Effects of Polyvinyl Alcohol on the Early-Age Mechanical Properties and Carbon Uptake of Lime-Enriched Binders: A Comparative Study with Pure Lime and Portland Cement Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mix Proportions and Specimen Preparation
2.3. Experimental Methods
2.3.1. Compressive and Flexural Strength Tests
2.3.2. Carbonation Kinetics
2.3.3. Thermodynamic Modeling
2.3.4. Isothermal Calorimetry
2.3.5. Scanning Electron Microscopy (SEM)
3. Results
3.1. Mechanical Properties
3.2. Carbonation Kinetics
3.3. Thermodynamic Analysis
3.4. Hydration Heat
3.5. Microstructural Analysis
4. Conclusions
- (1)
- PVA effectively improves the early-age mechanical properties of lime-enriched binders, particularly flexural strength. Under accelerated carbonation, the compressive strength of LP and LE increases by 21.1% and 5.6%, respectively, whereas that of PO decreases. The flexural strength of PO, LP, and LE increases by 4.0%, 119.3%, and 70.62%, respectively.
- (2)
- Carbonation kinetics analysis shows that PVA increases the carbonation rate and CO2 uptake of PO and LE, with increases of 16.8% and 16.9% in total CO2 sequestration, respectively. In contrast, the CO2 uptake of LP slightly decreases by 5.5% after PVA addition.
- (3)
- Thermodynamic modeling indicates that calcium hydroxide is the first phase to carbonate in all binder systems. Ettringite carbonates only after the near-complete reaction of high-calcium C–S–H, while siliceous hydrogarnet decomposes prior to ettringite.
- (4)
- Isothermal calorimetry results demonstrate that PVA reduces both the hydration rate and cumulative heat release of cement-containing binders, indicating a certain retardation effect on hydration.
- (5)
- Microstructural observations reveal that PVA forms polymer films within the LP matrix, bridging microcracks and contributing to the enhanced flexural strength of the binder.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Z.; Zhu, B.; Davis, S.J.; Ciais, P.; Guan, D.; Gong, P.; Liu, Z. Global carbon emissions and decarbonization in 2024. Nat. Rev. Earth Environ. 2025, 6, 231–233. [Google Scholar] [CrossRef]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L.; et al. SP-Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Wei, Y.-H.; Jin, H.; Shen, P.; Poon, C.S.; Yan, H.; Wei, X.-Y. Machine learning for efficient CO2 sequestration in cementitious materials: A data-driven method. npj Mater. Sustain. 2025, 3, 9. [Google Scholar] [CrossRef]
- Jungclaus, M.A.; Williams, S.L.; Arehart, J.H.; Srubar, W.V. Whole-life carbon emissions of concrete mixtures considering maximum CO2 sequestration via carbonation. Resour. Conserv. Recycl. 2024, 206, 107605. [Google Scholar] [CrossRef]
- Fan, D.; Zhang, C.; Li, X.; Lv, X.; Lu, J.-X.; Yu, R.; Noguchi, T.; Poon, C.S. Development of Foam Concrete toward High Strength and CO2 Sequestration. ACS Sustain. Chem. Eng. 2024, 12, 16622–16637. [Google Scholar] [CrossRef]
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.; Singh, L. A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- Hwang, H.-Y.; Park, J.; Moon, J.; Kang, S.-H.; Hong, S.-G. Impact of in-situ CO2 injection on natural and accelerated carbonation performance of aerial lime mortar. Constr. Build. Mater. 2024, 449, 138469. [Google Scholar] [CrossRef]
- Mohan, M.; Singh, B.K. Enhanced Pozzolanic Activity of Crushed Brick Powder with Hydrated Lime: Concrete Durability Study. J. Mater. Civ. Eng. 2024, 36, 4024363. [Google Scholar] [CrossRef]
- Li, C.; Liu, B.; Li, Y.; Zheng, Q.; Fang, Y.; Zhao, Q.; Jiang, Z.; Li, J. Reaction mechanism of CaOH2-based carbon storage suitable for the production of building materials. Cem. Concr. Compos. 2024, 153, 105737. [Google Scholar] [CrossRef]
- Leão, A.; Collin, M.; Ghodkhande, S.; Bouissonnié, A.; Chen, X.; Malin, B.; Liu, Y.; Hovey, G.; Govindhakannan, J.; La Plante, E.; et al. ZeroCAL: Eliminating Carbon Dioxide Emissions from Limestone’s Decomposition to Decarbonize Cement Production. ACS Sustain. Chem. Eng. 2024, 12, 15762–15787. [Google Scholar] [CrossRef] [PubMed]
- Castaño, S.V.; La Plante, E.C.; Collin, M.; Sant, G.; Pilon, L. A pilot-process for calcium hydroxide production from iron slag by low-temperature precipitation. J. Environ. Chem. Eng. 2022, 10, 107792. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Ilić, T.; Ruiz-Agudo, E.; Elert, K. Carbonation mechanisms and kinetics of lime-based binders: An overview. Cem. Concr. Res. 2023, 173, 107301. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Jia, Y.; She, W.; Liu, G.; Wu, Z.; Sun, W. Influence of sodium hydroxide on the performance and hydration of lime-based low carbon cementitious materials. Constr. Build. Mater. 2019, 200, 604–615. [Google Scholar] [CrossRef]
- Adesina, P.A.; Olutoge, F.A. Structural properties of sustainable concrete developed using rice husk ash and hydrated lime. J. Build. Eng. 2019, 25, 100804. [Google Scholar] [CrossRef]
- Mehdipour, I.; Falzone, G.; La Plante, E.C.; Simonetti, D.; Neithalath, N.; Sant, G.N. How Microstructure and Pore Moisture Affect Strength Gain in Portlandite-Enriched Composites That Mineralize CO2. ACS Sustain. Chem. Eng. 2019, 7, 13053–13061. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, Y.; Wu, X.; Ma, X. The effect of carbonation accelerator on enhancing the carbonation process and mechanical strength of air-hardening lime mortars. Constr. Build. Mater. 2024, 425, 136067. [Google Scholar] [CrossRef]
- Wang, L.; Gu, Y.; Jiang, L.; Jin, W.; Guo, M.; Xia, K.; Yang, G. Hydrated Lime–Enriched CO2 Sequestration Binders Reinforced by Polyvinyl Alcohol. J. Mater. Civ. Eng. 2023, 35, 4023184. [Google Scholar] [CrossRef]
- Dong, D.; Huang, Y.; Gao, X.; Bian, Y.; Zhu, J.; Hou, P.; Chen, H.; Zhao, P.; Wang, S.; Lu, L. Effect of polyvinyl alcohol powder on the impermeability, frost resistance and pore structure of calcium sulfoaluminate cement concrete. Constr. Build. Mater. 2023, 409, 133858. [Google Scholar] [CrossRef]
- Xie, Z.; Yao, H.; Yuan, Q.; Zhong, F. The roles of water-soluble polymers in cement-based materials: A systematic review. J. Build. Eng. 2023, 73, 106811. [Google Scholar] [CrossRef]
- Qiao, G.; Zhao, Y.; Wang, P.; Hou, D.; Chen, B. Nanoscale measurement of adhesion forces and atomic-scale mechanisms at CSH/SiO2 and CSH/PVP-co-PAA interfaces. Cem. Concr. Res. 2025, 195, 107900. [Google Scholar] [CrossRef]
- Jia, J.; Zaoui, A.; Sekkal, W. Impact of polymer binders on the aggregation modes of two-pieces CSH composites. Cem. Concr. Res. 2025, 189, 107779. [Google Scholar] [CrossRef]
- Cao, D.; Gu, Y.; Jiang, L.; Jin, W.; Lyu, K.; Guo, M. Effect of polyvinyl alcohol on the performance of carbon fixation foam concrete. Constr. Build. Mater. 2023, 390, 131775. [Google Scholar] [CrossRef]
- Kravchenko, E.; Qin, C.; Lin, Z.; Ng, C.W.W. Effect of polyvinyl alcohol on the CO2 uptake of carbonated steel slag. Constr. Build. Mater. 2023, 375, 130761. [Google Scholar] [CrossRef]
- Kravchenko, E.; Lazorenko, G.; Besklubova, S.; Raza, M.H. Optimizing carbon dioxide sequestration in waste concrete powder through polymer treatment. J. Environ. Chem. Eng. 2025, 13, 117144. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, X.; Li, S.; Yu, Q. Long-term salt freeze-thaw resistance of polyvinyl alcohol (PVA) modified mortar: The role of molecular structure. Cem. Concr. Compos. 2025, 162, 106159. [Google Scholar] [CrossRef]
- Zhu, H.; Lan, X.; Zeng, X.; Long, G.; Xie, Y. Enhancement of the energy dissipation capacity C-S-H gel through self-crosslinking the poly (vinyl alcohol). Cem. Concr. Res. 2024, 185, 107648. [Google Scholar] [CrossRef]
- Wang, P.; Jia, L.; Li, W.; Jin, Z.; Nadeem, B.M.; Zhao, H.; Ji, X. Microstructure and property study of polyvinyl alcohol modified high performance conductive cementitious anode materials. Constr. Build. Mater. 2025, 495, 143664. [Google Scholar] [CrossRef]
- Shi, Z.; Lothenbach, B.; Geiker, M.R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; Skibsted, J. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem. Concr. Res. 2016, 88, 60–72. [Google Scholar] [CrossRef]
- Zhang, L.; Dzombak, D.A.; Nakles, D.V.; Hawthorne, S.B.; Miller, D.J.; Kutchko, B.G.; Lopano, C.L.; Strazisar, B.R. Rate of H2S and CO2 attack on pozzolan-amended Class H well cement under geologic sequestration conditions. Int. J. Greenh. Gas Control 2014, 27, 299–308. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Devlin, L.P.; Koshy, P.; Sorrell, C.C. Effects of chemical nature of polyvinyl alcohol on early hydration of Portland cement. J. Therm. Anal. Calorim. 2015, 123, 1439–1450. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Devlin, L.P.; Koshy, P.; Sorrell, C.C. Effects of acetic acid on early hydration of Portland cement. J. Therm. Anal. Calorim. 2016, 123, 489–499. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Zhou, Y.; Zhang, W.; Li, W.; She, W.; Liu, J.; Miao, C. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability. Nat. Commun. 2023, 14, 3438. [Google Scholar] [CrossRef] [PubMed]






| Component | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | L.O.I. |
|---|---|---|---|---|---|---|---|---|
| Content (wt%) | 62.83 | 20.50 | 5.61 | 3.84 | 3.07 | 1.70 | 1.31 | 1.14 |
| ID | Water/Binder | CH/Binder | Cement/Binder | PVA/Binder |
|---|---|---|---|---|
| OPC (without PVA) | 0.55 | 0 | 1 | 0 |
| LP (without PVA) | 0.55 | 0.6 | 0.4 | 0 |
| LE (without PVA) | 0.55 | 1 | 0 | 0 |
| OPC (with PVA) | 0.55 | 0 | 1 | 0.02 |
| LP (with PVA) | 0.55 | 0.6 | 0.4 | 0.02 |
| LE (with PVA) | 0.55 | 1 | 0 | 0.02 |
| a | b | R2 | |
|---|---|---|---|
| PO | 1.55 | 3.56 | 0.949 |
| LP | 3.09 | 8.59 | 0.953 |
| LE | 4.74 | 10.30 | 0.941 |
| PO (with PVA) | 2.07 | 2.90 | 0.979 |
| LP (with PVA) | 2.71 | 8.77 | 0.951 |
| LE (with PVA) | 8.19 | −0.41 | 0.933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yuan, X.; Wang, X.; Yan, C.; Gu, Y. Effects of Polyvinyl Alcohol on the Early-Age Mechanical Properties and Carbon Uptake of Lime-Enriched Binders: A Comparative Study with Pure Lime and Portland Cement Systems. Appl. Sci. 2026, 16, 1244. https://doi.org/10.3390/app16031244
Yuan X, Wang X, Yan C, Gu Y. Effects of Polyvinyl Alcohol on the Early-Age Mechanical Properties and Carbon Uptake of Lime-Enriched Binders: A Comparative Study with Pure Lime and Portland Cement Systems. Applied Sciences. 2026; 16(3):1244. https://doi.org/10.3390/app16031244
Chicago/Turabian StyleYuan, Xuelian, Xintian Wang, Chong Yan, and Yue Gu. 2026. "Effects of Polyvinyl Alcohol on the Early-Age Mechanical Properties and Carbon Uptake of Lime-Enriched Binders: A Comparative Study with Pure Lime and Portland Cement Systems" Applied Sciences 16, no. 3: 1244. https://doi.org/10.3390/app16031244
APA StyleYuan, X., Wang, X., Yan, C., & Gu, Y. (2026). Effects of Polyvinyl Alcohol on the Early-Age Mechanical Properties and Carbon Uptake of Lime-Enriched Binders: A Comparative Study with Pure Lime and Portland Cement Systems. Applied Sciences, 16(3), 1244. https://doi.org/10.3390/app16031244
