Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,577)

Search Parameters:
Keywords = binder analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8932 KB  
Article
Polyphenylene Sulfide-Based Compositions with Solid Fillers for Powder Injection Molding
by Dmitry V. Dudka, Azamat L. Slonov, Khasan V. Musov, Aslanbek F. Tlupov, Azamat A. Zhansitov, Svetlana Yu. Khashirova and Alexander Ya. Malkin
Polymers 2026, 18(3), 341; https://doi.org/10.3390/polym18030341 (registering DOI) - 28 Jan 2026
Abstract
Powder Injection Molding (PIM) is a versatile manufacturing technology widely used for fabricating components with complex geometries from metals and ceramics, yet its application to high-performance thermoplastics remains underutilized. This study explores the feasibility of manufacturing products from Polyphenylene Sulfide (PPS)—a promising linear [...] Read more.
Powder Injection Molding (PIM) is a versatile manufacturing technology widely used for fabricating components with complex geometries from metals and ceramics, yet its application to high-performance thermoplastics remains underutilized. This study explores the feasibility of manufacturing products from Polyphenylene Sulfide (PPS)—a promising linear aromatic polymer synthesized in powder form—using PIM technology and investigates the development of PE-based feedstocks with PPS and solid fillers. Regarding the matrix formulation, it was found that using pure paraffin as a binder limited the maximum PPS content to 20%. Consequently, a modified binder system consisting of Low-Density Polyethylene (LDPE) and paraffin in a 70:30 wt.% ratio was utilized, which successfully increased the PPS loading in the feedstock to 50% and enabled stable molding. Following matrix optimization, the study examined composites incorporating various fillers, including chalk, talc, and carbon fibers. Systematic rheological analysis confirmed that these composite suspensions possess characteristics necessary for molding products with complex geometries. Key results indicate that optimal sintering conditions were established to achieve the required mechanical properties. Among the tested fillers, carbon fibers were the most effective reinforcement, increasing the elastic modulus by 33% and flexural strength by 20%. Representative examples of samples successfully manufactured via this approach are presented. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

13 pages, 1450 KB  
Article
Interpretable Data Analysis of Fluidity in Calcined Clay-Based Cement
by Yassine El Khessaimi, Youssef El Hafiane, Agnès Smith, Claire Peyratout, Karim Tamine, Samir Adly and Moulay Barkatou
Sustainability 2026, 18(3), 1251; https://doi.org/10.3390/su18031251 - 26 Jan 2026
Abstract
This study investigates the workability of an emerging cement based on calcined clay, considered one of the sustainable binders for reducing the carbon footprint of construction materials. Despite existing experimental data, no comprehensive analysis has been conducted. In the present paper, a literature-derived [...] Read more.
This study investigates the workability of an emerging cement based on calcined clay, considered one of the sustainable binders for reducing the carbon footprint of construction materials. Despite existing experimental data, no comprehensive analysis has been conducted. In the present paper, a literature-derived dataset was analyzed using CPM-based packing density computation and interpretable statistical analyses (distribution statistics and Pearson correlation-based projections). The novelty of this study lies in integrating the domain-knowledge-informed hierarchical analysis to identify packing density as a primary, sustainable lever to enhance LC3 fluidity while limiting reliance on superplasticizers. PCE superplasticizers (0–2.5 wt.% in the dataset) improve fluidity across packing densities; noticeable gains are observed even for low dosages (≈0.5–1 wt.%) at packing 0.36–0.38. A paradigm shift is proposed through optimizing packing density by adjusting clay and limestone content in the mix. Prioritizing packing density, alongside conventional parameters, opens new avenues for sustainability by reducing reliance on organic fluidizers in low-carbon cements. Full article
(This article belongs to the Section Sustainable Materials)
12 pages, 2997 KB  
Article
Effects of Polyvinyl Alcohol on the Early-Age Mechanical Properties and Carbon Uptake of Lime-Enriched Binders: A Comparative Study with Pure Lime and Portland Cement Systems
by Xuelian Yuan, Xintian Wang, Chong Yan and Yue Gu
Appl. Sci. 2026, 16(3), 1244; https://doi.org/10.3390/app16031244 - 26 Jan 2026
Abstract
With the development of novel production routes enabling near-zero emissions from lime manufacturing, the use of lime as a carbon-sequestering component in cementitious materials has attracted increasing attention. To address the intrinsically low early-age strength of lime-enriched binders (LP), this study investigates the [...] Read more.
With the development of novel production routes enabling near-zero emissions from lime manufacturing, the use of lime as a carbon-sequestering component in cementitious materials has attracted increasing attention. To address the intrinsically low early-age strength of lime-enriched binders (LP), this study investigates the modification effect of polyvinyl alcohol (PVA) on LP, with systematic comparisons to ordinary Portland cement (PO) and pure lime systems (LE). The results indicate that, in terms of mechanical performance, the incorporation of PVA significantly enhances the early-age strength of LP, particularly the flexural strength, which increases by 119.3%. In contrast, the strength of PO shows a certain degree of reduction after PVA addition. Regarding carbon uptake performance, the CO2 sequestration capacity of PO and LE increases by 16.8% and 16.9%, respectively, whereas that of LP slightly decreases by 5.5%. From the hydration perspective, both the heat release rate and cumulative heat of PO and LP are reduced after PVA incorporation. Combined with microstructural analysis, the mechanical enhancement of LP induced by PVA is mainly attributed to the polymer film-forming effect, which compensates for the negative impact caused by the inhibition of hydration. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 3431 KB  
Article
Evolution Mechanism of Volume Parameters and Gradation Optimization Method for Asphalt Mixtures Based on Dual-Domain Fractal Theory
by Bangyan Hu, Zhendong Qian, Fei Zhang and Yu Zhang
Materials 2026, 19(3), 488; https://doi.org/10.3390/ma19030488 - 26 Jan 2026
Abstract
The primary objective of this study is to bridge the gap between descriptive geometry and mechanistic design by establishing a dual-domain fractal framework to analyze the internal architecture of asphalt mixtures. This research quantitatively assesses the sensitivity of volumetric indicators—namely air voids (VV), [...] Read more.
The primary objective of this study is to bridge the gap between descriptive geometry and mechanistic design by establishing a dual-domain fractal framework to analyze the internal architecture of asphalt mixtures. This research quantitatively assesses the sensitivity of volumetric indicators—namely air voids (VV), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA)—by employing the coarse aggregate fractal dimension (Dc), the fine aggregate fractal dimension (Df), and the coarse-to-fine ratio (k) through Grey Relational Analysis (GRA). The findings demonstrate that whereas Df and k substantially influence macro-volumetric parameters, the mesoscopic void fractal dimension (DV) remains structurally unchanged, indicating that gradation predominantly dictates void volume rather than geometric intricacy. Sensitivity rankings create a prevailing hierarchy: Process Control (Compaction) > Skeleton Regulation (Dc) > Phase Filling (Pb) > Gradation Adjustment (k, Df). Dc is recognized as the principal regulator of VMA, while binder content (Pb) governs VFA. A “Robust Design” methodology is suggested, emphasizing Dc to stabilize the mineral framework and reduce sensitivity to construction variations. A comparative investigation reveals that the optimized gradation (OG) achieves a more stable volumetric condition and enhanced mechanical performance relative to conventional empirical gradations. Specifically, the OG group demonstrated a substantial 112% enhancement in dynamic stability (2617 times/mm compared to 1230 times/mm) and a 75% increase in average film thickness (AFT), while ensuring consistent moisture and low-temperature resistance. In conclusion, this study transforms asphalt mixture design from empirical trial-and-error to a precision-engineered methodology, providing a robust instrument for optimizing the long-term durability of pavements in extreme cold and arid environments. Full article
Show Figures

Figure 1

21 pages, 4181 KB  
Review
Twenty Years of Advances in Material Identification of Polychrome Sculptures
by Weilin Zeng, Xinyou Liu and Liang Xu
Coatings 2026, 16(2), 156; https://doi.org/10.3390/coatings16020156 - 25 Jan 2026
Viewed by 52
Abstract
Polychrome sculptures are complex, multilayered artifacts that embody the intersection of artistic craftsmanship, material science, and cultural heritage. Over the past two decades, the study of material identification in polychrome sculptures has shown marked interdisciplinary development, driven by advances in analytical technologies that [...] Read more.
Polychrome sculptures are complex, multilayered artifacts that embody the intersection of artistic craftsmanship, material science, and cultural heritage. Over the past two decades, the study of material identification in polychrome sculptures has shown marked interdisciplinary development, driven by advances in analytical technologies that have transformed how these objects are studied, enabling high-resolution identification of pigments, binders, and structural substrates. This review synthesizes key developments in the identification of polychrome sculpture materials, focusing on the integration of non-destructive and molecular-level techniques such as XRF, FTIR, Raman, LIBS, GC-MS, and proteomics. It highlights regional and historical variations in materials and craft processes, with case studies from Brazil, China, and Central Africa demonstrating how multi-modal methods reveal both technical and ritual knowledge embedded in these artworks. The review also examines evolving research paradigms—from pigment identification to stratigraphic and cross-cultural interpretation—and discusses current challenges such as organic material degradation and the need for standardized protocols. Finally, it outlines future directions including AI-assisted diagnostics, multimodal data fusion, and collaborative conservation frameworks. By bridging scientific analysis with cultural context, this study offers a comprehensive methodological reference for the conservation and interpretation of polychrome sculptures worldwide. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 5888 KB  
Article
A Multi-Index Performance Framework for Evaluating Binder Synergy and Fly Ash Reactivity in Eco-Sustainable Cementitious Composites
by Mahmoud Abo El-Wafa
J. Compos. Sci. 2026, 10(2), 64; https://doi.org/10.3390/jcs10020064 - 25 Jan 2026
Viewed by 92
Abstract
This study presents a multi-index performance system that is systematically used to assess the binder synergy and fly ash reactivity of eco-sustainable cementitious composite (ESCC) using the Strength Activity Index (SAI) as a reference in line with ASTM C618. The partial replacements of [...] Read more.
This study presents a multi-index performance system that is systematically used to assess the binder synergy and fly ash reactivity of eco-sustainable cementitious composite (ESCC) using the Strength Activity Index (SAI) as a reference in line with ASTM C618. The partial replacements of fly ash with high and low calcium fly ash (HCFA and LCFA) were added to the fly-ash-to-sand (FA/S) ratios of 0, 10, 20, and 30% with a constant mix parameter, such as a 50% ratio of water to slag and a 20% ratio of activator to slag. The Initial Flow Index (IFI) and Flow Retention Index (FRI) were used to measure fresh-state performance, and compressive-, tensile-, and flexural-based indices, i.e., the SAI, Tensile Strength Index (TSI), and Flexural Strength Index (FSI), were used to measure mechanical performance. The results indicate that flowability and workability retention decrease with an increase in the FA/S ratio, with LCFA-based mixtures having better flow retention than HCFA systems. The optimum mechanical performance at a replacement level of 20% FA/S produced the maximum SAI values of about 112% HCFA and 110% LCFA with a consistent increase in TSI and FSI values at 28 days. When the replacement levels were increased (30% FA/S), all strength indices decreased with the effect of dilution and decreased the packing efficiency of the binder. Comparisons of the SAI with the respective TSI and FSI values through correlation analysis showed that the quantitative relationship between compressive, tensile, and flexural behavior was definite and showed that compressive strength alone is not enough to extrapolate mechanical performance. Collectively, the proposed framework provides a reasonable performance-based basis for the manner in which fly ash could be utilized in the most effective way in eco-sustainable cementitious compositions. Full article
(This article belongs to the Special Issue Sustainable Cementitious Composites)
Show Figures

Figure 1

27 pages, 2154 KB  
Review
A Review of Pavement Damping Characteristics for Mitigating Tire-Pavement Noise: Material Composition and Underlying Mechanisms
by Maoyi Liu, Wei Duan, Ruikun Dong and Mutahar Al-Ammari
Materials 2026, 19(3), 476; https://doi.org/10.3390/ma19030476 - 24 Jan 2026
Viewed by 363
Abstract
The mitigation of traffic noise is essential for the development of sustainable and livable urban environments, a goal that is directly contingent on addressing tire-pavement interaction noise (TPIN) as the dominant acoustic pollutant at medium to high vehicle speeds. This comprehensive review addresses [...] Read more.
The mitigation of traffic noise is essential for the development of sustainable and livable urban environments, a goal that is directly contingent on addressing tire-pavement interaction noise (TPIN) as the dominant acoustic pollutant at medium to high vehicle speeds. This comprehensive review addresses a critical gap in the literature by systematically analyzing the damping properties of pavement systems through a unified, multi-scale framework—from the molecular-scale viscoelasticity of asphalt binders to the composite performance of asphalt mixtures. The analysis begins by synthesizing state-of-the-art testing and characterization methodologies, which establish a clear connection between macroscopic damping performance and the underlying viscoelastic mechanisms coupled with the microscopic morphology of the binders. Subsequently, the review critically assesses the influence of critical factors, such as polymer modifiers including rubber and Styrene-Butadiene-Styrene (SBS), temperature, and loading frequency. This examination elucidates how these variables govern molecular mobility and relaxation processes to ultimately determine damping efficacy. A central and synthesizing conclusion emphasizes the paramount importance of the asphalt binder’s properties, which serve as the primary determinant of the composite mixture’s overall acoustic performance. By delineating this structure-property-performance relationship across different scales, the review consolidates a foundational scientific framework to guide the rational design and informed material selection for next-generation asphalt pavements. The insights presented not only advance the fundamental understanding of damping mechanisms in pavement materials but also provide actionable strategies for creating quieter and more sustainable transportation infrastructures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

25 pages, 734 KB  
Article
Study on the Dynamic Properties of the Polyurethane Mixture with Open-Graded Gradation
by Haisheng Zhao, Bin Wang, Peiyu Zhang, Yong Liu, Chunhua Su, Mingzhu Xu, Wensheng Zhang and Shijie Ma
Coatings 2026, 16(2), 153; https://doi.org/10.3390/coatings16020153 - 24 Jan 2026
Viewed by 63
Abstract
Polyurethane (PU) mixtures exhibit superior mechanical performance compared to traditional asphalt mixtures, owing to the excellent engineering properties of the PU binder. This study investigates the dynamic rheological properties of an open-graded polyurethane mixture (PUM−OGFC) in comparison with a dense-graded polyurethane mixture (PUM−AC). [...] Read more.
Polyurethane (PU) mixtures exhibit superior mechanical performance compared to traditional asphalt mixtures, owing to the excellent engineering properties of the PU binder. This study investigates the dynamic rheological properties of an open-graded polyurethane mixture (PUM−OGFC) in comparison with a dense-graded polyurethane mixture (PUM−AC). The time−temperature superposition principle and three rheological models (Standard Logistic Sigmoid (SLS), Generalized Logistic Sigmoid (GLS), and Havriliak−Negami (HN)) were employed to construct and analyze master curves. The results show that while PUM−AC possesses a higher dynamic modulus, PUM−OGFC exhibits a lower phase angle, indicating a more elastic response. Critically, PUM−OGFC demonstrated superior rutting resistance, as evidenced by its higher rutting parameter (|E*|/sin δ). Aggregate gradation significantly influenced all rheological properties. The master curve analysis further revealed that PUM−OGFC exhibits greater temperature sensitivity than PUM−AC. The SLS and GLS models provided excellent fits for both dynamic modulus and phase angle data, whereas the HN model was suitable only for dynamic modulus. In summary, the open-graded structure, when combined with a PU binder, creates a high-performance composite with an exceptional balance of elasticity and rutting resistance, showcasing its potential for demanding pavement applications. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
20 pages, 4111 KB  
Article
The Effect of Material Parameters of Rubber Asphalt Mortar on Its Friction Performance Under Negative Temperature
by Hui Dou, Bo Li, Peng Zhang, Shengjun Ma, Fucheng Guo, Yan Zhang and Shengan Jiao
Materials 2026, 19(3), 450; https://doi.org/10.3390/ma19030450 - 23 Jan 2026
Viewed by 191
Abstract
The objective of this study is to investigate the friction performance between tire rubber and rubberized asphalt mortar. The friction force and dynamic friction coefficient (DFC) were selected as the characterization indexes for the friction performance between the tire and the rubberized asphalt [...] Read more.
The objective of this study is to investigate the friction performance between tire rubber and rubberized asphalt mortar. The friction force and dynamic friction coefficient (DFC) were selected as the characterization indexes for the friction performance between the tire and the rubberized asphalt mortar, and the tests were carried out using a friction coefficient tester. The variations in material parameters, namely crumb rubber content (CRC), filler-to-binder ratio (F/B), filler particle sizes and aging conditions of rubberized asphalt mortar on friction properties were analyzed, for which significance analysis was carried out. Results show that rubberized asphalt mortar composed of different material parameters exhibit different friction properties. Filler-to-binder ratio and crumb rubber content were identified as significant predictors of the friction properties in rubberized asphalt mortar, and as these factors increase, the friction coefficient between rubber asphalt mortar and tire rubber is increased. Higher crumb rubber content (30%) reduces the temperature sensitivity of friction. In contrast, an increase in F/B exacerbates the temperature-induced variation in DFC, with F/B = 1.2 showing 2.1% DFC increase from −20 °C to −10 °C versus 0.6% for F/B = 0.6. Filler particle sizes, aging degree, and temperature showed no statistically significant effects on DFC (p > 0.1). Full article
(This article belongs to the Topic Green Construction Materials and Construction Innovation)
Show Figures

Figure 1

31 pages, 6046 KB  
Article
Geopolymerization of Untreated Dredged Sediments for Sustainable Binder Development
by Lisa Monteiro, Humberto Yáñez-Godoy, Nadia Saiyouri and Jacqueline Saliba
Materials 2026, 19(2), 433; https://doi.org/10.3390/ma19020433 - 22 Jan 2026
Viewed by 55
Abstract
The valorization of dredged sediments represents a major environmental and logistical challenge, particularly in the context of forthcoming regulations restricting their marine disposal. This study investigates the potential of untreated dredged sediments as sustainable raw materials for geopolymer binder development, with the dual [...] Read more.
The valorization of dredged sediments represents a major environmental and logistical challenge, particularly in the context of forthcoming regulations restricting their marine disposal. This study investigates the potential of untreated dredged sediments as sustainable raw materials for geopolymer binder development, with the dual objective of sustainable sediment management and reduction in cement-related environmental impact. Dredged sediments from the Grand Port Maritime de Bordeaux (GPMB) were activated with sodium hydroxide (NaOH) and sodium silicate (Na2SiO3), both alone and in combination, with supplementary aluminosilicate and calcium-rich co-products, to assess their reactivity and effect on binder performance. A multi-scale experimental approach combining mechanical testing, calorimetry, porosity analysis, Scanning Electron Microscopy and Energy-Dispersive Spectroscopy (SEM–EDS), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), and solid-state Nuclear Magnetic Resonance (NMR) was employed to challenge the commonly assumed inert behavior of sediments within geopolymer matrices, to elucidate gel formation mechanisms, and to optimize binder formulation. The results show that untreated sediments actively participate in alkali activation, reaching compressive strengths of up to 5.16 MPa at 90 days without thermal pre-treatment. Calcium-poor systems exhibited progressive long-term strength development associated with the formation of homogeneous aluminosilicate gels and refined microporosity, whereas calcium-rich systems showed higher early age strength but more limited long-term performance, linked to heterogeneous gel coexistence and increased total porosity. These findings provide direct evidence of the intrinsic reactivity of untreated dredged sediments and highlight the critical role of gel chemistry and calcium content in controlling long-term performance. The proposed approach offers a viable pathway for low-impact, on-site sediment valorization in civil engineering applications. Full article
(This article belongs to the Special Issue Advances in Natural Building and Construction Materials (2nd Edition))
Show Figures

Figure 1

21 pages, 8249 KB  
Article
A Reasoned Diagnostic Procedure to Support the Restoration of the 17th Century Stucco Altar Dedicated to St. Michael the Archangel in Barbarano Romano (Viterbo, Italy)
by Claudia Pelosi, Marta Cristofori, Luca Lanteri, Giorgio Capriotti, Antonella Casoli, Marianna Potenza, Marta Sardara and Armida Sodo
Coatings 2026, 16(1), 142; https://doi.org/10.3390/coatings16010142 - 22 Jan 2026
Viewed by 55
Abstract
The 17th-century stucco altar dedicated to St. Michael the Archangel is an interesting, but very damaged, artwork located in the complex of St. Angel in the little town of Barbarano Romano in Central Italy. During the recent and quite necessary restoration carried out [...] Read more.
The 17th-century stucco altar dedicated to St. Michael the Archangel is an interesting, but very damaged, artwork located in the complex of St. Angel in the little town of Barbarano Romano in Central Italy. During the recent and quite necessary restoration carried out by University of Tuscia students on the Conservation and Restoration of Cultural Heritage Master’s program, some problems with the surface coating were encountered in the cleaning phase. Diagnostic and scientific analyses were crucial to better understanding the composition of these materials to perform the safest and most efficient cleaning procedures. The first of many steps required by this approach was an in situ analysis, starting from on-site analysis and diagnostic documentation through X-ray fluorescence spectroscopy and ultraviolet fluorescence photography, followed by laboratory investigations. The latter included µ-Raman and Fourier transform infrared spectroscopies, gas chromatography coupled with mass spectrometry, and scanning electron microscopy equipped with an energy-dispersive detector. Each technique provided useful data to determine the chemical composition of the white surface coating, which was found to be a non-original overpaint containing lead and organic binder. This overpaint had been applied to retouch the white stucco during a previous restoration project. All this new information contributed to achieving the final decision to remove this layer. Full article
Show Figures

