Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,823)

Search Parameters:
Keywords = bio-active compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1573 KB  
Article
Williams Pear Canning-Industrial Residues Suitable for Powdered Products: Effect of Particle Size and Acid Immersion on Physicochemical and Bioactive Properties
by Milagros Gomez Mattson, Susana Diez, Paula Sette, Rocío Corfield, Francisco Garrido Makinistian, Carolina Schebor, Lorena Franceschinis and Daniela M. Salvatori
Foods 2026, 15(2), 377; https://doi.org/10.3390/foods15020377 (registering DOI) - 21 Jan 2026
Abstract
Powdered fiber- and polyphenol-rich ingredients derived from pear canning residues were obtained by direct processing. Residues were subjected to acid immersion and subsequent convective drying, milling, and sieving. Drying kinetics were studied to select the best operative drying conditions (70 °C, 3 h) [...] Read more.
Powdered fiber- and polyphenol-rich ingredients derived from pear canning residues were obtained by direct processing. Residues were subjected to acid immersion and subsequent convective drying, milling, and sieving. Drying kinetics were studied to select the best operative drying conditions (70 °C, 3 h) for both acidified (CIT) and non-acidified (C) samples. Two granulometries were also assessed (<210 and <590 μm). The resulting powders (C210, CIT210, C590, CIT590) were characterized as bioactive compounds, techno-functional fiber properties, physical and stability attributes, as well as in vitro bioaccessibility. All powders were rich in dietary fiber (52–54%) and exhibited a polyphenol content ranging from ~390 to 567 mg GAE/100 g on a dry basis for CIT and C powders, respectively. Also presented good hydration properties and low oil absorption. Sample C210 was particularly noteworthy due to its higher polyphenol level and better physical and stability properties. Acid immersion slightly reduced browning during drying and, although it caused a polyphenol loss (29%), CIT samples showed a better functional potential in terms of bioaccessibility of polyphenols (83 ± 6%) and of antioxidant capacity (58 ± 1%). By analyzing multiple properties, this study offers a comprehensive evaluation of simple and cost-effective biomass utilization strategies for the production of functional ingredients. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 1748 KB  
Review
Next-Generation Biopesticides for the Control of Fungal Plant Pathogens
by Younes Rezaee Danesh, Nurhan Keskin, Solmaz Najafi, Harlene Hatterman-Valenti and Ozkan Kaya
Plants 2026, 15(2), 312; https://doi.org/10.3390/plants15020312 - 20 Jan 2026
Abstract
This review explores the innovative approaches in the development of next-generation biopesticides, focusing on molecular and microbial strategies for effective control of fungal plant pathogens. As agricultural practices increasingly seek sustainable solutions to combat plant diseases, biopesticides have emerged as a promising alternative [...] Read more.
This review explores the innovative approaches in the development of next-generation biopesticides, focusing on molecular and microbial strategies for effective control of fungal plant pathogens. As agricultural practices increasingly seek sustainable solutions to combat plant diseases, biopesticides have emerged as a promising alternative to chemical pesticides, offering reduced environmental impact and enhanced safety for non-target organisms. The review begins by outlining the critical role of fungal pathogens in global agriculture, emphasizing the need for novel control methods that can mitigate their detrimental effects on crop yields. Key molecular strategies discussed include the use of genetic engineering to enhance the efficacy of biopesticides, the application of RNA interference (RNAi) techniques to target specific fungal genes, and the development of bioactive compounds derived from natural sources. Additionally, this review highlights the potential of microbial agents, such as beneficial bacteria and fungi, in establishing biocontrol mechanisms that promote plant health and resilience. Through a comprehensive review of recent studies and advancements in the field, this manuscript illustrates how integrating molecular and microbial strategies can lead to the development of effective biopesticides tailored to combat specific fungal threats. The implications of these strategies for sustainable agriculture are discussed, alongside the challenges and future directions for research and implementation. Ultimately, this review aims to provide a thorough understanding of the transformative potential of next-generation biopesticides in the fight against fungal plant pathogens, contributing to the broader goal of sustainable food production. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

3 pages, 148 KB  
Editorial
Natural Products Chemistry: Advances in Synthetic, Analytical and Bioactivity Studies, Volume II
by Giovanni Ribaudo
Molecules 2026, 31(2), 374; https://doi.org/10.3390/molecules31020374 - 20 Jan 2026
Abstract
The idea of collecting novel contributions relating to the chemistry of natural compounds in this Special Issue stemmed from the success of the first edition of the collection entitled “Natural Products Chemistry: Advances in Synthetic, Analytical and Bioactivity Studies”, which was published in [...] Read more.
