Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (452)

Search Parameters:
Keywords = bias circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2471 KiB  
Article
A Low-Power Comparator-Based Automatic Power and Modulation Control Circuit for VCSEL Drivers
by Yejin Choi and Sung-Min Park
Photonics 2025, 12(9), 844; https://doi.org/10.3390/photonics12090844 (registering DOI) - 24 Aug 2025
Abstract
This paper proposes an automatic power and modulation control (APMC) circuit that can directly detect the degradation of vertical cavity surface emitting laser (VCSEL) diodes by utilizing a novel voltage sensing mechanism, thereby eliminating the need for costly external monitoring photodiodes. Notably, the [...] Read more.
This paper proposes an automatic power and modulation control (APMC) circuit that can directly detect the degradation of vertical cavity surface emitting laser (VCSEL) diodes by utilizing a novel voltage sensing mechanism, thereby eliminating the need for costly external monitoring photodiodes. Notably, the proposed APMC architecture facilely observes the performance degradation by sampling the voltage values at the upper node of the VCSEL diode during both modulation on and off states. The APC loop can perceive a 25 mV voltage drop that corresponds to a 0.5 mA increase in the threshold current, providing a 4-bit digital switch signal. Thereafter, it is delivered to the VCSEL diode driver to initiate compensation of the bias current. In the AMC loop, a 50 mV voltage drop equivalent to a 1 mA reduction in the modulation current is similarly detected to produce another 4-bit digital code. The proposed APMC IC is designed by using a 180 nm CMOS process and consumes a total power of 18.2 mW from a single 3.3 V supply. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
15 pages, 1227 KiB  
Article
Cellular Signal Detection by Hydrogenated Amorphous Silicon Photosensitive Chip with Electroexcitation
by Fengyan Hou, Jianjun Dong, Xia Wang, Qiuyang Deng, M. James C. Crabbe and Zuobin Wang
Sensors 2025, 25(17), 5255; https://doi.org/10.3390/s25175255 (registering DOI) - 23 Aug 2025
Abstract
Based on the photoconductive effect of photosensitive films, a designed light pattern was projected onto a hydrogenated amorphous silicon (a-Si:H) photosensitive chip to generate virtual light-induced electrodes for cellular electrical detection. To obtain high-quality cellular signals, this study aims to explore the effect [...] Read more.
Based on the photoconductive effect of photosensitive films, a designed light pattern was projected onto a hydrogenated amorphous silicon (a-Si:H) photosensitive chip to generate virtual light-induced electrodes for cellular electrical detection. To obtain high-quality cellular signals, this study aims to explore the effect of electrical excitation on a-Si:H photosensitive chip. Firstly, the electrochemical impedance spectroscopy (EIS) and volt-ampere characteristics of the a-Si:H photosensitive chip were characterized. EIS data were fitted to extract equivalent circuit models (ECMs) for both the chip and system. Then analog experiments were performed to verify the ECMs, and the results were consistent with the circuit simulation. Finally, applied alternating current (AC) or direct current (DC) signals to the chip and recorded the electrical signals of the cultured cardiomyocytes on the a-Si:H photosensitive chip. The results demonstrated that applying a high-frequency small AC signal to the chip reduced the background noise of the system by approximately 85.1%, and applying a DC bias increased the amplitude of the detection signal by approximately 142.7%. Consequently, the detection performance of the a-Si:H photosensitive chip for weak bioelectrical signals was significantly enhanced, advancing its applicability in cellular electrophysiological studies. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

18 pages, 7955 KiB  
Article
A Very Compact Eleven-State Bandpass Filter with Split-Ring Resonators
by Marko Ninić, Branka Jokanović and Milka Potrebić Ivaniš
Electronics 2025, 14(17), 3348; https://doi.org/10.3390/electronics14173348 - 22 Aug 2025
Viewed by 50
Abstract
In this paper, we present an extremely compact eleven-state microwave filter with four concentric split-ring resonators (SRRs). Reconfigurability is achieved by switching off either single or multiple SRRs, thereby obtaining different triple-band, dual-band, and single-band configurations from the initial quad-band topology. Switches are [...] Read more.
In this paper, we present an extremely compact eleven-state microwave filter with four concentric split-ring resonators (SRRs). Reconfigurability is achieved by switching off either single or multiple SRRs, thereby obtaining different triple-band, dual-band, and single-band configurations from the initial quad-band topology. Switches are placed on the vertical branches of SRRs in order to minimize the additional insertion loss. As switching elements, we first use traditional RF switches—PIN diodes—and then examine the integration of non-volatile RF switches—memristors—into filter design. Memristors’ ability to remember previous electrical states makes them a main building block for designing circuits that are both energy-efficient and adaptive, opening a new era in electronics and artificial intelligence. As RF memristors are not commercially available, PIN diodes are used for experimental filter verification. Afterwards, we compare the filter characteristics realized with PIN diodes and memristors to present capabilities of memristor technology. Memristors require no bias, and their parasitic effects are modeled with low resistance for the ON state and low capacitance for the OFF state. Measured performances of all obtained configurations are in good agreement with the simulations. The filter footprint area is 26 mm × 29 mm on DiClad substrate. Full article
(This article belongs to the Special Issue Memristors beyond the Limitations: Novel Methods and Materials)
Show Figures

Figure 1

34 pages, 964 KiB  
Systematic Review
Resting-State Electroencephalogram (EEG) as a Biomarker of Learning Disabilities in Children—A Systematic Review
by James Chmiel, Jarosław Nadobnik, Szymon Smerdel and Mirela Niedzielska
J. Clin. Med. 2025, 14(16), 5902; https://doi.org/10.3390/jcm14165902 - 21 Aug 2025
Viewed by 231
Abstract
Introduction: Learning disabilities (LD) compromise academic achievement in approximately 5–10% of school-aged children, yet the neurophysiological signatures that could facilitate earlier detection or stratification remain poorly defined. Resting-state electroencephalography (rs-EEG) offers millisecond resolution and is cost-effective, but its findings have never been synthesized [...] Read more.
Introduction: Learning disabilities (LD) compromise academic achievement in approximately 5–10% of school-aged children, yet the neurophysiological signatures that could facilitate earlier detection or stratification remain poorly defined. Resting-state electroencephalography (rs-EEG) offers millisecond resolution and is cost-effective, but its findings have never been synthesized systematically across pediatric LD cohorts. Methods: Following a PROSPERO-registered protocol (CRD420251087821) and adhering to PRISMA 2020 guidelines, we searched PubMed, Embase, Web of Science, Scopus, and PsycINFO through 31 March 2025 for peer-reviewed studies that recorded eyes-open or eyes-closed rs-EEG using ≥ 4 scalp electrodes in children (≤18 years) formally diagnosed with LD, and compared the results with typically developing peers or normative databases. Four reviewers independently screened titles and abstracts, extracted data, and assessed the risk of bias using ROBINS-I. Results: Seventeen studies (704 children with LD; 620 controls) met the inclusion criteria. The overall risk of bias was moderate, primarily due to small clinic-based samples and inconsistent control for confounding variables. Three consistent electrophysiological patterns emerged: (i) a 20–60% increase in delta/theta power over mesial-frontal, fronto-central and left peri-Sylvian cortices, resulting in markedly elevated θ/α and θ/β ratios; (ii) blunting or anterior displacement of the posterior alpha rhythm, particularly in language-critical temporo-parietal regions; and (iii) developmentally immature connectivity, characterized by widespread slow-band hypercoherence alongside hypo-connected upper-alpha networks linking left-hemisphere language hubs to posterior sensory areas. These abnormalities were correlated with reading, writing, and IQ scores and, in two longitudinal cohorts, they partially normalized in parallel with academic improvement. Furthermore, a link between reduced posterior/overall alpha and neuroinflammation has been found. Conclusions: Rs-EEG reveals a robust yet heterogeneous electrophysiological profile of pediatric LD, supporting a hybrid model that combines maturational delay with persistent circuit-level atypicalities in some children. While current evidence suggests that rs-EEG features show promise as potential biomarkers for LD detection and subtyping, these findings remain preliminary. Definitive clinical translation will require multi-site, dense-array longitudinal studies employing harmonized pipelines, integration with MRI and genetics, and the inclusion of EEG metrics in intervention trials. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