Figure 1

27 pages, 12420 KB  
Article
Multi-Dimensional Assessment of Low-Carbon Engineering Cement-Based Composites Based on Rheological, Mechanical and Sustainability Factors
by Zhilu Jiang, Zhaowei Zhu, Deming Fang, Chuanqing Fu, Siyao Li and Yuxiang Jing
Materials 2026, 19(2), 424; https://doi.org/10.3390/ma19020424 - 21 Jan 2026
Viewed by 101
Abstract
To address the high-carbon emissions associated with the large use of Portland cement (PC) in traditional engineered cementitious composites (ECCs) and the resource constraints on supplementary cementitious materials (SCMs), this study proposes a strategy combining limestone calcined clay cement (LC3) as [...] Read more.
To address the high-carbon emissions associated with the large use of Portland cement (PC) in traditional engineered cementitious composites (ECCs) and the resource constraints on supplementary cementitious materials (SCMs), this study proposes a strategy combining limestone calcined clay cement (LC3) as a PC replacement with the incorporation of hybrid synthetic fibers to develop low-carbon, environmentally friendly ECCs. The fundamental properties of the LC3-ECC were tested, and a sustainability analysis was conducted. The experimental results show that an increase in water-to-binder ratio (W/B) or superplasticizer (SP) dosage significantly enhanced fluidity while reducing the yield stress and plastic viscosity. An LC3-ECC with a W/B of 0.25, 0.45% SP and 2% polyethylene fibers exhibited the best tensile performance, achieving an ultimate tensile strain of 8.40%. In contrast, an increase in polypropylene fiber led to a degradation in crack-resistant properties. In terms of sustainability, replacing the PC with LC3 significantly reduced carbon emissions by 19.1–20.8%, while the cost of the limestone calcined clay cement–polypropylene fiber (LC3-PP) was approximately 50% of that of the limestone calcined clay cement–polyvinyl alcohol fiber (LC3-PVA). Furthermore, an integrated evaluation framework encompassing rheological, mechanical and environmental factors was established using performance radar charts. The dataset on the performance results and the developed assessment framework provide a foundation for optimizing the mixture proportioning of LC3-ECC in practical engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

29 pages, 2904 KB  
Article
Design Framework for Porous Mixture Containing 100% Sustainable Binder
by Genhe Zhang, Bo Ning, Feng Cao, Taotao Li, Siyuan Guo, Teng Gao, Biao Ma and Rui Wu
Sustainability 2026, 18(2), 1020; https://doi.org/10.3390/su18021020 - 19 Jan 2026
Viewed by 117
Abstract
This study developed a design framework for porous mixtures using a 100% sustainable non-bituminous epoxy–polyurethane binder system. Conventional design protocols for porous asphalt mixtures exhibit limitations in accurately controlling void content and mixture composition. This study proposed a novel design framework for porous [...] Read more.
This study developed a design framework for porous mixtures using a 100% sustainable non-bituminous epoxy–polyurethane binder system. Conventional design protocols for porous asphalt mixtures exhibit limitations in accurately controlling void content and mixture composition. This study proposed a novel design framework for porous mixtures containing 100% sustainable binder based on statistical analysis and theoretical calculations. The relationships among target air voids, binder content, and aggregate gradation were systematically analyzed, and calculation formulas for coarse aggregate, fine aggregate, and mineral filler contents were derived. A mix design framework was further established by applying the void-filling theory, where the combined volume of binder, fine aggregate, and filler equals the void volume of the coarse aggregate skeleton, thereby ensuring precise control of the target void ratio. Additionally, mixing procedures were investigated with emphasis on feeding sequence, compaction method, and mixing temperature. Results indicated that the optimized feeding sequence significantly improved binder distribution; specimens compacted using the Marshall double-sided compaction method achieved a density of 89.60%. Rheological analysis revealed that at 30 °C, the viscosities of sustainable binder and polyurethane filler were 1280 mPa·s and 6825 mPa·s, respectively, suggesting optimal mixture uniformity. The proposed methodology and process parameters provide essential technical guidance for engineering applications of porous mixtures containing 100% sustainable binder. Full article
(This article belongs to the Special Issue Sustainable Pavement Engineering: Design, Materials, and Performance)
Show Figures