The idea of collecting novel contributions relating to the chemistry of natural compounds in this Special Issue stemmed from the success of the first edition of the collection entitled “Natural Products Chemistry: Advances in Synthetic, Analytical and Bioactivity Studies”, which was published in Molecules in 2023 [...] Full article
17 pages, 1242 KB  
Article
From Nature to Synthesis and Vice Versa: Costic Acid Analogs with Acaricidal Activity Against the Bee Parasite Varroa destructor
by Eugenia Papastefanaki, Apostolos Spyros, Demosthenis Isaakidis, Maria Kallivretaki, Despoina Moraiti, Napoleon C. Stratigakis, Demetrios Ghanotakis and Haralambos E. Katerinopoulos
Plants 2026, 15(2), 310; https://doi.org/10.3390/plants15020310 - 20 Jan 2026
Abstract
The species Inula helenium belongs to the genus Inula (Asteraceae) and exhibits antibacterial and anti-inflammatory properties. It is used in respiratory and skin diseases. Its bioactivity is attributed to its eudesmanolide components, mainly to alantolactone and isoalantolactone. These components were isolated in high [...] Read more.
The species Inula helenium belongs to the genus Inula (Asteraceae) and exhibits antibacterial and anti-inflammatory properties. It is used in respiratory and skin diseases. Its bioactivity is attributed to its eudesmanolide components, mainly to alantolactone and isoalantolactone. These components were isolated in high purity from the plant’s dried roots, either via multiple column chromatography separations or via repeated recrystallization. Two more eudesmanolides structurally similar to their parent compounds were isolated, namely 11,13-dihydro-alantolactone and 11,13-dihydro-isoalantolactone. The secondary metabolites and their derivatives were characterized in detail, for the first time, via NMR spectroscopy, GC-MS, and HRMS. Synthetic modification of the natural component structure was considered necessary for structure–activity relationship studies and biological tests. Thus, each compound was converted to its nitrile and then to the corresponding acid, or to its azide derivative and then corresponding amine. Antioxidant studies were conducted on the parent compounds, their derivatives, and the methanolic and hexane plant extracts using the DPPH radical method. The study revealed a strong antioxidant capacity of the methanolic extract. Acaricidal studies of both natural products and synthetic analogs against Varroa destructor and the comparison of their activity with the parent natural product costic acid, as well as one of its synthetic congeners, indicated that the “from nature to synthesis and vice versa” approach led to active compounds as well as to meaningful conclusions regarding the “pharmacophore” groups in the structural framework of the acaricides. Full article
Show Figures

Figure 1

22 pages, 748 KB  
Review
The Beneficial Effects of Marine Plant-Derived Compounds on the Musculoskeletal System
by László Szabó, Áron Gere, Zsigmond Máté Kovács, Tamás Bazsó and Beatrix Dienes
Int. J. Mol. Sci. 2026, 27(2), 1032; https://doi.org/10.3390/ijms27021032 - 20 Jan 2026
Abstract
The skeletal muscle system is particularly susceptible to degenerative and inflammatory processes that threaten mobility, quality of life, and systemic health. Marine plants, including brown, red, and green algae, are valuable yet understudied sources of bioactive compounds with therapeutic potential against skeletal muscle [...] Read more.
The skeletal muscle system is particularly susceptible to degenerative and inflammatory processes that threaten mobility, quality of life, and systemic health. Marine plants, including brown, red, and green algae, are valuable yet understudied sources of bioactive compounds with therapeutic potential against skeletal muscle inflammation and degeneration. This narrative review provides the first overview of polyphenols, polysaccharides, carotenoids, and multiminerals derived from marine plants, with a particular focus on their effects on skeletal muscle, bone, and joint tissues. It highlights both the therapeutic potential and the limitations of marine plant-derived bioactive compounds in the musculoskeletal system. The compounds discussed, such as phlorotannins, ulvan, fucoidan, carotenoids, spirulina derivatives, and Aquamin, modulate key signaling pathways, including NF-κB, JAK/STAT3, and the NLRP3 inflammasome. Among these, MAPK emerges as the most consistently affected axis across all compound classes, leading to a reduction in TNF-α, IL-1β, IL-6, and oxidative stress markers. These bioactive compounds have been shown in both in vitro and in vivo models to reduce muscle catabolism, enhance osteoblast differentiation and mineralization, and reduce cartilage inflammation. Despite favorable safety, biocompatibility, and biodegradability profiles, current evidence shows that systemic applications significantly dominate over local delivery, highlighting the untapped potential of localized delivery strategies. Overall, this narrative review underscores the growing importance of marine plant-derived bioactives as promising natural agents for maintaining musculoskeletal integrity and alleviating degenerative disorders. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
14 pages, 1481 KB  
Article
Untargeted LC-HRMS-Based Metabolomic and Antibacterial Potential of Sargassum duplicatum Against Multidrug-Resistant Bacteria
by Feri Susanto, Riyanti, Hamdan Syakuri, Muhammad Nursid, Till F. Schäberle, Ute Mettal, Jae-Suk Choi and Maria Dyah Nur Meinita
Medicina 2026, 62(1), 218; https://doi.org/10.3390/medicina62010218 - 20 Jan 2026
Abstract
Background/Objectives: The rise in antimicrobial resistance is one of the major challenges to global health systems, which necessitates the development of new antibacterial compounds. The bioactive compounds of brown seaweed Sargassum duplicatum have demonstrated potential antibacterial activity. This study applied metabolomic profiling and [...] Read more.
Background/Objectives: The rise in antimicrobial resistance is one of the major challenges to global health systems, which necessitates the development of new antibacterial compounds. The bioactive compounds of brown seaweed Sargassum duplicatum have demonstrated potential antibacterial activity. This study applied metabolomic profiling and molecular networking in combination with antibacterial screening assays to assess the antimicrobial properties of S. duplicatum extracts against multidrug-resistant bacteria. Methods: Two extraction methods, i.e., maceration and microwave extraction, were used. Therewith, untargeted metabolomic profiling was performed using Liquid Chromatography–High Resolution Mass Spectrometry (LC-HRMS). Molecular networks (MNs) were established and compound dereplication was conducted using the spectral database of the Global Natural Products Social Molecular Networking platform (GNPS). Additionally, antimicrobial assays were conducted against Gram-positive and Gram-negative bacterial strains, including multidrug-resistant bacteria, i.e., methicillin-resistant Staphyloccocus aureus ATCC 33592 (MRSA) and β-lactamase, producing Escherichia coli ATCC 35218 (TEM-1 positive strain). Result: Dereplication resulted in the prediction of six compounds with reported antimicrobial properties, i.e., 13-docosenamide, 9-octadecenamide, pheophorbide A, ouabain, sarmentoside B and AC1L1X1Z. Antibacterial screening of the extracts revealed that the ethyl acetate maceration extracts exhibited the strongest inhibitory activity, with inhibition values between 85 and 98% against S. aureus ATCC 33592. Conclusions: This metabolomics study requires further research to isolate, purify, confirm, and validate the dereplicated compounds that may have potential antibacterial activity. Full article
17 pages, 980 KB  
Article
Dose-Dependent Effects of Pear (Pyrus communis L.) Juice on Kombucha Polyphenols, Antioxidant Capacity, and Enzyme Inhibition
by Agata Kuraj and Joanna Kolniak-Ostek
Molecules 2026, 31(2), 371; https://doi.org/10.3390/molecules31020371 - 20 Jan 2026
Abstract
This study investigated the dose-dependent impact of pear juice supplementation on the chemical composition, phenolic profile, and biological activity of kombucha during 14 days of fermentation. Four formulations (0–75% pear juice) were evaluated for changes in (poly)phenols, organic acids, antioxidant capacity, and enzyme [...] Read more.
This study investigated the dose-dependent impact of pear juice supplementation on the chemical composition, phenolic profile, and biological activity of kombucha during 14 days of fermentation. Four formulations (0–75% pear juice) were evaluated for changes in (poly)phenols, organic acids, antioxidant capacity, and enzyme inhibition. UPLC-QToF-MS analysis demonstrated substantial remodeling of the phenolic profile in pear-enriched beverages, with marked increases in chlorogenic acid, arbutin, and flavonols. The total phenolic content increased proportionally with juice addition, reaching its highest level in the 75% juice formulation. Fermentation enhanced the antioxidant potential, with FRAP values more than doubling relative to the control. Pear supplementation also enhanced the inhibitory activity of key metabolic and neuroactive enzymes, including α-glucosidase, acetylcholinesterase, and butyrylcholinesterase. Principal component analysis linked phenolic enrichment to improved functional properties, highlighting the biochemical contribution of fruit-derived substrates to fermentation dynamics. Overall, the results demonstrate that pear juice acts as an effective bioactive modulator of kombucha fermentation, promoting the release, transformation, and accumulation of phenolic compounds and enhancing the antioxidant and enzyme-inhibitory potential of the beverage. These findings provide mechanistic insights into fruit-tea co-fermentation and support the development of phenolic-rich fermented beverages with improved nutritional quality and health benefits. Full article
Show Figures

Figure 1

17 pages, 4757 KB  
Article
Antiviral Activity of Eugenol Against Chinese Rice-Field Eel Rhabdovirus in Monopterus albus
by Jingwen Jiang, Mingyang Xue, Wenzhi Liu, Yong Zhou, Yiqun Li and Yuding Fan
Animals 2026, 16(2), 315; https://doi.org/10.3390/ani16020315 - 20 Jan 2026
Abstract
Chinese rice-field eel rhabdovirus (CrERV) is a serious epidemic pathogen of Chinese rice-field eel and causes severe economic losses to aquaculture. However, there are no commercial drugs presently available to control CrERV infection. Eugenol is a bioactive compound extracted from clove plants and [...] Read more.
Chinese rice-field eel rhabdovirus (CrERV) is a serious epidemic pathogen of Chinese rice-field eel and causes severe economic losses to aquaculture. However, there are no commercial drugs presently available to control CrERV infection. Eugenol is a bioactive compound extracted from clove plants and exhibits potential antiviral activity. In the study, the antiviral activity of eugenol against CrERV was investigated in Chinese rice-field eel (Monopterus albus). Eugenol reached the highest inhibition rate of 96.6% at 40 mg/L in Chinese rice-field eel kidney cells (CrEK). Notably, eugenol exhibits antiviral activity by directly targeting CrERV and additionally confers prophylactic effects against infection via its action on CrEK cells. The results of exploring the viral invasion cycle demonstrated that eugenol primarily exerted its antiviral effect during the middle stage and late stage (12 h and 24 h) of viral infection. In addition, eugenol inhibited CrERV-induced apoptosis of CrEK cells, maintained mitochondrial membrane potential levels, maintained physiological cellular morphology and structure, and protected cells from loss of cellular morphology, formation of apoptotic vesicles, and cell fragmentation. For the in vivo study, eugenol increased the survival rate of CrERV-infected rice-field eel by 56% and 48%, in prevention experiments and treatment experiments, respectively. Concurrently, eugenol significantly reduced viral loads and induced the upregulation of anti-inflammatory and antioxidant genes, indicating its potential for immunoregulation. In summary, eugenol holds potential for both preventing and treating CrERV infections in the aquaculture context. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 5312 KB  
Article
Dietary Supplementation with Chrysanthemum morifolium Ramat cv. ‘Hangju’ Flower Extract Alleviates Skin Photoaging in SKH-1 Hairless Mice
by Yujie Lao, Ruixuan Geng, Mengjie Li, Seong-Gook Kang, Kunlun Huang, Bin Deng, Huiji Zhou, Rong Luo and Tao Tong
Nutrients 2026, 18(2), 329; https://doi.org/10.3390/nu18020329 - 20 Jan 2026
Abstract
Background/Objectives: Skin photoaging represents a predominant form of extrinsic aging, characterized by structural and functional impairment of the skin barrier. In severe cases, it may precipitate dermatological diseases and even tumors. Given the prevalence and detrimental effects of skin photoaging, strategies for its [...] Read more.
