Cellular Signal Detection by Hydrogenated Amorphous Silicon Photosensitive Chip with Electroexcitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chip Preparation
2.2. Electrochemical Characterization
2.3. Equivalent Circuit Model
2.4. Fitting the Electrochemical Impedance Spectrum
2.5. Characterization of Volt-Ampere Characteristics
2.6. Analog Experiments
2.7. Cellular Electrical Signal Recordings
2.8. Ethics Statement
3. Results and Discussion
3.1. Electrical Characteristics and Fitting Results
3.2. Equivalent Circuit of the System and Simulation
3.3. Volt-Ampere Characteristics
3.4. Effect of AC Signals on the a-Si:H Photosensitive Chip
3.5. Effect of DC Bias on the a-Si:H Photosensitive Chip
3.6. Electrical Recordings of Cardiomyocytes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
a-Si:H | hydrogenated amorphous silicon |
EIS | electrochemical impedance spectroscopy |
ECM | equivalent circuit model |
AC | alternating current |
DC | direct current |
MEA | microelectrode array |
PECVD | plasma-enhanced chemical vapor deposition |
ITO | indium tin oxide |
DMEM+10% FBS | Dulbecco’s modified Eagle medium with 10% fetal bovine serum |
CPE | constant phase element |
CNLS | complex nonlinear least-squares |
PF | Poole–Frenkel |
1/f noise | flicker noise |
References
- Neher, E.; Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976, 260, 799–802. [Google Scholar] [CrossRef]
- Gao, J.; Liao, C.; Liu, S.; Xia, T.; Jiang, G. Nanotechnology: New opportunities for the development of patch-clamps. J. Nanobiotechnol. 2021, 19, 97. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.A., Jr.; Springer, P.A.; Loeb, G.E.; Berwald-Netter, Y.; Okun, L.M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 1972, 74, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, A.; Gandhi, H.A.; Kushwaha, D.; Bhattacharya, J. A review on microelectrode array fabrication techniques and their applications. Mater. Today Chem. 2022, 26, 101153. [Google Scholar] [CrossRef]
- Obergrussberger, A.; Friis, S.; Brüggemann, A.; Fertig, N. Automated patch clamp in drug discovery: Major breakthroughs and innovation in the last decade. Expert Opin. Drug Discov. 2021, 16, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, R., III; Boreland, A.J.; Pang, Z.P. Whole cell patch clamp electrophysiology in human neuronal cells. Stem Cell-Based Neural Model Syst. Brain Disord. 2023, 2683, 259–273. [Google Scholar]
- Ahmadvand, T.; Mirsadeghi, S.; Shanehsazzadeh, F.; Kiani, S.; Fardmanesh, M. A novel low-cost method for fabrication of 2D multi-electrode array (MEA) to evaluate functionality of neuronal cells. Proceedings 2020, 60, 51. [Google Scholar]
- Choi, J.S.; Lee, H.J.; Rajaraman, S.; Kim, D.H. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosens. Bioelectron. 2021, 171, 112687. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, S.; Wang, H.; He, E.; Liu, J.; Dai, Y.; Xie, J.; Song, Y.; Wang, Y.; Wang, Y.; et al. PtNPt/MWCNT-PEDOT: PSS-modified microelectrode arrays for the synchronous dopamine and neural spike detection in rat models of sleep deprivation. ACS Appl. Bio Mater. 2021, 4, 4872–4884. [Google Scholar] [CrossRef]
- Dipalo, M.; Melle, G.; Lovato, L.; Jacassi, A.; Santoro, F.; Caprettini, V.; Schirato, A.; Alabastri, A.; Garoli, D.; Bruno, G.; et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 2018, 13, 965–971. [Google Scholar] [CrossRef]
- Hou, F.; Yang, H.; Dong, J.; Wang, X.; Wang, R.; Yu, T.; Deng, Q.; Dong, M.; Crabbe, M.J.C.; Wang, Z. Light-induced electrode scanning microscopy. Anal. Chem. 2025, 97, 8747–8754. [Google Scholar] [CrossRef]
- Yadav, A.; Agarwal, P. Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film superlattices. Superlattices Microstruct. 2015, 85, 776–783. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Yan, B. Hydrogenated amorphous silicon thin film. In Handbook of Photovoltaic Silicon; Yang, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 639–692. [Google Scholar]
- Li, B. Design and application of virtual channels based on optically induced dielectrophoresis. Master’s thesis, Changchun university of science and technology, Changchun, China, 2022. [Google Scholar]
- Liu, X.; Cheng, H.; Zhao, Y.; Wang, Y.; Ge, L.; Huang, Y.; Li, F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024, 266, 125001. [Google Scholar] [CrossRef] [PubMed]
- Song, C. Research on Structure Design and Optimization and Manipulation Experiment of Light-Induced Dielectrophoresis Chip. Ph.D. Dissertation, Southeast University, Nanjing, China, 2013. [Google Scholar]
- Klein, S.; Finger, F.; Carius, R.; Wagner, H.; Stutzmann, M. Intrinsic amorphous and microcrystalline silicon by hot-wire-deposition for thin film solar cell applications. Thin Solid Film. 2001, 395, 305–309. [Google Scholar] [CrossRef]
- Hannachi, M.; Belhadj, S.; Rouabah, Z.; Bouarissa, N.; Zoukel, A. Numerical study of a novel heterojunction solar cell a-Si:H(p)/CuO (P)/a-Si:H (n). Mater. Chem. Phys. 2025, 334, 130495. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Hyun, K.J.; Jang, H.W.; Yun, J.W.; Kim, Y.H.; Park, W.I.; Choi, S.W.; Kwon, J.D. Tailoring hydrogenation to enhance defect suppression and charge transport in hydrogenated amorphous silicon for flexible photodetectors. Adv. Sci. 2025, e04199. [Google Scholar] [CrossRef]
- Yang, H.; Hou, F.; Li, B.; Song, Z.; Wang, Z. Multi-electrode parallel three-dimensional manipulation based on typical optically-induced dielectrophoresis. Phys. Scr. 2023, 98, 085002. [Google Scholar] [CrossRef]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: Feasibility study on hemoglobin sensing. Sensors 2021, 21, 415. [Google Scholar] [CrossRef]
- Liu, W.; Shi, J.; Zhang, L.; Han, A.; Huang, S.; Li, X.; Peng, J.; Yang, Y.; Gao, Y.; Yu, J.; et al. Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nat. Energy 2022, 7, 427–437. [Google Scholar] [CrossRef]
- Wang, Q. Study on the Methods of Extracting Weak Biomedical Signal and Applications. Ph.D. Dissertation, Chongqing University, Chongqing, China, 2006. [Google Scholar]
- Sanginario, A.; Hernández, S. Diagnostics of electrocatalytic systems by electrochemical impedance spectroscopy. Curr. Opin. Green Sustain. Chem. 2023, 39, 100727. [Google Scholar] [CrossRef]
- Sreejith, S.; Ajayan, J.; Kollem, S.; Sivasankari, B. A comprehensive review on thin film amorphous silicon solar cells. Silicon 2022, 14, 8277–8293. [Google Scholar] [CrossRef]
- Li, H.; Matsumoto, M. Electronic transport properties of a-Si: H. AIP Adv. 2022, 12, 035309. [Google Scholar] [CrossRef]
- Ajayan, J.; Nirmal, D.; Mohankumar, P.; Saravanan, M.; Jagadesh, M.; Arivazhagan, L. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct. 2020, 143, 106549. [Google Scholar] [CrossRef]
- Caputo, D.; de Cesare, G.; Dolci, L.S.; Mirasoli, M.; Nascetti, A.; Roda, A.; Scipinotti, R. Microfluidic chip with integrated a-Si: H photodiodes for chemiluminescence-based bioassays. IEEE Sens. J. 2013, 13, 2595–2602. [Google Scholar] [CrossRef]
- Tsukada, T. Amorphous silicon thin-film transistors. J. Non-Cryst. Solids 1993, 164, 721–726. [Google Scholar] [CrossRef]
- Yahyaoui, N.; Mansouri, S.; Al-Sehemi, A.G.; Dere, A.; Al-Ghamdi, A.; Yakuphanoglu, F. Electrical characterization of silicon PV-cell: Modeling. Appl. Phys. A 2024, 130, 379. [Google Scholar] [CrossRef]
- Gabrielli, C. Once upon a time there was EIS. Electrochim. Acta 2020, 331, 135324. [Google Scholar] [CrossRef]
- Suryacandra, P.G.I. Adaptation and Application of a State-of-the-Art Impedance Analyzer for Characterization of Silicon Pin Diodes. Ph.D. Dissertation, National University of Singapore, Singapore, 2011. [Google Scholar]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical impedance spectroscopy. Nat. Rev. Method Prime 2021, 1, 41. [Google Scholar] [CrossRef]
- Scholz, F. Electroanalytical Methods; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1. [Google Scholar]
- Wei, X.F.; Grill, W.M. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J. Neural Eng. 2009, 6, 046008. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2008; Volume 1, pp. 383–389. [Google Scholar]
- Naik, R.; Revathi, V.; Prashantha, S.C.; Nagabhushana, H.; Girish, K.M.; Nagaswarupa, H.P. Cyclic voltammetry and electrochemical impedance spectroscopy analysis of Cr3+ doped Mg2SiO4 nanoparticles for supercapacitor applications. Mater. Sci. Res. India 2020, 17, 207–213. [Google Scholar] [CrossRef]
- Rayssi, C.; Jebli, M.; Dhahri, J.; Henda, M.B.; Alotaibi, N.; Alshahrani, T.; Belmabrouk, H.; Bchetnia, A.; Bouazizi, M.L. Experimental-structural study, Raman spectroscopy, UV-visible, and impedance characterizations of Ba0.97La0.02Ti0.9Nb0.08O3 polycrystalline sample. J. Mol. Struct. 2022, 1249, 131539. [Google Scholar] [CrossRef]
- Rahmouni, H.; Benali, A.; Cherif, B.; Dhahri, E.; Boukhobza, M.; Khirouni, K.; Sajieddine, M. Structural and electrical properties of Zn1-xNixFe2O4 ferrite. Phys. B 2015, 466, 31–37. [Google Scholar] [CrossRef]
- Fatima, S.A.; Shaheen, R.; Mehmood, A.; Riaz, R.; Shahzad, K. Change in conduction mechanism from Mott variable range to small polaronic hopping in Sr2+ doped Y2−xSrxNiMnO6. J. Electroceram. 2023, 51, 199–209. [Google Scholar] [CrossRef]
- Cañas, N.A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K.A.; Hiesgen, R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42–51. [Google Scholar] [CrossRef]
- Sharma, T.; Holm, T.; Diaz-Real, J.A.; Mérida, W. Experimental verification of pore impedance theory: Drilled graphite electrodes with gradually more complex pore size distribution. Electrochim. Acta 2019, 317, 528–541. [Google Scholar] [CrossRef]
- Cruz-Manzo, S.; