Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Technological and Mechanical Properties
2.2.2. Thermophysical Properties
3. Results and Discussion
3.1. Tensile Strength as a Function of Curing Time
3.2. Friability
3.3. Permeability
3.4. Thermal Deformation (DMA)
3.5. Determination of Thermophysical Coefficients
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Czerwińska, K.; Pacana, A.; Ostasz, G. A Model for Sustainable Quality Control Improvement in the Foundry Industry Using Key Performance Indicators. Sustainability 2025, 17, 1418. [Google Scholar] [CrossRef]
- Sobczak, J.J. Odlewnictwo Współczesne. Poradnik Odlewnika Tom 1: Materiały; Wydawnictwo AGH: Kraków, Poland, 2013. [Google Scholar]
- Holtzer, M.; Kmita, A. Mold and Core Sands in Metalcasting: Chemistry and Ecology; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Łucarz, M.; Drożyński, D.; Jezierski, J.; Kaczmarczyk, A. Comparison of the Properties of Alkali-Phenolic Binder in Terms of Selection of Molding Sand for Steel Castings. Materials 2019, 12, 3705. [Google Scholar] [CrossRef]
- Obzina, T.; Merta, V.; Folta, M.; Bradáč, J.; Beňo, J.; Novohradská, N.; Gawronová, M.; Kroupová, I.; Lichý, P.; Radkovský, F.; et al. Technological and Quality Aspects of the Use of Innovative Inorganic Binders in the Production of Castings. Metals 2021, 11, 1779. [Google Scholar] [CrossRef]
- Fortini, A.; Merlin, M.; Raminella, G. A Comparative Analysis on Organic and Inorganic Core Binders for a Gravity Diecasting Al Alloy Component. Int. J. Met. 2022, 16, 674–688. [Google Scholar] [CrossRef]
- Kmita, A. Phenolic Binders Based on Resole Resins for the Foundry Industry—Thermal Characteristics. Arch. Foundry Eng. 2025, 25, 183–195. [Google Scholar] [CrossRef]
- Hu, H.; Wang, W.; Jiang, L.; Liu, L.; Zhang, Y.; Yang, Y.; Wang, J. Curing Mechanism of Resole Phenolic Resin Based on Variable Temperature FTIR Spectra and Thermogravimetry–Mass Spectrometry. Polym. Polym. Compos. 2022, 30, 09673911221102114. [Google Scholar] [CrossRef]
- Thébault, M.; Kandelbauer, A.; Zikulnig-Rusch, E.; Putz, R.; Jury, S.; Eicher, I. Impact of Phenolic Resin Preparation on Its Properties and Its Penetration Behavior in Kraft Paper. Eur. Polym. J. 2018, 104, 90–98. [Google Scholar] [CrossRef]
- Santos, C.; Santos, T.; Fonseca, R.; Melo, K.; Aquino, M. Phenolic Resin and Its Derivatives. In Phenolic Polymers Based Composite Materials; Springer: Singapore, 2021; pp. 1–11. [Google Scholar] [CrossRef]
- Zhao, W.; Hsu, S.L.; Ravichandran, S.; Bonner, A.M. Moisture Effects on the Physical Properties of Cross-Linked Phenolic Resins. Macromolecules 2019, 52, 3367–3375. [Google Scholar] [CrossRef]
- Woźniak, F.; Bobrowski, A. Effect of Resin Reactivity and Storage Conditions on the Properties of Foundry Cores Based on Phenolic Resole Binders. Appl. Sci. 2025, 15, 12256. [Google Scholar] [CrossRef]
- Lu, X.; Han, J.; Shephard, N.; Rhodes, S.; Martin, A.D.; Li, D.; Xue, G.; Chen, Z. Phenolic Resin Surface Restructuring upon Exposure to Humid Air: A Sum Frequency Generation Vibrational Spectroscopic Study. J. Phys. Chem. B 2009, 113, 12944–12951. [Google Scholar] [CrossRef]
- Strzemiecka, B.; Zieba-Palus, J.; Voelkel, A.; Lachowicz, T.; Socha, E. Examination of the Chemical Changes in Cured Phenol-Formaldehyde Resins during Storage. J. Chromatogr. A 2016, 1441, 106–115. [Google Scholar] [CrossRef]
- Bérot, O.S.; Hassoune-Rhabbour, B.; Acheritobehere, H.; Laforet, C.; Canot, H.; Durand, P.; Nassiet, V. Study of the Hygrothermal Aging of a Phenolic Matrix and Glass Fiber Composite. J. Compos. Mater. 2025, 59, 2425–2437. [Google Scholar] [CrossRef]
- Chiantore, O.; Lazzari, M.; Fontana, M. Thermal Decomposition of Phenol-Formaldehyde Foundry Resins. Int. J. Polym. Anal. Charact. 1995, 1, 119–130. [Google Scholar] [CrossRef]
- Bobrowski, A.; Woźniak, F.; Żymankowska-Kumon, S.; Ziętal, H.; Januszek, K.; Grabowska, B. The Impact of Storage Conditions on the Gas-Forming Tendency of Moulds and Cores Made with Resole-Type Phenol Formaldehyde Resin. Materials 2025, 18, 4832. [Google Scholar] [CrossRef] [PubMed]
- Zych, J.; Mocek, J.; Snopkiewicz, T.; Jamrozowicz, M. Thermal Conductivity of Moulding Sand with Chemical Binders: Attempts of Its Increasing. Arch. Metall. Mater. 2015, 60, 351–357. [Google Scholar] [CrossRef]
- Saeidpour, M.; Svenningsson, R.; Gotthardsson, U.; Farre, S. Thermal Properties of 3D-Printed Sand Molds. Int. J. Met. 2021, 16, 252–258. [Google Scholar] [CrossRef]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- Tye, R.P. Thermal Conductivity; Academic Press: London, UK, 1969. [Google Scholar]
- He, Y. Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations. Thermochim. Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
- Nagai, H.; Rossignol, F.; Nakata, Y.; Tsurue, T.; Suzuki, M.; Okutani, T. Thermal Conductivity Measurement of Liquid Materials by a Hot-Disk Method in Short-Duration Microgravity Environments. Mater. Sci. Eng. A 2000, 276, 117–123. [Google Scholar] [CrossRef]
- Krajewski, P.K.; Piwowarski, G.; Buraś, J. Thermal Properties of Foundry Mould Made of Used Green Sand. Arch. Foundry Eng. 2016, 16, 29–32. [Google Scholar] [CrossRef]
- Jacquet, P.; Vaucheret, A.; Souêtre, M.; Carton, J.F. Determination of Thermal Properties of Foundry Green Sand to Improve Numerical Simulation. Int. J. Met. 2024, 19, 471–479. [Google Scholar] [CrossRef]
- Hou, J.; Le, Q.; Chen, L.; Jia, Y.; Hu, C.; Ben Seghier, M.E.A. Domination and Effect of Multi-Parameters in Direct Chill Casting Based on Establishment of Thermo Model by Numerical Simulation and Experiment. J. Mater. Res. Technol. 2023, 27, 6619–6644. [Google Scholar] [CrossRef]
- Chebykin, D.; Ohta, H.; Endo, R.; Volkova, O. Methods for Thermal Conductivity and Thermal Diffusivity Measurements of Solid and Molten Mold Fluxes. Steel Res. Int. 2025, 96, 202400524. [Google Scholar] [CrossRef]
- Przyszlak, N.; Piwowarski, G. Designing of X46Cr13 Steel Heat Treatment in Condition of Casting Mould. Arch. Foundry Eng. 2023, 23, 119–126. [Google Scholar] [CrossRef]
- Łągiewka, M.; Konopka, Z.; Zyska, A.; Nadolski, M. Determination of Heat Accumulation Coefficient for Oil Bonded Moulding Sands. Arch. Foundry Eng. 2013, 13, 123–126. [Google Scholar] [CrossRef]
- Krajewski, W.K.; Suchy, J.S. Determining Thermal Properties of Insulating Sleeves. Mater. Sci. Forum 2010, 649, 487–491. [Google Scholar] [CrossRef]
- Longa, W. Krzepnięcie Odlewów, 1st ed.; Śląsk: Katowice, Poland, 1985; pp. 60–70. [Google Scholar]
- Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rodríguez, F. Chemorheological Study of the Curing Kinetics of a Phenolic Resol Resin Gelled. Eur. Polym. J. 2010, 46, 50–57. [Google Scholar] [CrossRef]
- Gardziella, A.; Pilato, L.A.; Knop, A. Phenolic Resins: Chemistry, Reactions, Mechanism. In Phenolic Resins; Springer: Berlin/Heidelberg, Germany, 2000; pp. 24–82. [Google Scholar] [CrossRef]
- Budavári, I.; Hudák, H.; Fegyverneki, G. The Role of Acid Hardener on the Hardening Characteristics, Collapsibility Performance, and Benchlife of the Warm-Box Sand Cores. Arch. Foundry Eng. 2023, 23, 68–74. [Google Scholar] [CrossRef]
- Kamarudin, N.; Biak, D.R.A.; Abidin, Z.Z.; Cardona, F.; Sapuan, S.M. Rheological Study of Phenol Formaldehyde Resole Resin Synthesized for Laminate Application. Materials 2020, 13, 2578. [Google Scholar] [CrossRef]
- Bobrowski, A.; Grabowska, B. The Impact of Temperature on Furan Resin and Binder Structure. Metall. Foundry Eng. 2012, 38, 73–78. [Google Scholar] [CrossRef]
- Hudák, H.; Gyarmati, G.; Varga, L. Investigation on the Effect of Granulometric Features on the Permeability of No-Bake Resin Bonded Sand Cores. Arch. Foundry Eng. 2021, 21, 61–66. [Google Scholar] [CrossRef]
- Ajay, R.; Lovneesh, S. Experimental Study on Effect of Sand Grain Size and Heat Dissipation on the Properties of Moulding Sand. IOP Conf. Ser. Earth Environ. Sci. 2023, 1110, 012078. [Google Scholar] [CrossRef]
- Midttømme, K.; Roaldset, E. The Effect of Grain Size on Thermal Conductivity of Quartz Sands and Silts. Pet. Geosci. 1998, 4, 165–172. [Google Scholar] [CrossRef]
- Zych, J.; Kaźnica, N. Procesy pochłaniania wilgoci z otoczenia i wysychania na przykładzie wierzchnich warstw form odlewniczych—Moisture Sorption and Desorption Processes on the Example of Moulding Sands’ Surface Layers. Arch. Foundry Eng. 2015, 15, 63–66. [Google Scholar]
- Kaźnica, N.; Zych, J. Investigations of the Sorption Process’ Kinetics of Sand Moulds’ Surface Layers under Conditions of High Air Humidity. Arch. Foundry Eng. 2015, 15, 29–32. [Google Scholar]















| Property | Resin 1 | Resin 2 | Hardener |
|---|---|---|---|
| Chemical type | Alkaline phenolic (resole) resin | Alkaline phenolic (resole) resin | Mixture of dicarboxylic acid esters |
| Reactivity | Lower | Higher | Not applicable |
| Solid content [%] | 24–26 | 48–52 | — |
| Alkalinity | 5–6% KOH + 3–4% NaOH | 10–12% KOH | — |
| pH (20 °C) | 11–13 | 12–14 | — |
| Viscosity (20 °C) | 120–260 mPa·s | 130–170 mPa·s | — |
| Density [g/cm3] | 1.20–1.25 | 1.22–1.26 | 1.076–1.096 |
| Residual phenol [%] | ≤0.23 | ≤0.4 | — |
| Free formaldehyde [%] | <0.08 | <0.10 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Piwowarski, G.; Woźniak, F.; Bobrowski, A. Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands. Materials 2026, 19, 361. https://doi.org/10.3390/ma19020361
Piwowarski G, Woźniak F, Bobrowski A. Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands. Materials. 2026; 19(2):361. https://doi.org/10.3390/ma19020361
Chicago/Turabian StylePiwowarski, Grzegorz, Faustyna Woźniak, and Artur Bobrowski. 2026. "Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands" Materials 19, no. 2: 361. https://doi.org/10.3390/ma19020361
APA StylePiwowarski, G., Woźniak, F., & Bobrowski, A. (2026). Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands. Materials, 19(2), 361. https://doi.org/10.3390/ma19020361