Background/Objectives: Skin photoaging represents a predominant form of extrinsic aging, characterized by structural and functional impairment of the skin barrier. In severe cases, it may precipitate dermatological diseases and even tumors. Given the prevalence and detrimental effects of skin photoaging, strategies for its effective prevention and mitigation have garnered significant research interest. Chrysanthemum morifolium Ramat cv. ‘Hangju’ contains diverse bioactive compounds, including flavonoids, phenylpropanoids, phenolic acids, and polysaccharides, which have been proven to exhibit antioxidant and anti-inflammatory effects. Methods: This study employed a UVB-induced mouse model of skin photoaging to evaluate the potential of dietary supplementation with Chrysanthemum morifolium Ramat cv. ‘Hangju’ flower extract (CME) in vivo. Results: In the photoaged skin of female SKH-1 hairless mice, dietary supplementation with CME significantly increased skin moisture content, reduced wrinkle formation, suppressed epidermal hyperplasia, enhanced collagen density, and suppressed the senescence marker expression and DNA damage marker expression. Analysis of the skin transcriptome suggested that CME could alter gene expression patterns and potentially modulate critical signaling pathways involved in skin homeostasis. Moreover, 16S rRNA sequencing indicated that CME mitigated UVB-induced gut microbiota dysbiosis. Conclusions: These preclinical findings reveal the anti-photoaging property of dietary CME supplementation and point to its potential application as a functional dietary supplement for promoting skin health. Full article
Show Figures

Figure 1

27 pages, 2475 KB  
Article
Cocoa Supplementation Alleviates Gliadin-Induced Intestinal Dysbiosis in a Mouse Model of Celiac Disease
by Marina Girbal-González, María José Rodríguez-Lagunas, Arturo Rodríguez-Banqueri, Ulrich Eckhard, Francesc Xavier Gomis-Rüth, Àngels Franch-Masferrer and Francisco José Pérez-Cano
Foods 2026, 15(2), 370; https://doi.org/10.3390/foods15020370 - 20 Jan 2026
Abstract
Celiac disease (CeD) is a chronic immune-mediated enteropathy triggered by dietary gluten in genetically predisposed individuals which also entails intestinal dysbiosis. This hallmark microbial imbalance provides a rationale for exploring interventions that could modulate the gut ecosystem. Cocoa is a bioactive food rich [...] Read more.
Celiac disease (CeD) is a chronic immune-mediated enteropathy triggered by dietary gluten in genetically predisposed individuals which also entails intestinal dysbiosis. This hallmark microbial imbalance provides a rationale for exploring interventions that could modulate the gut ecosystem. Cocoa is a bioactive food rich in polyphenols, theobromine, and fiber, compounds known to have an influence on both immune function and gut microbiota composition. Here, we investigated the effects of cocoa supplementation on the gut microbial profile and predicted functionality in DQ8-Dd-villin-IL-15tg mice, genetically predisposed to CeD. Animals were assigned to a reference group receiving a gluten-free diet (GFD), a gluten-containing diet group (GLI), or the latter supplemented with defatted cocoa (GLI + COCOA) for 25 days. The cecal microbiota was analyzed via 16S rRNA sequencing, and functional pathways were inferred using PICRUSt2. Goblet cell counts and CeD-relevant autoantibodies were measured and correlated with microbial taxa. Cocoa supplementation partially attenuated gluten-induced dysbiosis, preserving beneficial taxa such as Akkermansia muciniphila and Lactobacillus species while reducing opportunistic and pro-inflammatory bacteria. Functional predictions suggested differences in the predicted microbial metabolic potential related to amino acid, vitamin, and phenolic compound metabolism. Cocoa also mitigated goblet cell loss and was inversely associated with anti-gliadin IgA levels. These findings suggest that cocoa, as an adjuvant to a GFD, could be of help in maintaining microbial homeostasis and intestinal health in CeD, supporting further studies to assess its translational potential. Full article
22 pages, 6486 KB  
Article
Regenerative Skin Remodeling by a Dual Hyaluronic Acid Hybrid Complex in Multimodal Preclinical Models
by Hyojin Roh, Ngoc Ha Nguyen, Jinyoung Jung, Jewan Kaiser Hwang, Young In Lee, Inhee Jung and Ju Hee Lee
Int. J. Mol. Sci. 2026, 27(2), 1027; https://doi.org/10.3390/ijms27021027 - 20 Jan 2026
Abstract
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA [...] Read more.