21 pages, 3653 KiB  
Article
A 28 mK Resolution, −0.45 °C/+0.51 °C Inaccuracy Temperature Sensor Using Dual-Comparator Architecture and Logic-Controlled Counting Method
by Yubin Xu, Tongyu Luo and Lin Peng
Micromachines 2025, 16(8), 947; https://doi.org/10.3390/mi16080947 - 18 Aug 2025
Viewed by 324
Abstract
This paper presents an all-CMOS temperature sensor with low power consumption, wide temperature range, and high precision in a 180 nm CMOS process. Based on the I–V characteristics of MOSFETs in the subthreshold region and the negative exponential biasing current generated by the [...] Read more.
This paper presents an all-CMOS temperature sensor with low power consumption, wide temperature range, and high precision in a 180 nm CMOS process. Based on the I–V characteristics of MOSFETs in the subthreshold region and the negative exponential biasing current generated by the self-bootstrapped bias circuit, the proposed temperature-sensing front-end produces CTAT and PTAT voltages with high linearity and high sensitivity. The voltage-to-time converter (VTC) adopts a dual-comparator architecture to expand the time interval for improving resolution. The control logic unit is designed to count only within the time interval, eliminating interference during low-level periods and enhancing the accuracy of temperature measurement. The implemented sensor achieves an inaccuracy of −0.45 °C/+0.51 °C (3σ) from −40 °C to 130 °C after a two-point calibration with a resolution of 28 mK and consumes 503 nW at 27 °C when operating at 1 V, with an FoM of 7.9 pJ·K2. Full article
Show Figures

Figure 1

20 pages, 1705 KiB  
Article
A New Current Differential Protection Scheme for DC Multi-Infeed Systems
by Jianling Liao, Wei Yuan, Jia Zou, Feng Zhao, Xu Zhang and Yankui Zhang
Eng 2025, 6(8), 203; https://doi.org/10.3390/eng6080203 - 18 Aug 2025
Viewed by 356
Abstract
To meet the demands of deep grid integration of renewable energy and long-distance power transmission, this paper presents a hybrid multi-infeed DC system architecture that includes an AC power source (AC), a voltage source converter (VSC), and a modular multilevel converter (MMC). Addressing [...] Read more.
To meet the demands of deep grid integration of renewable energy and long-distance power transmission, this paper presents a hybrid multi-infeed DC system architecture that includes an AC power source (AC), a voltage source converter (VSC), and a modular multilevel converter (MMC). Addressing the limitations of traditional differential protection—such as insufficient sensitivity under high-resistance grounding and susceptibility to false operations under out-of-zone disturbances—this paper introduces an enhanced current differential criterion based on dynamic phasor analysis. By effectively decoupling DC bias and load current components and optimizing the calculation of action and braking quantities, the proposed method enables the rapid and accurate identification of typical faults, including high-resistance grounding, three-phase short circuits, and out-of-zone faults. A multi-scenario simulation platform is built using MATLAB to thoroughly validate the improved criterion. Simulation results demonstrate that the proposed method offers excellent sensitivity, selectivity, and resistance to false operations in multi-infeed complex systems. It achieves fast fault detection (~2.0 ms), strong sensitivity to high-resistance internal faults, and low false tripping under a variety of test scenarios, providing robust support for next-generation DC protection systems. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

12 pages, 2529 KiB  
Article
Selective DUV Femtosecond Laser Annealing for Electrical Property Modulation in NMOS Inverter
by Joo Hyun Jeong, Won Woo Lee, Sang Jik Kwon, Min-Kyu Park and Eou-Sik Cho
Nanomaterials 2025, 15(16), 1247; https://doi.org/10.3390/nano15161247 - 14 Aug 2025
Viewed by 267
Abstract
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high [...] Read more.
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high cost of indium. To address these issues, nitrogen-doped zinc oxynitride (ZnON), which can be processed at room temperature, has been proposed. Nitrogen in ZnON effectively reduces oxygen vacancies (VO), resulting in enhanced field-effect mobility and improved stability under positive bias stress (PBS) compared to IGZO. In this study, selective deep ultraviolet femtosecond (DUV fs) laser annealing was applied to the channel region of ZnON thin-film transistors (TFTs), enabling rapid threshold voltage (Vth) modulation within microseconds, without the need for vacuum processing. Based on the electrical characteristics of both Vth-modulated and pristine ZnON TFTs, an NMOS inverter was fabricated, demonstrating reliable performance. These results suggest that laser annealing is a promising technique, applicable to various logic circuits and electronic devices. Full article
Show Figures

Figure 1

17 pages, 2806 KiB  
Article
Impact of Multi-Bias on the Performance of 150 nm GaN HEMT for High-Frequency Applications
by Mohammad Abdul Alim and Christophe Gaquiere
Micromachines 2025, 16(8), 932; https://doi.org/10.3390/mi16080932 - 13 Aug 2025
Viewed by 323
Abstract
This study examines the performance of a GaN HEMT with a 150 nm gate length, fabricated on silicon carbide, across various operational modes, including direct current (DC), radio frequency (RF), and small-signal parameters. The evaluation of DC, RF, and small-signal performance under diverse [...] Read more.
This study examines the performance of a GaN HEMT with a 150 nm gate length, fabricated on silicon carbide, across various operational modes, including direct current (DC), radio frequency (RF), and small-signal parameters. The evaluation of DC, RF, and small-signal performance under diverse bias conditions remains a relatively unexplored area of study for this specific technology. The DC characteristics revealed relatively little Ids at zero gate and drain voltages, and the current grew as Vgs increased. Essential measurements include Idss at 109 mA and Idssm at 26 mA, while the peak gm was 62 mS. Because transconductance is sensitive to variations in Vgs and Vds, it shows “Vth roll-off,” where Vth decreases as Vds increases. The transfer characteristics corroborated this trend, illustrating the impact of drain-induced barrier lowering (DIBL) on threshold voltage (Vth) values, which spanned from −5.06 V to −5.71 V across varying drain-source voltages (Vds). The equivalent-circuit technique revealed substantial non-linear behaviors in capacitances such as Cgs and Cgd concerning Vgs and Vds, while also identifying extrinsic factors including parasitic capacitances and resistances. Series resistances (Rgs and Rgd) decreased as Vgs increased, thereby enhancing device conductivity. As Vgs approached neutrality, particularly at elevated Vds levels, the intrinsic transconductance (gmo) and time constants (τgm, τgs, and τgd) exhibited enhanced performance. ft and fmax, which are essential for high-frequency applications, rose with decreasing Vgs and increasing Vds. When Vgs approached −3 V, the S21 and Y21 readings demonstrated improved signal transmission, with peak S21 values of approximately 11.2 dB. The stability factor (K), which increased with Vds, highlighted the device’s operational limits. The robust correlation between simulation and experimental data validated the equivalent-circuit model, which is essential for enhancing design and creating RF circuits. Further examination of bias conditions would enhance understanding of the device’s performance. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 - 31 Jul 2025
Viewed by 253
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 770 KiB  
Article
On the Low Reliability of Sunk Cost Vignettes
by Michał Białek and Emilia Biesiada
Brain Sci. 2025, 15(8), 808; https://doi.org/10.3390/brainsci15080808 - 28 Jul 2025
Viewed by 305
Abstract
Background/Objectives: Sunk cost bias—continuing failing endeavours due to prior investments—is among the most studied decision-making biases. Despite decades of vignette-based research, these measures lack systematic psychometric validation. We examined whether widely-used sunk cost scenarios reliably measure the same psychological construct. Methods: Across two [...] Read more.
Background/Objectives: Sunk cost bias—continuing failing endeavours due to prior investments—is among the most studied decision-making biases. Despite decades of vignette-based research, these measures lack systematic psychometric validation. We examined whether widely-used sunk cost scenarios reliably measure the same psychological construct. Methods: Across two experiments (N = 395), we tested established sunk cost vignettes, including classic scenarios from Arkes and Blumer (1985). English-speaking participants from Prolific Academic completed vignettes alongside cognitive reflection and social desirability measures. We assessed internal consistency and intercorrelations between scenarios. Results: Internal consistency was consistently poor (ω = 0.14–0.57) with weak intercorrelations between scenarios. Even highly similar vignettes correlated only moderately. External validity was problematic, showing inconsistent relationships with cognitive reflection and social desirability across vignettes. Conclusions: These measurement failures have critical implications for neuroimaging research, where unreliable behavioural measures may be mistaken for genuine neural differences. The field needs systematic categorization of scenarios to identify which vignettes engage specific psychological processes and neural circuits, enabling more targeted theoretical development. Full article
(This article belongs to the Special Issue Advances in Cognitive and Psychometric Evaluation)
Show Figures

Figure 1

30 pages, 543 KiB  
Article
LGBTQI+ Asylum Cases in the U.S. Circuit Court of Appeals
by Connie Oxford
Sexes 2025, 6(3), 39; https://doi.org/10.3390/sexes6030039 - 15 Jul 2025
Viewed by 720
Abstract
This article examines LGBTQI+ asylum claims in the U.S. Circuit Court of Appeals. The data are part of a larger study that has identified 520 LGBTQI+ claims in the U.S. Circuit of Appeals from 1994 to 2023. It focuses on examples from the [...] Read more.
This article examines LGBTQI+ asylum claims in the U.S. Circuit Court of Appeals. The data are part of a larger study that has identified 520 LGBTQI+ claims in the U.S. Circuit of Appeals from 1994 to 2023. It focuses on examples from the 115 cases that were granted a review and analyzes the logic that U.S. Circuit Court justices use when deciding to grant a review of a petition that was denied by a lower court, such as the Board of Immigration Appeals (BIA) and immigration courts. This article argues that the U.S. Circuit of Appeals contests lower court rulings from BIA and immigration court judges based on assumptions about credibility, discretion, persecution, and criminalization for LGBTQI+ asylum seekers. By granting reviews, the Circuit Courts provide an opening for the acceptance of queer asylum claims. Full article
Show Figures

Figure 1

14 pages, 26034 KiB  
Article
High-Performance Self-Powered Broadband Photodetectors Based on a Bi2Se3 Topological Insulator/ReSe2 Heterojunction for Signal Transmission
by Yun Wei, Peng Wan, Lijian Li, Tao He, Wanyu Ma, Tong Xu, Bingwang Yang, Shulin Sha, Caixia Kan and Mingming Jiang
Photonics 2025, 12(7), 709; https://doi.org/10.3390/photonics12070709 - 14 Jul 2025
Viewed by 242
Abstract
Topological insulators (TIs) hold considerable promise for the advancement of optoelectronic technologies, including spectroscopy, imaging, and communication, owing to their remarkable optical and electrical characteristics. This study proposes a novel combination of Bi2Se3 TIs and ReSe2 [...] Read more.
Topological insulators (TIs) hold considerable promise for the advancement of optoelectronic technologies, including spectroscopy, imaging, and communication, owing to their remarkable optical and electrical characteristics. This study proposes a novel combination of Bi2Se3 TIs and ReSe2 for self-powered broadband photodetectors with high sensitivity and fast response time. The Bi2Se3/ReSe2 heterojunction photodetector achieves broadband response spectra ranging for 375 nm to 1 μm. It demonstrates a significant responsivity of 64 mA/W at a wavelength of 600 nm (1 mW/cm2), exhibits a rapid response speed of 345 μs rise/336 μs fall time, and has a 3 dB bandwidth of 1.4 kHz under zero-bias conditions. The high performance can be attributed to the suitable energy band structure of Bi2Se3/ReSe2 and high carrier mobility in surface states of Bi2Se3. Excitingly, self-powered TIs photodetectors allow for high-quality signal transmission. The TIs employed in photodetectors can stimulate the production of new optoelectronic features, but they could also be used for highly integrated photonic circuits in the future. Full article
(This article belongs to the Special Issue New Perspectives in Photodetectors)
Show Figures

Figure 1

41 pages, 699 KiB  
Review
Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review
by James Chmiel and Donata Kurpas
J. Clin. Med. 2025, 14(14), 4899; https://doi.org/10.3390/jcm14144899 - 10 Jul 2025
Viewed by 1135
Abstract
Introduction: Substance use disorders (SUDs) pose a significant public health challenge, with current treatments often exhibiting limited effectiveness and high relapse rates. Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique that delivers low-intensity direct current via scalp electrodes, has shown promise in [...] Read more.
Introduction: Substance use disorders (SUDs) pose a significant public health challenge, with current treatments often exhibiting limited effectiveness and high relapse rates. Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique that delivers low-intensity direct current via scalp electrodes, has shown promise in various psychiatric and neurological conditions. In SUDs, tDCS may help to modulate key neurocircuits involved in craving, executive control, and reward processing, potentially mitigating compulsive drug use. However, the precise neurobiological mechanisms by which tDCS exerts its therapeutic effects in SUDs remain only partly understood. This review addresses that gap by synthesizing evidence from clinical studies that used neuroimaging (fMRI, fNIRS, EEG) and blood-based biomarkers to elucidate tDCS’s mechanisms in treating SUDs. Methods: A targeted literature search identified articles published between 2008 and 2024 investigating tDCS interventions in alcohol, nicotine, opioid, and stimulant use disorders, focusing specifically on physiological and neurobiological assessments rather than purely behavioral outcomes. Studies were included if they employed either neuroimaging (fMRI, fNIRS, EEG) or blood tests (neurotrophic and neuroinflammatory markers) to investigate changes induced by single- or multi-session tDCS. Two reviewers screened titles/abstracts, conducted full-text assessments, and extracted key data on participant characteristics, tDCS protocols, neurobiological measures, and clinical outcomes. Results: Twenty-seven studies met the inclusion criteria. Across fMRI studies, tDCS—especially targeting the dorsolateral prefrontal cortex—consistently modulated large-scale network activity and connectivity in the default mode, salience, and executive control networks. Many of these changes correlated with subjective craving, attentional bias, or extended time to relapse. EEG-based investigations found that tDCS can alter event-related potentials (e.g., P3, N2, LPP) linked to inhibitory control and salience processing, often preceding or accompanying changes in craving. One fNIRS study revealed enhanced connectivity in prefrontal regions under active tDCS. At the same time, two blood-based investigations reported the partial normalization of neurotrophic (BDNF) and proinflammatory markers (TNF-α, IL-6) in participants receiving tDCS. Multi-session protocols were more apt to drive clinically meaningful neuroplastic changes than single-session interventions. Conclusions: Although significant questions remain regarding optimal stimulation parameters, sample heterogeneity, and the translation of acute neural shifts into lasting behavioral benefits, this research confirms that tDCS can induce detectable neurobiological effects in SUD populations. By reshaping activity across prefrontal and reward-related circuits, modulating electrophysiological indices, and altering relevant biomarkers, tDCS holds promise as a viable, mechanism-based adjunctive therapy for SUDs. Rigorous, large-scale studies with longer follow-up durations and attention to individual differences will be essential to establish how best to harness these neuromodulatory effects for durable clinical outcomes. Full article
(This article belongs to the Special Issue Substance and Behavioral Addictions: Prevention and Diagnosis)
Show Figures

Figure 1

23 pages, 4988 KiB  
Article
Research on the Optimization of the Electrode Structure and Signal Processing Method of the Field Mill Type Electric Field Sensor
by Wei Zhao, Zhizhong Li and Haitao Zhang
Sensors 2025, 25(13), 4186; https://doi.org/10.3390/s25134186 - 4 Jul 2025
Viewed by 277
Abstract
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s [...] Read more.
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s induction electrode, the finite element method was adopted to analyze the influence laws of parameters such as the thickness of the shielding electrode and the distance between the induction electrode and the shielding electrode on the sensor sensitivity. On this basis, the above parameters were optimized. A signal processing circuit incorporating a pre-integral transformation circuit, a differential amplification circuit, and a bias circuit was investigated, and a completed mathematical model of the input and output of the field mill type electric field sensor was established. An improved harmonic detection method combining fast Fourier transform and back propagation neural network (FFT-BP) was proposed, the learning rate, momentum factor, and excitation function jointly participated in the adjustment of the network, and the iterative search range of the algorithm was limited by the threshold interval, further improving the accuracy and rapidity of the sensor measurement. Experimental results indicate that within the simulated electric field intensity range of 0–20 kV/m in the laboratory, the measurement resolution of this system can reach 18.7 V/m, and the measurement linearity is more than 99%. The designed system is capable of measuring the atmospheric electric field intensity in real time, providing necessary data support for lightning monitoring and early warning. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 56511 KiB  
Article
A CMOS Current Reference with Novel Temperature Compensation Based on Geometry-Dependent Threshold Voltage Effects
by Francesco Gagliardi, Andrea Ria, Massimo Piotto and Paolo Bruschi
Electronics 2025, 14(13), 2698; https://doi.org/10.3390/electronics14132698 - 3 Jul 2025
Viewed by 436
Abstract
Next-generation smart sensing devices necessitate on-chip integration of power-efficient reference circuits. The latters are required to provide other circuit blocks with highly reliable bias signals, even in the presence of temperature shifts and supply voltage disturbances, while draining a small fraction of the [...] Read more.
Next-generation smart sensing devices necessitate on-chip integration of power-efficient reference circuits. The latters are required to provide other circuit blocks with highly reliable bias signals, even in the presence of temperature shifts and supply voltage disturbances, while draining a small fraction of the overall power budget. In particular, it is especially challenging to design current references with enhanced robustness and efficiency; hence, thorough exploration of novel architectures and design approaches is needed for this type of circuits. In this work, we propose a novel CMOS-only current reference, achieving temperature compensation by exploiting geometry dependences of the threshold voltage (specifically, the reverse short-channel effect and the narrow-channel effect). This allows reaching first-order temperature compensation within a single current reference core. Implemented in 0.18 µm CMOS, a version of the proposed current reference designed to deliver 141 nA (with 377 nW of total power consumption) achieved an average temperature coefficient equal to 194 ppm/°C (from −20 °C to 80 °C) and an average line sensitivity of −0.017%/V across post-layout statistical Monte Carlo simulations. Based on such findings, the newly proposed design methodology stands out as a noteworthy solution to design robust current references for power-constrained mixed-signal systems-on-chip. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

Back to TopTop