La Vigne et Du Vin (OIV). Available online: https://www.oiv.int/what-we-do/data-discovery-report?oiv (accessed on 14 January 2026).
- Food and Agriculture Organization of the United Nations (FAO). Agricultural Production Statistics 2000–2022; FAOSTAT Analytical Briefs; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate Change, Wine, and Conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; De Cortázar-Atauri, I.G.; Cook, B.I.; Lacombe, T.; Parker, A.; Van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity Buffers Winegrowing Regions from Climate Change Losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Myles, S. Exploiting Wild Relatives for Genomics-Assisted Breeding of Perennial Crops. Front. Plant Sci. 2017, 8, 460. [Google Scholar] [CrossRef] [PubMed]
- Atak, A. Vitis Species for Stress Tolerance/Resistance. Genet. Resour. Crop Evol. 2025, 72, 2425–2444. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Musayev, M.; Goryslavets, S.; Zdunić, G.; Bert, P.-F.; et al. Dual Domestications and Origin of Traits in Grapevine Evolution. Science 2023, 8, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Poni, S.; Sabbatini, P.; Palliotti, A. Facing Spring Frost Damage in Grapevine: Recent Developments and the Role of Delayed Winter Pruning—A Review. Am. J. Enol. Vitic. 2022, 73, 210–225. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Matus, J.T.; Gomès, E.; Pascual, I. Toward Understanding Grapevine Responses to Climate Change: A Multi-Stress and Holistic Approach. J. Exp. Bot. 2025, 76, 2949–2969. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants 2023, 12, 328. [Google Scholar] [CrossRef]
- Costa, R.; Fraga, H.; Fonseca, A.; De Cortázar-Atauri, I.G.; Val, M.C.; Carlos, C.; Reis, S.; Santos, J.A. Grapevine Phenology of Cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and Climate Change Projections. Agronomy 2019, 9, 210. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of Drought Stress in Grapevine: Towards an Integrative Definition of Drought Tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef]
- Schultz, H.R. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Torres, N.; Yu, R.; Martinez-Luscher, J.; Girardello, R.C.; Kostaki, E.; Oberholster, A.; Kaan Kurtural, S. Shifts in the Phenolic Composition and Aromatic Profiles of Cabernet Sauvignon (Vitis vinifera L.) Wines Are Driven by Different Irrigation Amounts in a Hot Climate. Food Chem. 2022, 371, 131163. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.M.; Ortuño, M.F.; Lopes, C.M.; Chaves, M.M. Grapevine Varieties Exhibiting Differences in Stomatal Response to Water Deficit. Funct. Plant Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Greer, D.H.; Weston, C. Heat Stress Affects Flowering, Berry Growth, Sugar Accumulation and Photosynthesis of Vitis vinifera Cv. Semillon Grapevines Grown in a Controlled Environment. Funct. Plant Biol. 2010, 37, 206–214. [Google Scholar] [CrossRef]
- Previtali, P.; Shackel, K.; Cousins, P.; Dokoozlian, N. Characterization of Berry Softening and Sugar Accumulation Dynamics in a Slow-Ripening Genotype and Its Response to Abscisic Acid Treatments. In Proceedings of the Open Conference on Grapevine Physiology and Biotechnology, Logroño, Spain, 7–11 July 2024; IVES International Viticulture and Enology Society: Bordeaux, France, 2024. [Google Scholar]
- Falginella, L.; Magris, G.; Castellarin, S.D.; Gambetta, G.A.; Matthews, M.A.; Morgante, M.; Di Gaspero, G. Grape Ripening Speed Slowed down Using Natural Variation. Theor. Appl. Genet. 2025, 138, 130. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The Challenge of Adapting Grapevine Varieties to Climate Change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Stanfield, R.C.; Forrestel, E.J.; Elmendorf, K.E.; Bagshaw, S.B.; Bartlett, M.K. Phloem Anatomy Predicts Berry Sugar Accumulation across 13 Wine-Grape Cultivars. Front. Plant Sci. 2024, 15, 1360381. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of Climate Change on Grape Berry Ripening: An Assessment of Adaptation Strategies for the Australian Vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef]
- Magon, G.; De Rosa, V.; Martina, M.; Falchi, R.; Acquadro, A.; Barcaccia, G.; Portis, E.; Vannozzi, A.; De Paoli, E. Boosting Grapevine Breeding for Climate-Smart Viticulture: From Genetic Resources to Predictive Genomics. Front. Plant Sci. 2023, 14, 1293186. [Google Scholar] [CrossRef]
- Fattorini, R.; Caretta, T.O.; Benyahia, F.; Zuluaga, M.Y.A.; Monterisi, S.; Agostini, A.; Andreotti, C.; Cesco, S.; Pii, Y. Double Trouble Belowground: Grapevine Rootstocks Face Drought and Copper Toxicity. Front. Agron. 2025, 7, 1682753. [Google Scholar] [CrossRef]
- Corso, M.; Vannozzi, A.; Maza, E.; Vitulo, N.; Meggio, F.; Pitacco, A.; Telatin, A.; D’Angelo, M.; Feltrin, E.; Negri, A.S.; et al. Comprehensive Transcript Profiling of Two Grapevine Rootstock Genotypes Contrasting in Drought Susceptibility Links the Phenylpropanoid Pathway to Enhanced Tolerance. J. Exp. Bot. 2015, 66, 5739–5752. [Google Scholar] [CrossRef]
- Foria, S.; Magris, G.; Jurman, I.; Schwope, R.; De Candido, M.; De Luca, E.; Ivanišević, D.; Morgante, M.; Di Gaspero, G. Extent of Wild-to-Crop Interspecific Introgression in Grapevine (Vitis vinifera) as a Consequence of Resistance Breeding and Implications for the Crop Species Definition. Hortic. Res. 2022, 9, uhab010. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Merdinoglu, D.; Schneider, C.; Prado, E.; Wiedemann-Merdinoglu, S.; Mestre, P. Breeding for Durable Resistance to Downy and Powdery Mildew in Grapevine. Oeno One 2018, 52, 189–195. [Google Scholar] [CrossRef]
- Salinari, F.; Giosuè, S.; Tubiello, F.N.; Rettori, A.; Rossi, V.; Spanna, F.; Rosenzweig, C.; Gullino, M.L. Downy Mildew (Plasmopara viticola) Epidemics on Grapevine under Climate Change. Glob. Change Biol. 2006, 12, 1299–1307. [Google Scholar] [CrossRef]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the Impact of Climate Change on the Interaction between Grapevine and Its Pests and Pathogens: European Grapevine Moth and Powdery Mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Chuche, J.; Thiéry, D. Biology and Ecology of the Flavescence Dorée Vector Scaphoideus Titanus: A Review Biology and Ecology of the Flavescence Dorée Vector Scaphoideus Titanus: A Review. Agron. Sustain. Dev. 2014, 34, 381–403. [Google Scholar] [CrossRef]
- Koledenkova, K.; Esmaeel, Q.; Jacquard, C.; Nowak, J.; Clément, C.; Ait Barka, E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front. Microbiol. 2022, 13, 889472. [Google Scholar] [CrossRef]
- Pedrelli, A.; Carli, M.; Panattoni, A.; Pellegrini, E.; Rizzo, D.; Nali, C.; Cotrozzi, L. Investigating a New Alarming Outbreak of Flavescence Dorée in Tuscany (Central Italy): Molecular Characterization and Map Gene Typing Elucidate the Complex Phytoplasma Ecology in the Vineyard Agroecosystem. Front. Plant Sci. 2024, 15, 1489790. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.L.K.; Perazzoli, V.; do Mattos, A.P.; Ogoshi, C. Performance of Disease-Resistant Grapevine Varieties with Reduction of Fungicide Spraying. Fruit Crops Sci. J. 2025, 1, e-235. [Google Scholar] [CrossRef]
- Alleweldt, G.; Possingham, J.V. Progress in Grapevine Breeding; Springer: Berlin/Heidelberg, Germany, 1988; Volume 75. [Google Scholar]
- Schneider, A.; Ruffa, P.; Tumino, G.; Fontana, M.; Boccacci, P.; Raimondi, S. Genetic Relationships and Introgression Events between Wild and Cultivated Grapevines (Vitis vinifera L.): Focus on Italian Lambruscos. Sci. Rep. 2024, 14, 12392. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-García, L.; Gago, P.; Martínez-Mora, C.; Santiago, J.L.; Fernádez-López, D.J.; del Martínez, M.C.; Boso, S. Evaluation and Pre-Selection of New Grapevine Genotypes Resistant to Downy and Powdery Mildew, Obtained by Cross-Breeding Programs in Spain. Front. Plant Sci. 2021, 12, 674510. [Google Scholar] [CrossRef]
- Villano, C.; Aversano, R. Towards Grapevine (Vitis vinifera L.) Mildews Resistance: Molecular Defence Mechanisms and New Breeding Technologies. Italus Hortus 2020, 27, 1–17. [Google Scholar] [CrossRef]
- Gieser, J.T.; Kolb, S.; Reiff, J.M.; Riess, K.; Hunke, M.; Entling, M.H.; Schirmel, J. Limited Benefits of Organic Management and Fungicide Reduction to Ground Beetles in Vineyards. Conserv. Sci. Pract. 2025, 7, e13303. [Google Scholar] [CrossRef]
- Eisenmann, B.; Wingerter, C.; Dressler, M.; Freund, C.; Kortekamp, A.; Bogs, J. Fungicide-Saving Potential and Economic Advantages of Fungus-Resistant Grapevine Cultivars. Plants 2023, 12, 3120. [Google Scholar] [CrossRef]
- Trouvelot, S.; Bonneau, L.; Redecker, D.; van Tuinen, D.; Adrian, M.; Wipf, D. Arbuscular Mycorrhiza Symbiosis in Viticulture: A Review. Agron. Sustain. Dev. 2015, 35, 1449–1467. [Google Scholar] [CrossRef]
- Mustapha, A.; Hakeem, A.; Li, S.; Mustafa, G.; Elatafi, E.; Fang, J.; Zhou, C. Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture. Int. J. Plant Biol. 2025, 16, 129. [Google Scholar] [CrossRef]
- Ollat, N.; Touzard, J.-M.; van Leeuwen, C. Climate Change Impacts and Adaptations: New Challenges for the Wine Industry. J. Wine Econ. 2016, 11, 139–149. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in Vineyard Establishment and Canopy Management Urged by Earlier Climate-Related Grape Ripening: A Review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Tomasi, D.; Battista, F.; Gaiotti, F.; Mosetti, D.; Bragato, G. Influence of Soil on Root Distribution: Implications for Quality of Tocai Friulano Berries and Wine. Am. J. Enol. Vitic. 2015, 66, 363–372. [Google Scholar] [CrossRef]
- Zenoni, S.; Ferrarini, A.; Giacomelli, E.; Xumerle, L.; Fasoli, M.; Malerba, G.; Bellin, D.; Pezzotti, M.; Delledonne, M. Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq. Plant Physiol. 2010, 152, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Fasoli, M.; Richter, C.L.; Zenoni, S.; Bertini, E.; Vitulo, N.; Dal Santo, S.; Dokoozlian, N.; Pezzotti, M.; Tornielli, G.B. Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Plant Physiol. 2018, 178, 1187–1206. [Google Scholar] [CrossRef]
- Laucou, V.; Launay, A.; Bacilieri, R.; Lacombe, T.; Adam-Blondon, A.F.; Bérard, A.; Chauveau, A.; De Andrés, M.T.; Hausmann, L.; Ibáñez, J.; et al. Extended Diversity Analysis of Cultivated Grapevine Vitis vinifera with 10K Genome-Wide SNPs. PLoS ONE 2018, 13, e0192540. [Google Scholar] [CrossRef]
- Myles, S.; Boyko, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.M.; Ware, D.; et al. Genetic Structure and Domestication History of the Grape. Proc. Natl. Acad. Sci. USA 2011, 108, 3530–3535. [Google Scholar] [CrossRef]
- Zhou, Y.; Massonnet, M.; Sanjak, J.S.; Cantu, D.; Gaut, B.S. Evolutionary Genomics of Grape (Vitis vinifera ssp. vinifera) Domestication. Proc. Natl. Acad. Sci. USA 2017, 114, 11715–11720. [Google Scholar] [CrossRef]
- This, P.; Lacombe, T.; Thomas, M.R. Historical Origins and Genetic Diversity of Wine Grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Liu, W.; Shi, X.; Huang, S.; Cao, S.; Long, Q.; Wang, X.; Liu, Z.; Xu, X.; et al. Impacts of Reproductive Systems on Grapevine Genome and Breeding. Nat. Commun. 2025, 16, 2031. [Google Scholar] [CrossRef]
- Paineau, M.; Zaccheo, M.; Massonnet, M.; Cantu, D. Advances in Grape and Pathogen Genomics toward Durable Grapevine Disease Resistance. J. Exp. Bot. 2025, 76, 3059–3070. [Google Scholar] [CrossRef]
- Jaillon, O.; Aury, J.-M.; Noel, B.; Policriti, A.; Clepet, C.; Cassagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C. The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–470. [Google Scholar] [CrossRef]
- Shi, X.; Cao, S.; Wang, X.; Huang, S.; Wang, Y.; Liu, Z.; Liu, W.; Leng, X.; Peng, Y.; Wang, N.; et al. The Complete Reference Genome for Grapevine (Vitis vinifera L.) Genetics and Breeding. Hortic. Res. 2023, 10, uhad061. [Google Scholar] [CrossRef] [PubMed]
- The Grapevine Genomics Encyclopedia (GRAPEDIA). An Innovative Portal to Integrate Knowledge, Resources and Services for the Grape Scientific Community and Industry. Available online: https://grapedia.org/ (accessed on 17 December 2025).
- Velt, A.; Frommer, B.; Blanc, S.; Holtgräwe, D.; Duchêne, É.; Dumas, V.; Grimplet, J.; Hugueney, P.; Kim, C.; Lahaye, M.; et al. An Improved Reference of the Grapevine Genome Reasserts the Origin of the PN40024 Highly Homozygous Genotype. G3 Genes Genomes Genet. 2023, 13, jkad067. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, N.; Su, Y.; Long, Q.; Peng, Y.; Shangguan, L.; Zhang, F.; Cao, S.; Wang, X.; Ge, M.; et al. Grapevine Pangenome Facilitates Trait Genetics and Genomic Breeding. Nat. Genet. 2024, 56, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Ghan, R.; Van Sluyter, S.C.; Hochberg, U.; Degu, A.; Hopper, D.W.; Tillet, R.L.; Schlauch, K.A.; Haynes, P.A.; Fait, A.; Cramer, G.R. Five Omic Technologies Are Concordant in Differentiating the Biochemical Characteristics of the Berries of Five Grapevine (Vitis vinifera L.) Cultivars. BMC Genomics 2015, 16, 946. [Google Scholar] [CrossRef]
- Shelden, M.C.; Vandeleur, R.; Kaiser, B.N.; Tyerman, S.D. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. Front. Plant Sci. 2017, 8, 1893. [Google Scholar] [CrossRef]
- Hospital, F.; Moreau, L.; Lacoudre, F.; Charcosset, A.; Gallais, A. More on the Efficiency of Marker-Assisted Selection; Springer: Berlin/Heidelberg, Germany, 1997; Volume 95. [Google Scholar]
- Tessier, C.; David, J.; This, P.; Boursiquot, J.M.; Charrier, A. Optimization of the Choice of Molecular Markers for Varietal Identification in Vitis vinifera L.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 98. [Google Scholar]
- Moroldo, M.; Paillard, S.; Marconi, R.; Fabrice, L.; Canaguier, A.; Cruaud, C.; De Berardinis, V.; Guichard, C.; Brunaud, V.; Le Clainche, I.; et al. A Physical Map of the Heterozygous Grapevine “Cabernet Sauvignon” Allows Mapping Candidate Genes for Disease Resistance. BMC Plant Biol. 2008, 8, 66. [Google Scholar] [CrossRef]
- Töpfer, R.; Hausmann, L.; Harst, M.; Maul, E.; Zyprian, E.; Eibach, R. New Horizons for Grapevine Breeding. Fruit Veg. Cereal Sci. Biotechnol. 2011, 5, 79–100. [Google Scholar]
- Paterson, A.H.; Lander, E.S.; Hewitt, J.D.; Peterson, S.; Lincoln, S.E.; Tanksley, S.D. Resolution of Quantitative Traits into Mendelian Factors by Using a Complete Linkage Map of Restriction Fragment Length Polymorphisms. Nature 1988, 335, 721–726. [Google Scholar] [CrossRef]
- Emanuelli, F.; Lorenzi, S.; Grzeskowiak, L.; Catalano, V.; Stefanini, M.; Troggio, M.; Myles, S.; Martinez-Zapater, J.M.; Zyprian, E.; Moreira, F.M.; et al. Genetic Diversity and Population Structure Assessed by SSR and SNP Markers in a Large Germplasm Collection of Grape. BMC Plant Biol. 2013, 13, 39. [Google Scholar] [CrossRef]
- Schneider, C.; Onimus, C.; Prado, E.; Dumas, V.; Wiedemann-Merdinoglu, S.; Dorne, M.A.; Lacombe, M.C.; Piron, M.C.; Umar-Faruk, A.; Duchêne, E.; et al. INRA-ReSDUR: The French Grapevine Breeding Programme for Durable Resistance to Downy and Powdery Mildew. Int. Soc. Hortic. Sci. 2019, 1248, 207–213. [Google Scholar] [CrossRef]
- Scariolo, F.; Gabelli, G.; Magon, G.; Palumbo, F.; Pirrello, C.; Farinati, S.; Curioni, A.; Devillars, A.; Lucchin, M.; Barcaccia, G.; et al. The Transcriptional Landscape of Berry Skin in Red and White PIWI (“Pilzwiderstandsfähig”) Grapevines Possessing QTLs for Partial Resistance to Downy and Powdery Mildews. Plants 2024, 13, 2574. [Google Scholar] [CrossRef] [PubMed]
- Zini, E.; Dolzani, C.; Stefanini, M.; Gratl, V.; Bettinelli, P.; Nicolini, D.; Betta, G.; Dorigatti, C.; Velasco, R.; Letschka, T.; et al. R-Loci Arrangement Versus Downy and Powdery Mildew Resistance Level: A Vitis Hybrid Survey. Int. J. Mol. Sci. 2019, 20, 3526. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, C.; Szolnoki, G. Adoption and Impact of Fungus-Resistant Grape Varieties within German Viticulture: A Comprehensive Mixed-Methods Study with Producers. Sustainability 2024, 16, 6068. [Google Scholar] [CrossRef]
- Brault, C.; Lazerges, J.; Doligez, A.; Thomas, M.; Ecarnot, M.; Roumet, P.; Bertrand, Y.; Berger, G.; Pons, T.; François, P.; et al. Interest of Phenomic Prediction as an Alternative to Genomic Prediction in Grapevine. Plant Methods 2022, 18, 108. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic Selection for Crop Improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Ayhan, D.H.; Rhaman, M.S.; Yan, M.; Jiang, J.; Wang, D.; Zheng, W.; Mei, J.; Ji, W.; et al. Super Pangenome of Vitis Empowers Identification of Downy Mildew Resistance Genes for Grapevine Improvement. Nat. Genet. 2025, 57, 741–753. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M. Merging Traditional Practices and Modern Technology through Computational Plant Breeding. Plant Physiol. 2025, 199, kiaf355. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S.P.; Choudhury, B.U.; Kumar, A.; Prakash, N.R.; Verma, R.; Chakraborti, M.; Devi, A.G.; Bhattacharjee, B.; Das, R.; et al. Advances in Genomic Tools for Plant Breeding: Harnessing DNA Molecular Markers, Genomic Selection, and Genome Editing. Biol. Res. 2024, 57, 80. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Gao, C. Genome Engineering for Crop Improvement and Future Agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Doudna, J.A. CRISPR Technology: A Decade of Genome Editing Is Only the Beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, Q.; Tang, X.; Liu, S.; Malzahn, A.A.; Zhou, J.; Wang, J.; Yin, D.; Pan, C.; Yuan, M.; et al. Expanding the Scope of Plant Genome Engineering with Cas12a Orthologs and Highly Multiplexable Editing Systems. Nat. Commun. 2021, 12, 1944. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Liu, X.; Zhang, Z.; Wang, Y.; Duan, W.; Li, S.; Liang, Z. CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Chardonnay (Vitis vinifera L.). Sci. Rep. 2016, 6, 32289. [Google Scholar] [CrossRef]
- Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Grape in the First Generation. Plant Biotechnol. J. 2018, 16, 844–855. [Google Scholar] [CrossRef]
- Wan, D.Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.Q. CRISPR/Cas9-Mediated Mutagenesis of VvMLO3 Results in Enhanced Resistance to Powdery Mildew in Grapevine (Vitis vinifera). Hortic. Res. 2020, 7, 116. [Google Scholar] [CrossRef]
- Ren, C.; Guo, Y.; Kong, J.; Lecourieux, F.; Dai, Z.; Li, S.; Liang, Z. Knockout of VvCCD8 Gene in Grapevine Affects Shoot Branching. BMC Plant Biol. 2020, 20, 47. [Google Scholar] [CrossRef]
- Olivares, F.; Loyola, R.; Olmedo, B.; de los Ángeles Miccono, M.; Aguirre, C.; Vergara, R.; Riquelme, D.; Madrid, G.; Plantat, P.; Mora, R.; et al. CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. Cv. Thompson Seedless Using Geminivirus-Derived Replicons. Front. Plant Sci. 2021, 12, 791030. [Google Scholar] [CrossRef]
- Iocco-Corena, P.; Chaïb, J.; Torregrosa, L.; Mackenzie, D.; Thomas, M.R.; Smith, H.M. VviPLATZ1 Is a Major Factor That Controls Female Flower Morphology Determination in Grapevine. Nat. Commun. 2021, 12, 6995. [Google Scholar] [CrossRef]
- Clemens, M.; Faralli, M.; Lagreze, J.; Bontempo, L.; Piazza, S.; Varotto, C.; Malnoy, M.; Oechel, W.; Rizzoli, A.; Dalla Costa, L. VvEPFL9-1 Knock-Out via CRISPR/Cas9 Reduces Stomatal Density in Grapevine. Front. Plant Sci. 2022, 13, 878001. [Google Scholar] [CrossRef]
- Tu, M.; Fang, J.; Zhao, R.; Liu, X.; Yin, W.; Wang, Y.; Wang, X.; Wang, X.; Fang, Y. CRISPR/Cas9-Mediated Mutagenesis of VvbZIP36 Promotes Anthocyanin Accumulation in Grapevine (Vitis vinifera). Hortic. Res. 2022, 9, uhac022. [Google Scholar] [CrossRef]
- Giacomelli, L.; Zeilmaker, T.; Giovannini, O.; Salvagnin, U.; Masuero, D.; Franceschi, P.; Vrhovsek, U.; Scintilla, S.; Rouppe van der Voort, J.; Moser, C. Simultaneous Editing of Two DMR6 Genes in Grapevine Results in Reduced Susceptibility to Downy Mildew. Front. Plant Sci. 2023, 14, 1242240. [Google Scholar] [CrossRef]
- Tricoli, D.M.; Debernardi, J.M. An Efficient Protoplast-Based Genome Editing Protocol for Vitis Species. Hortic. Res. 2023, 11, uhad266. [Google Scholar] [CrossRef] [PubMed]
- Moffa, L.; Mannino, G.; Bevilacqua, I.; Gambino, G.; Perrone, I.; Pagliarani, C.; Bertea, C.M.; Spada, A.; Narduzzo, A.; Zizzamia, E.; et al. CRISPR/Cas9-Driven Double Modification of Grapevine MLO6-7 Imparts Powdery Mildew Resistance, While Editing of NPR3 Augments Powdery and Downy Mildew Tolerance. Plant J. 2024, 122, e17204. [Google Scholar] [CrossRef] [PubMed]
- Djennane, S.; Gersch, S.; Le-Bohec, F.; Piron, M.C.; Baltenweck, R.; Lemaire, O.; Merdinoglu, D.; Hugueney, P.; Nogué, F.; Mestre, P. CRISPR/Cas9 Editing of Downy Mildew Resistant 6 (DMR6-1) in Grapevine Leads to Reduced Susceptibility to Plasmopara viticola. J. Exp. Bot. 2024, 75, 2100–2112. [Google Scholar] [CrossRef] [PubMed]
- Lagrèze, J.; Pajuelo, A.S.; Coculo, D.; Rojas, B.; Pizzio, G.A.; Zhang, C.; Tian, M.B.; Malnoy, M.; Vannozzi, A.; Costa, L.D.; et al. PME10 Is a Pectin Methylesterase Driving PME Activity and Immunity Against Botrytis Cinerea in Grapevine (Vitis vinifera L.). Plant Biotechnol. J. 2025, 23, 4981–4997. [Google Scholar] [CrossRef]
- Villette, J.; Lecourieux, F.; Bastiancig, E.; Héloir, M.C.; Poinssot, B. New Improvements in Grapevine Genome Editing: High Efficiency Biallelic Homozygous Knock-out from Regenerated Plantlets by Using an Optimized ZCas9i. Plant Methods 2024, 20, 45. [Google Scholar] [CrossRef]
- Malnoy, M.; Viola, R.; Jung, M.H.; Koo, O.J.; Kim, S.; Kim, J.S.; Velasco, R.; Kanchiswamy, C.N. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef]
- Osakabe, Y.; Liang, Z.; Ren, C.; Nishitani, C.; Osakabe, K.; Wada, M.; Komori, S.; Malnoy, M.; Velasco, R.; Poli, M.; et al. CRISPR–Cas9-Mediated Genome Editing in Apple and Grapevine. Nat. Protoc. 2018, 13, 2844–2863. [Google Scholar] [CrossRef]
- Najafi, S.; Bertini, E.; D’Incà, E.; Fasoli, M.; Zenoni, S. DNA-Free Genome Editing in Grapevine Using CRISPR/Cas9 Ribonucleoprotein Complexes Followed by Protoplast Regeneration. Hortic. Res. 2022, 10, uhac240. [Google Scholar] [CrossRef]
- Scintilla, S.; Salvagnin, U.; Giacomelli, L.; Zeilmaker, T.; Malnoy, M.A.; Rouppe van der Voort, J.; Moser, C. Regeneration of Non-Chimeric Plants from DNA-Free Edited Grapevine Protoplasts. Front. Plant Sci. 2022, 13, 1078931. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Nuzzo, F.; Moine, A.; Chitarra, W.; Pagliarani, C.; Petrelli, A.; Boccacci, P.; Delliri, A.; Velasco, R.; Nerva, L.; et al. Genome Editing of a Recalcitrant Wine Grape Genotype by Lipofectamine-Mediated Delivery of CRISPR/Cas9 Ribonucleoproteins to Protoplasts. Plant J. 2024, 119, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, C.; McDavid, D.; Jermakow, A.M.; Iocco-Corena, P.; Arunasiri, N.; Maffei, S.M.; Boss, P.K. Efficient DNA-Free Protoplast Gene Editing of Elite Winegrape Cultivars for the Generation of Clones With Reduced Downy Mildew Susceptibility. Aust. J. Grape Wine Res. 2025, 2025, 8867814. [Google Scholar] [CrossRef]
- Bertini, E.; D’Incà, E.; Zattoni, S.; Lissandrini, S.; Cattaneo, L.; Ciffolillo, C.; Amato, A.; Fasoli, M.; Zenoni, S. Transgene-Free Genome Editing in Grapevine. Bio Protoc. 2025, 15, e5190. [Google Scholar] [CrossRef]
- EDIVITE S.R.L. Powdery Mildew-Resistant Grapevine 2024. Patent Number WO2024052866A1, 14 March 2024. Available online: https://patents.google.com/patent/WO2024052866A1/en (accessed on 14 January 2026).
- Seguin, G. ‘Terroirs’ and Pedology of Wine Growing. Experientia 1986, 42, 861–873. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef]
- Rienth, M.; Torregrosa, L.; Sarah, G.; Ardisson, M.; Brillouet, J.M.; Romieu, C. Temperature Desynchronizes Sugar and Organic Acid Metabolism in Ripening Grapevine Fruits and Remodels Their Transcriptome. BMC Plant Biol. 2016, 16, 164. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- Lecourieux, F.; Kappel, C.; Pieri, P.; Charon, J.; Pillet, J.; Hilbert, G.; Renaud, C.; Gomès, E.; Delrot, S.; Lecourieux, D. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. Front. Plant Sci. 2017, 8, 53. [Google Scholar] [CrossRef]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the Impact of Temperature on Grape Phenolic Metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Tarara, J.M.; Mills, L.J. Spring Temperatures Alter Reproductive Development in Grapevines. Aust. J. Grape Wine Res. 2010, 16, 445–454. [Google Scholar] [CrossRef]
- Pereira, H.S.; Delgado, M.; Avó, A.P.; Barão, A.; Serrano, I.; Viegas, W. Pollen Grain Development Is Highly Sensitive to Temperature Stress in Vitis vinifera. Aust. J. Grape Wine Res. 2014, 20, 474–484. [Google Scholar] [CrossRef]
- Pagay, V.; Collins, C. Effects of Timing and Intensity of Elevated Temperatures on Reproductive Development of Field-Grown Shiraz Grapevines. Oeno One 2017, 51, 409–421. [Google Scholar] [CrossRef]
- Keller, M.; Scheele-Baldinger, R.; Ferguson, J.C.; Tarara, J.M.; Mills, L.J. Inflorescence Temperature Influences Fruit Set, Phenology, and Sink Strength of Cabernet Sauvignon Grape Berries. Front. Plant Sci. 2022, 13, 864892. [Google Scholar] [CrossRef]
- Pilati, S.; Bagagli, G.; Sonego, P.; Moretto, M.; Brazzale, D.; Castorina, G.; Simoni, L.; Tonelli, C.; Guella, G.; Engelen, K.; et al. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. Front. Plant Sci. 2017, 8, 1093. [Google Scholar] [CrossRef]
- Villalobos-González, L.; Peña-Neira, A.; Ibáñez, F.; Pastenes, C. Long-Term Effects of Abscisic Acid (ABA) on the Grape Berry Phenylpropanoid Pathway: Gene Expression and Metabolite Content. Plant Physiol. Biochem. 2016, 105, 213–223. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, M.; Ren, J.; Qi, J.; Zhang, G.; Leng, P. Reciprocity between Abscisic Acid and Ethylene at the Onset of Berry Ripening and after Harvest. BMC Plant Biol. 2010, 10, 257. [Google Scholar] [CrossRef]
- Mohammadkhani, N.; Heidari, R.; Abbaspour, N.; Rahmani, F. Growth Responses and Aquaporin Expression in Grape Genotypes under Salinity. Iran J. Plant Physiol. 2012, 2, 497–507. [Google Scholar]
- Hou, L.; Fan, X.; Hao, J.; Liu, G.; Zhang, Z.; Liu, X. Negative Regulation by Transcription Factor VvWRKY13 in Drought Stress of Vitis vinifera L. Plant Physiol. Biochem. 2020, 148, 114–121. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Ye, X.; Zheng, X.; Tan, B.; Wang, W.; Li, Z.; Li, J.; Cheng, J.; Feng, J. Overexpressing VvWRKY18 from Grapevine Reduces the Drought Tolerance in Arabidopsis by Increasing Leaf Stomatal Density. J. Plant Physiol. 2022, 275, 153741. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ji, X.; Luo, C.; Song, X.; Leng, X.; Ma, Y.; Wang, J.; Fang, J.; Ren, Y. VvLBD39, a Grape LBD Transcription Factor, Regulates Plant Response to Salt and Drought Stress. Environ. Exp. Bot. 2024, 226, 105918. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, M.; Zhang, X.; Zhao, T.; Huang, C.; Tang, Y.; Yan, Y.; Zhang, C. The Ubiquitin Ligase VviPUB19 Negatively Regulates Grape Cold Tolerance by Affecting the Stability of ICEs and CBFs. Hortic. Res. 2025, 12, uhae297. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathne, A.S.; Liu, F.; Zou, Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. Plants 2025, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Li, Z.; Song, P.; Wang, Y.; Liu, W.; Zhang, L.; Li, X.; Li, W.; Han, D. Overexpression of a Grape MYB Transcription Factor Gene VhMYB2 Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2023, 24, 10743. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Dai, J.; Chen, Z.; Li, W.; Li, X.; Zhang, L.; Yao, A.; Zhang, B.; Han, D. Overexpression of a ‘Beta’ MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2024, 25, 1534. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, L.; Dai, J.; Li, Z.; Zhang, A.; Wang, T.; Liu, W.; Li, X.; Han, D. Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana. Int. J. Mol. Sci. 2024, 25, 7437. [Google Scholar] [CrossRef]
- Tu, M.; Wang, X.; Zhu, Y.; Wang, D.; Zhang, X.; Cui, Y.; Li, Y.; Gao, M.; Li, Z.; Wang, Y.; et al. VlbZIP30 of Grapevine Functions in Dehydration Tolerance via the Abscisic Acid Core Signaling Pathway. Hortic. Res. 2018, 5, 49. [Google Scholar] [CrossRef]
- Ju, Y.-L.; Yue, X.-F.; Min, Z.; Wang, X.-H.; Fang, Y.-L.; Zhang, J.-X. VvNAC17, a Novel Stress-Responsive Grapevine (Vitis vinifera L.) NAC Transcription Factor, Increases Sensitivity to Abscisic Acid and Enhances Salinity, Freezing, and Drought Tolerance in Transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 146, 98–111. [Google Scholar] [CrossRef]
- Liu, J.; Chu, J.; Ma, C.; Jiang, Y.; Ma, Y.; Xiong, J.; Cheng, Z.M. Overexpression of an ABA-Dependent Grapevine BZIP Transcription Factor, VvABF2, Enhances Osmotic Stress in Arabidopsis. Plant Cell Rep. 2019, 38, 587–596. [Google Scholar] [CrossRef]
- Çakir, B.; Agasse, A.; Gaillard, C.; Saumonneau, A.; Delrot, S.; Atanassova, R. A Grape ASR Protein Involved in Sugar and Abscisic Acid Signaling. Plant Cell 2003, 15, 2165–2180. [Google Scholar] [CrossRef] [PubMed]
- Konecny, T.; Asatryan, A.; Binder, H. Responding to Stress: Diversity and Resilience of Grapevine in a Changing Climate Under the Perspective of Omics Research. Int. J. Mol. Sci. 2025, 26, 7877. [Google Scholar] [CrossRef] [PubMed]
- Thomashow, M.F. Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway. Plant Physiol. 2010, 154, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhang, Z.; Ren, J.; Qin, Y.; Huang, J.; Wang, Y.; Cai, B.; Wang, B.; Tao, J. Stress-Responsive Gene ICE1 from Vitis Amurensis Increases Cold Tolerance in Tobacco. Plant Physiol. Biochem. 2013, 71, 212–217. [Google Scholar] [CrossRef]
- Liu, G.T.; Wang, J.F.; Cramer, G.; Dai, Z.W.; Duan, W.; Xu, H.G.; Wu, B.H.; Fan, P.G.; Wang, L.J.; Li, S.H. Transcriptomic Analysis of Grape (Vitis vinifera L.) Leaves during and after Recovery from Heat Stress. BMC Plant Biol. 2012, 12, 174. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Li, S.; Lecourieux, D.; Duan, W.; Fan, P.; Liang, Z.; Wang, L. Natural Variations of HSFA2 Enhance Thermotolerance in Grapevine. Hortic. Res. 2023, 10, uhac250. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Torres, N.; Hilbert, G.; Richard, T.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Pascual, I.; Gomès, E. Ultraviolet-B Radiation Modifies the Quantitative and Qualitative Profile of Flavonoids and Amino Acids in Grape Berries. Phytochemistry 2014, 102, 106–114. [Google Scholar] [CrossRef]
- Loyola, R.; Herrera, D.; Mas, A.; Wong, D.C.J.; Höll, J.; Cavallini, E.; Amato, A.; Azuma, A.; Ziegler, T.; Aquea, F.; et al. The Photomorphogenic Factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE Are Part of the UV-B Signalling Pathway in Grapevine and Mediate Flavonol Accumulation in Response to the Environment. J. Exp. Bot. 2016, 67, 5429–5445. [Google Scholar] [CrossRef]
- Lane, T.S.; Rempe, C.S.; Davitt, J.; Staton, M.E.; Peng, Y.; Soltis, D.E.; Melkonian, M.; Deyholos, M.; Leebens-Mack, J.H.; Chase, M.; et al. Diversity of ABC Transporter Genes across the Plant Kingdom and Their Potential Utility in Biotechnology. BMC Biotechnol. 2016, 16, 47. [Google Scholar] [CrossRef]
- Mejía, N.; Soto, B.; Guerrero, M.; Casanueva, X.; Houel, C.; de los Ángeles Miccono, M.; Ramos, R.; Le Cunff, L.; Boursiquot, J.M.; Hinrichsen, P.; et al. Molecular, Genetic and Transcriptional Evidence for a Role of VvAGL11 in Stenospermocarpic Seedlessness in Grapevine. BMC Plant Biol. 2011, 11, 57. [Google Scholar] [CrossRef]
- Meldolesi, A. Italy Tests First Gene-Edited Vines for Winemaking. Nat. Biotechnol. 2024, 42, 1630. [Google Scholar] [CrossRef]
- Kondo, K.; Taguchi, C. Japanese Regulatory Framework and Approach for Genome-Edited Foods Based on Latest Scientific Findings. Food Saf. 2022, 10, 113–128. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. Supporting Document 5: Updated Compilation of Regulatory Approaches and Definitions; Food Standards Australia New Zealand: Wellington, New Zealand, 2025.
- Mundorf, J.; Simon, S.; Engelhard, M. The European Commission’s Regulatory Proposal on New Genomic Techniques in Plants: A Focus on Equivalence, Complexity, and Artificial Intelligence. Environ. Sci. Eur. 2025, 37, 143. [Google Scholar] [CrossRef]



| Authors | Target Gene(s) | Function/Pathway | Editing Strategy | Observed Phenotype/Outcome |
|---|---|---|---|---|
| Ren et al., 2016 [82] | VvIdnDH | Enzyme in tartaric acid biosynthesis | CRISPR/Cas9 | Knock-out reduced tartaric acid accumulation, demonstrating gene’s role in acid metabolism |
| Wang et al., 2018 [83] | VvWRKY52 | Transcription factor acting as susceptibility gene to Botrytis cinerea | CRISPR/Cas9 | Knock-out increased resistance to gray mold without growth penalties |
| Wan et al., 2020 [84] | VvMLO3, VvMLO4 | Susceptibility genes to powdery mildew | CRISPR/Cas9 | VvMLO3 knock-out lines showed strong resistance to Erysiphe necator, with reduced fungal growth and no growth penalties |
| Ren et al., 2020 [85] | VvCCD8 | Strigolactone biosynthesis enzyme | CRISPR/Cas9 | Knock-out increased shoot branching, confirming role in bud outgrowth regulation |
| Olivares et al., 2021 [86] | VvDEL1 | Fungal susceptibility factor | CRISPR/Cas9 (Agrobacterium-mediated + Geminivirus-replicon system) | Transgene-free line showed >90% reduction in powdery mildew symptoms |
| Iocco-Corena et al., 2021 [87] | VvPLATZ1 | Zinc-finger transcription factor controlling flower sex | CRISPR/ZFN hybrid system | Loss-of-function caused reflexed stamens and female flower morphology |
| Clemens et al., 2022 [88] | VvEPFL9-1 | Regulator of stomatal development | CRISPR/Cas9 | Reduced stomatal density and improved intrinsic water-use efficiency |
| Tu et al., 2022 [89] | VvbZIP36 | Transcriptional repressor of anthocyanin biosynthesis | CRISPR/Cas9 | Increased anthocyanin accumulation, deeper berry pigmentation |
| Giacomelli et al., 2023 [90] | VvDMR6-1, VvDMR6-2 | Negative regulators of immunity (salicylic acid pathway) | CRISPR/Cas9 (dual knock-out) | Double mutants exhibited strong resistance to downy mildew (Plasmopara viticola) and increased SA levels |
| Tricoli and Debernardi, 2023 [91] | VvPDS | Carotenoid biosynthesis | CRISPR/Cas9 | Albino plants |
| Tricoli and Debernardi, 2023 [91] | VvGAI1 | Gibberellin (GA)-insensitive allele that result in dwarf grape plants | CRISPR/Cas9 | Severely dwarfed phenotype in vitro |
| Moffa et al., 2024 [92] | VvNPR3 VvMLO6-7 | Negative regulator of systemic acquired resistance | CRISPR/Cas9 (Agrobacterium-mediated + cisgenic Cre/lox) | Enhanced resistance to both powdery and downy mildew, increased stilbene accumulation |
| Djennane et al., 2024 [93] | VvDMR6-1 | Susceptibility gene to downy mildew | CRISPR/Cas9 | Reduced P. viticola infection; some growth defects observed |
| Lagrèze et al., 2025 [94] | VvPME10 | Pectin Methylesterase (PME) | CRISPR/Cas9 | Reduced induction of PME activity and increased susceptibility to infection by B. cinerea |
| Authors | Abiotic Stress | Target Gene | Function/Pathway |
|---|---|---|---|
| Mohammadkhani et al. 2012 [118] | Salt | VvPIP2.2 | Differential aquaporin regulation associated with salt sensitivity |
| Hou et al. 2020 [119] | Drought | VvWRKY13 | Negative regulator of drought tolerance affecting osmotic adjustment and ROS homeostasis |
| Zhang et al. 2022 [120] | Drought | VvWRKY18 | Negative regulator of drought tolerance through increased stomatal density and reduced ABA-mediated closure |
| Chen et al. 2024 [121] | Salt and drought | VvLBD39 | Transcriptional repressor of salt and drought tolerance via inhibition of ROS scavenging |
| Wang et al. 2025 [122] | Cold | VvPUB19 | E3 ubiquitin ligase negatively regulating cold tolerance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Carratore, C.; Amato, A.; Pezzotti, M.; Bellon, O.; Zenoni, S. Genome Editing and Integrative Breeding Strategies for Climate-Resilient Grapevines and Sustainable Viticulture. Horticulturae 2026, 12, 117. https://doi.org/10.3390/horticulturae12010117
Carratore C, Amato A, Pezzotti M, Bellon O, Zenoni S. Genome Editing and Integrative Breeding Strategies for Climate-Resilient Grapevines and Sustainable Viticulture. Horticulturae. 2026; 12(1):117. https://doi.org/10.3390/horticulturae12010117
Chicago/Turabian StyleCarratore, Carmine, Alessandra Amato, Mario Pezzotti, Oscar Bellon, and Sara Zenoni. 2026. "Genome Editing and Integrative Breeding Strategies for Climate-Resilient Grapevines and Sustainable Viticulture" Horticulturae 12, no. 1: 117. https://doi.org/10.3390/horticulturae12010117
APA StyleCarratore, C., Amato, A., Pezzotti, M., Bellon, O., & Zenoni, S. (2026). Genome Editing and Integrative Breeding Strategies for Climate-Resilient Grapevines and Sustainable Viticulture. Horticulturae, 12(1), 117. https://doi.org/10.3390/horticulturae12010117