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA integrated within a minimally cross-linked hybrid complex. In vitro assays using dermal fibroblasts, melanoma cells, and macrophages demonstrated that DHC enhanced fibroblast viability, collagen I/III and elastin production, antioxidant enzyme activity, and wound-healing capacity while reducing senescence markers. DHC markedly suppressed melanogenesis by downregulating the gene expression of MITF, TYR, and TRP1, and exerted strong anti-inflammatory activity by decreasing nitric oxide (NO) production and key cytokines, including TNF-α, IL-1β, IL-6, and CCL1. In a UVB-induced photoaging rat model, DHC reduced wrinkle depth, epidermal thickening, and melanin accumulation while improving elasticity, collagen density, hydration, and barrier integrity. Across these outcomes, DHC demonstrated biological effects that were comparable to, and in selected endpoints greater than, those of commonly used biostimulators and HA fillers in preclinical models. Collectively, these laboratory findings suggest that DHC exhibits broad preclinical bioactivity through combined biostimulatory, antioxidant, anti-inflammatory, and pigmentation-modulating effects. Further mechanistic and clinical studies are required to determine its translational relevance. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

17 pages, 299 KB  
Review
Coffee Versus Caffeine as Ergogenic Aids: Biological and Methodological Distinctions with Implications for Exercise Performance and Recovery
by Przemysław Domaszewski
Nutrients 2026, 18(2), 328; https://doi.org/10.3390/nu18020328 - 20 Jan 2026
Abstract
Background: Caffeine is a well-established ergogenic aid, yet most experimental evidence is based on isolated caffeine, whereas habitual intake in both the general and physically active populations occurs mainly through coffee. This gap between experimental models and everyday practice complicates the interpretation [...] Read more.
Background: Caffeine is a well-established ergogenic aid, yet most experimental evidence is based on isolated caffeine, whereas habitual intake in both the general and physically active populations occurs mainly through coffee. This gap between experimental models and everyday practice complicates the interpretation of existing findings. Objective: This review compares coffee and isolated caffeine as ergogenic aids, focusing on biological mechanisms, methodological differences, tolerability, and context-dependent use in sport and exercise. Methods: A narrative review of human studies examining the effects of coffee and isolated caffeine on exercise performance, fatigue, and post-exercise recovery was conducted, with attention being paid to dosing accuracy, bioavailability, inter-individual variability, and the influence of the coffee matrix. Results: Isolated caffeine consistently improves performance under controlled conditions. Coffee can produce similar ergogenic effects, particularly in endurance exercise, although responses are more variable due to differences in caffeine content and individual sensitivity. Emerging evidence suggests that coffee, especially when consumed with carbohydrates, may support post-exercise glycogen resynthesis. Coffee also appears to be better tolerated by many individuals and provides additional bioactive compounds with antioxidant and anti-inflammatory properties. Conclusions: Coffee and isolated caffeine should not be viewed as interchangeable ergogenic strategies. While isolated caffeine remains useful in experimental settings, coffee represents a more ecologically relevant and potentially safer source of caffeine in applied practice. Further direct comparative studies are needed to clarify their context-specific roles. Full article
(This article belongs to the Section Sports Nutrition)
12 pages, 2466 KB  
Article
Design and Synthesis of Marine Sarocladione Derivatives with Potential Anticancer Activity
by Xiao-Mei Liu, Wen-Xuan Li, Ling-Xiu Kong, Guan-Ying Han, Jinghan Gui and Xu-Wen Li
Mar. Drugs 2026, 24(1), 48; https://doi.org/10.3390/md24010048 - 20 Jan 2026
Abstract
The discovery of structurally novel anti-tumor agents remains a crucial objective in cancer drug research. In this study, we systematically explored the bioactivity potential of sarocladione (5), a structurally unique marine-derived 14-membered ring diketone steroid. Guided by a function-oriented strategy, seven [...] Read more.
The discovery of structurally novel anti-tumor agents remains a crucial objective in cancer drug research. In this study, we systematically explored the bioactivity potential of sarocladione (5), a structurally unique marine-derived 14-membered ring diketone steroid. Guided by a function-oriented strategy, seven new derivatives (613) were synthesized based on an efficient biomimetic synthesis of sarocladione. Evaluation of their antiproliferative activities against human cancer cell lines demonstrated that the intact macrocyclic scaffold is indispensable for activity. Extension of the conjugated π-system led to the identification of compound 8, which exhibited approximately four-fold enhanced potency against HCT116 cells (IC50 = 1.86 µM) compared with the parent natural product. Stereochemical analysis further revealed the critical role of the (5R)-configuration at C-5. Phenotypic investigations indicated that compound 8 induces concentration-dependent G2/M phase cell cycle arrest, followed by apoptosis, suggesting a cell cycle-dependent antiproliferative effect. Overall, this study highlights sarocladione as a promising marine-derived scaffold for further antiproliferative optimization. Full article
Show Figures

Figure 1

21 pages, 300 KB  
Article
Optimizing Thermal Pretreatment for Volatile Bioactive Profiling in Medicinal Plants Using HS-GC-MS Analysis
by Péter Tamás Nagy, Florence Alexandra Tóth, Levente Czeglédi and Attila Péter Kiss
Appl. Sci. 2026, 16(2), 1031; https://doi.org/10.3390/app16021031 - 20 Jan 2026
Abstract
Oregano (Origanum vulgare L.), basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), yarrow (Achillea millefolium L.), and thyme (Thymus vulgaris L.) are aromatic medicinal plants rich in bioactive volatile compounds with antioxidant, antimicrobial, and anti-inflammatory properties. This study [...] Read more.
Oregano (Origanum vulgare L.), basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), yarrow (Achillea millefolium L.), and thyme (Thymus vulgaris L.) are aromatic medicinal plants rich in bioactive volatile compounds with antioxidant, antimicrobial, and anti-inflammatory properties. This study presents a simple, solvent-free, and eco-friendly headspace GC-MS method for VOC profiling. Optimized thermal pretreatment (40–90 °C) enhanced compound detection, particularly at 70–90 °C, without loss of reproducibility. The approach lowers analytical costs and waste generation, supporting green analytical practices and the sustainable valorization of medicinal herbs as natural functional ingredients. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
22 pages, 2527 KB  
Article
Synthesis and Study of Substituted Chalcones Combined with Fluoroazobenzenes—New Photoswitches for Application in Biological Systems
by Piotr Tobiasz, Damian Mielecki, Anna Stachurska-Skrodzka, Jakub Miętus, Filip Borys and Hanna Krawczyk
Molecules 2026, 31(2), 362; https://doi.org/10.3390/molecules31020362 - 20 Jan 2026
Abstract
Chalcones have garnered significant research interest due to their various medical bioactivities. Several chalcone compounds have been approved for marketing and clinical use in the treatment of various diseases. A critical aspect of the action of chalcones is their effect on microtubules. They [...] Read more.
Chalcones have garnered significant research interest due to their various medical bioactivities. Several chalcone compounds have been approved for marketing and clinical use in the treatment of various diseases. A critical aspect of the action of chalcones is their effect on microtubules. They are considered an excellent target for chemotherapeutic agents for the treatment of cancer. Consequently, scientists are constantly developing novel chalcone drug agents and also innovative drug delivery strategies. In this manuscript, we report the first synthesis of 12 new visible-light-activated, photoswitchable chalcone-based microtubule inhibitors (17a–17l). Among the obtained compounds, one photoswitch demonstrated light-dependent cytotoxicity in the PC-3 cancer cell line. The IC50 value of the Z conformer was determined to be 4.75 ± 1.00 μM after 48 h of treatment. The E conformer exhibited slightly lower activity compared to the Z conformer, with an IC50 value of 5.80 ± 0.80 µM following 48 h of incubation. In this study, NMR and UV spectroscopy, along with computational methods, were employed. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

Back to TopTop