Figure 1

20 pages, 5123 KB  
Article
Dual-Functional Utilization of Phosphogypsum as Cementitious Binder and Aggregate in Concrete: Interfacial Compatibility and Feasibility Analysis
by Pan Chen, Zhexin Wang, Feng Zhu, Shujie Wan, Mengyang Huang, Pengfei Liu, Dongxu Zhang, Cai Wu and Yani Lu
Materials 2026, 19(2), 398; https://doi.org/10.3390/ma19020398 - 19 Jan 2026
Viewed by 182
Abstract
Addressing the environmental challenges posed by phosphogypsum (PG) stockpiling, this study investigates the synergistic mechanisms of a dual-functional application strategy where PG serves as both cementitious binder and aggregate. Unlike previous research limited to single-mode utilization, this study focuses on the interfacial compatibility [...] Read more.
Addressing the environmental challenges posed by phosphogypsum (PG) stockpiling, this study investigates the synergistic mechanisms of a dual-functional application strategy where PG serves as both cementitious binder and aggregate. Unlike previous research limited to single-mode utilization, this study focuses on the interfacial compatibility between PG-based binders and PG aggregates (PGA). Through a comparative experimental program, the mechanical performance and microstructure of different binder–aggregate combinations were evaluated. The proposed dual-functional formulation achieved a high PG incorporation rate of 38% by mass. While the compressive strength of 39.3 MPa was lower than that of the reference ordinary concrete, it comfortably surpasses the C30 strength requirement for structural applications, validating its engineering feasibility. Comparative analysis revealed that although natural stone aggregates possess higher intrinsic strength, the PG-binder/PGA system exhibits superior interfacial bonding compared to the PG-binder/stone system. Microstructural observations indicated that this synergistic interaction facilitates the formation of interwoven ettringite and C-S-H gel networks, contributing to a structurally integrated interfacial transition zone (ITZ). These findings suggest that the dual-functional strategy offers a viable pathway for developing low-carbon building materials by balancing high-volume waste utilization with mechanical compliance. Full article
(This article belongs to the Special Issue Sustainability and Performance of Cement-Based Materials)
Show Figures

Figure 1

19 pages, 4137 KB  
Article
Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands
by Grzegorz Piwowarski, Faustyna Woźniak and Artur Bobrowski
Materials 2026, 19(2), 361; https://doi.org/10.3390/ma19020361 - 16 Jan 2026
Viewed by 194
Abstract
The properties of chemically bonded core sands strongly depend on the reactivity of phenol-formaldehyde resole binders and on the granulometry of the sand matrix. This study presents an evaluation of the mechanical, technological, thermomechanical, and thermophysical properties of core sands prepared using two [...] Read more.
The properties of chemically bonded core sands strongly depend on the reactivity of phenol-formaldehyde resole binders and on the granulometry of the sand matrix. This study presents an evaluation of the mechanical, technological, thermomechanical, and thermophysical properties of core sands prepared using two resole binders with different reactivity levels (Resin 1—lower reactivity; Resin 2—higher reactivity) and two fractions of quartz sand (BK 40 and BK 45). The investigations included the kinetics of strength development (1–48 h), friability, permeability, thermal deformation (DMA), and the determination of thermophysical coefficients (λ2, a2, b2) based on temperature field registration during the solidification of a copper plate. The results indicate that sands containing the higher-reactivity binder exhibit a faster early strength increase (≈0.42–0.45 MPa after 1–3 h), whereas sands bonded with the lower-reactivity resin reach higher tensile strength after 24–48 h (≈0.58–0.62 MPa). Specimens based on BK 45 quartz sand achieved higher tensile strength; however, the finer grain fraction resulted in increased friability (up to ≈3.97%) and a reduction in permeability by 30–40%. DMA analysis confirmed that sands based on BK 40 exhibit delayed and more stable thermal deformation. Thermophysical parameters revealed that BK 45 provides significantly higher thermal insulation, extending the solidification time of the Cu plate from 71–73 s to 89–92 s compared with BK 40. Overall, the results indicate that the combination of BK 40 quartz sand and a lower-reactivity resin offers an optimal balance between thermal conductivity and thermal stability, promoting improved technological performance in casting processes. The determined thermophysical coefficients can be directly applied as input data for foundry process simulations. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop