Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,114)

Search Parameters:
Keywords = bio fabrication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 453
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

42 pages, 4490 KiB  
Review
Continuous Monitoring with AI-Enhanced BioMEMS Sensors: A Focus on Sustainable Energy Harvesting and Predictive Analytics
by Mingchen Cai, Hao Sun, Tianyue Yang, Hongxin Hu, Xubing Li and Yuan Jia
Micromachines 2025, 16(8), 902; https://doi.org/10.3390/mi16080902 (registering DOI) - 31 Jul 2025
Viewed by 356
Abstract
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable [...] Read more.
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable energy supply solutions, especially for on-site energy replenishment in areas with limited resources. Artificial intelligence (AI), particularly large language models, offers new avenues for interpreting the vast amounts of data generated by these sensors. Despite this potential, fully integrated systems that combine self-powered BioMEMS sensing with AI-based analytics remain in the early stages of development. This review first examines the evolution of BioMEMS sensors, focusing on advances in sensing materials, micro/nano-scale architectures, and fabrication techniques that enable high sensitivity, flexibility, and biocompatibility for continuous monitoring applications. We then examine recent advances in energy harvesting technologies, such as piezoelectric nanogenerators, triboelectric nanogenerators and moisture electricity generators, which enable self-powered BioMEMS sensors to operate continuously and reducereliance on traditional batteries. Finally, we discuss the role of AI in BioMEMS sensing, particularly in predictive analytics, to analyze continuous monitoring data, identify patterns, trends, and anomalies, and transform this data into actionable insights. This comprehensive analysis aims to provide a roadmap for future continuous BioMEMS sensing, revealing the potential unlocked by combining materials science, energy harvesting, and artificial intelligence. Full article
Show Figures

Figure 1

19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 - 31 Jul 2025
Viewed by 231
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 371
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

24 pages, 10976 KiB  
Article
Fabrication and Characterization of a Novel 3D-Printable Bio-Composite from Polylactic Acid (PLA) and Ruminant-Digested Corn Stover
by Siyang Wu, Lixing Ren, Jiyan Xu, Jiale Zhao, Xiaoli Hu and Mingzhuo Guo
Polymers 2025, 17(15), 2077; https://doi.org/10.3390/polym17152077 - 29 Jul 2025
Viewed by 270
Abstract
To address the growing demand for sustainable materials in advanced manufacturing, the objective of this study was to develop and characterize a novel 3D-printable biocomposite using ruminant-digested corn stover (DCS) as a reinforcement for polylactic acid (PLA). The methodology involved systematically optimizing DCS [...] Read more.
To address the growing demand for sustainable materials in advanced manufacturing, the objective of this study was to develop and characterize a novel 3D-printable biocomposite using ruminant-digested corn stover (DCS) as a reinforcement for polylactic acid (PLA). The methodology involved systematically optimizing DCS particle size (80–140 mesh) and loading concentration (5–20 wt.%), followed by fabricating composite filaments via melt extrusion and 3D printing test specimens. The resulting materials were comprehensively characterized for their morphological, physical, and mechanical properties. The optimal formulation, achieved with 120-mesh particles at 15 wt.% loading, exhibited a 15.6% increase in tensile strength to 64.17 MPa and a 21.1% enhancement in flexural modulus to 4.19 GPa compared to neat PLA. In addition to the mechanical improvements, the biocomposite offers an advantageous density reduction, enabling the fabrication of lightweight structures for resource-efficient applications. Comprehensive characterization revealed effective interfacial integration and uniform fiber dispersion, validating biological preprocessing as a viable method for unlocking the reinforcement potential of this abundant biomass. While the composite exhibits characteristic trade-offs, such as reduced impact strength, the overall performance profile makes it a promising candidate for structural applications in sustainable manufacturing. This research establishes a viable pathway for agricultural waste valorization, demonstrating that biological preprocessing can convert agricultural residues into value-added engineering materials for the circular bioeconomy. Full article
(This article belongs to the Special Issue Natural Fiber Composites: Synthesis and Applications)
Show Figures

Graphical abstract

12 pages, 6938 KiB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Viewed by 233
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Figure 1

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 556
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

18 pages, 4169 KiB  
Article
Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin
by Luca Ferretti, Pietro Russo, Jessica Passaro, Francesca Nanni, Saverio D’Ascoli, Francesco Fabbrocino and Mario Bragaglia
Materials 2025, 18(15), 3453; https://doi.org/10.3390/ma18153453 - 23 Jul 2025
Viewed by 302
Abstract
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus [...] Read more.
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus on Digital Light Processing (DLP) 3D printing. Although UV curing proved ineffective at high filler concentrations due to the light opacity of Bi2Te3, thermal curing enabled the fabrication of stable, homogeneously dispersed composites. The samples were thoroughly characterized through rheology, FTIR, TGA, XRD, SEM, and density measurements. Thermoelectric performance was assessed under a 70 °C temperature gradient, with Seebeck coefficients reaching up to 51 µV/K. Accelerated chemical degradation studies in basic media confirmed the degradability of the matrix. The results demonstrate the feasibility of combining additive manufacturing with sustainable materials for low-power thermoelectric energy harvesting applications. Full article
Show Figures

Figure 1

30 pages, 2013 KiB  
Review
Biopolymers in Biotechnology and Tissue Engineering: A Comprehensive Review
by Maciej Grabowski, Dominika Gmyrek, Maria Żurawska and Anna Trusek
Macromol 2025, 5(3), 34; https://doi.org/10.3390/macromol5030034 - 21 Jul 2025
Viewed by 787
Abstract
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes [...] Read more.
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes the structural diversity, functional characteristics, and processing strategies of major classes of biopolymers, including polysaccharides (e.g., hyaluronic acid, alginate, chitosan, bacterial cellulose) and proteins (e.g., collagen, silk fibroin, albumin), as well as synthetic biodegradable polymers such as polycaprolactone, polylactic acid, and polyhydroxybutyrate. The central aim of this manuscript is to elucidate how intrinsic properties—such as molecular weight, crystallinity, water retention, and bioactivity—affect the performance of biopolymers in biomedical contexts, particularly in drug delivery, wound healing, and scaffold-based tissue regeneration. This review also highlights recent advancements in polymer functionalization, composite formation, and fabrication techniques (e.g., electrospinning, bioprinting), which have expanded the application potential of these materials. By offering a comparative analysis of structure–property–function relationships across a diverse range of biopolymers, this review provides a comprehensive reference for selecting and engineering materials tailored to specific biomedical challenges. It also identifies key limitations, such as production scalability and mechanical performance, and suggests future directions for developing clinically viable and environmentally sustainable biomaterial platforms. Full article
Show Figures

Figure 1

35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 520
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
by Sotirios Pemas, Dimitrios Baliakas, Eleftheria Maria Pechlivani and Maria Stefanidou
Materials 2025, 18(14), 3375; https://doi.org/10.3390/ma18143375 - 18 Jul 2025
Viewed by 427
Abstract
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices [...] Read more.
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices to innovative and sustainable green alternatives. This study investigates the use of non-cementitious traditional mixtures for green construction applications through 3D printing using Liquid Deposition Modeling (LDM) technology. To explore the development of mixtures with enhanced physical and mechanical properties, natural pine and cypress wood shavings were added in varying proportions (1%, 3%, and 5%) as sustainable additives. The aim of this study is twofold: first, to demonstrate the printability of these eco-friendly mortars that can be used for conservation purposes and overcome the challenges of incorporating bio-products in 3D printing; and second, to develop sustainable composites that align with the objectives of the European Green Deal, offering low-emission construction solutions. The proposed mortars use hydrated lime and natural pozzolan as binders, river sand as an aggregate, and a polycarboxylate superplasticizer. While most studies with bio-products focus on traditional methods, this research provides proof of concept for their use in 3D printing. The study results indicate that, at low percentages, both additives had minimal effect on the physical and mechanical properties of the tested mortars, whereas higher percentages led to progressively more significant deterioration. Additionally, compared to molded specimens, the 3D-printed mortars exhibited slightly reduced mechanical strength and increased porosity, attributable to insufficient compaction during the printing process. Full article
(This article belongs to the Special Issue Eco-Friendly Materials for Sustainable Buildings)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 563
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

25 pages, 2616 KiB  
Article
Bio-Fabricated Aluminum Oxide Nanoparticles Derived from Waste Pharmaceutical Packages: Insight into Characterization and Applications
by Jamilah M. Al-Ahmari, Reem M. Alghanmi and Ragaa A. Hamouda
Biomolecules 2025, 15(7), 984; https://doi.org/10.3390/biom15070984 - 10 Jul 2025
Viewed by 363
Abstract
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica [...] Read more.
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica) as reducing and stabilizing agents and that was characterized by XRD, EDX, SEM, TEM, and zeta potential. Batch biosorption studies were performed to assess the effectiveness of P/Al2O3-NPs in removing CR dye from aqueous solutions. The results demonstrate that the particle sizes range from 58.63 to 86.70 nm and morphologies vary from spherical to elliptical. FTIR analysis revealed Al–O lattice vibrations at 988 and 570 cm−1. The nanoparticles displayed a negative surface charge (−13 mV) and a pHzpc of 4.8. Adsorption experiments optimized parameters for CR dye removal, achieving 97.81% efficiency under native pH (6.95), with a dye concentration of 30 mg/L, an adsorbent dosage of 0.1 g/L, and a contact time of 30 min. Thermodynamic studies confirmed that the process is exothermic and spontaneous. Kinetic data fit well with the pseudo-second-order model, while equilibrium data aligned with the Langmuir isotherm. The adsorption mechanism involved van der Waals forces, hydrogen bonding, and π–π interactions, as supported by the influence of pH, isotherm data, and FTIR spectra. Overall, the study demonstrates the potential of eco-friendly P/Al2O3-NPs to efficiently remove CR dye from aqueous solutions. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

14 pages, 4370 KiB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Viewed by 408
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

13 pages, 3428 KiB  
Article
Multi-Parametric Study on Flexural Behavior of Wool–Flax Hybrid Composites Under Thermal Conditions
by Tsegaye Lemmi, David Ranz and Clara Luna Martin
Materials 2025, 18(14), 3219; https://doi.org/10.3390/ma18143219 - 8 Jul 2025
Viewed by 333
Abstract
The increasing demand for sustainable materials has intensified the interest in natural fiber-reinforced composites (NFRCs) as environmentally friendly alternatives to synthetic composites. However, NFRCs often face limitations in thermal stability, restricting their use in high-temperature environments. To address this, the present study explores [...] Read more.
The increasing demand for sustainable materials has intensified the interest in natural fiber-reinforced composites (NFRCs) as environmentally friendly alternatives to synthetic composites. However, NFRCs often face limitations in thermal stability, restricting their use in high-temperature environments. To address this, the present study explores the hybridization of cellulosic flax fibers with protein-based wool fibers to improve thermal stability without compromising mechanical integrity. Wool–flax hybrid composites were fabricated using a bio-based epoxy resin through a resin infusion technique with different fiber proportions. The flexural properties of these composites were evaluated under varying temperature conditions to assess the influence of fiber composition and thermal conditions. This study specifically examined the impact of wool fiber content on the flexural performance of the composites under thermal conditions, including behavior near and above the matrix’s glass transition temperature. The results showed that the flexural properties of the hybrid biocomposites were significantly affected by temperature. Compared with specimens tested at room temperature, the flexural modulus of all variants decreased by 85–94%, while the flexural strength declined by 79–85% at 120 °C, depending on the variant. The composite variant with a higher wool content (variant 3W) exhibited enhanced flexural performance, demonstrating an average of 15% greater flexural strength than other variants at 60 °C and 5% higher at 120 °C. These findings suggest that incorporating wool fibers into flax-based composites can effectively improve thermal stability while maintaining flexural properties, supporting the development of sustainable biocomposites for structural applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop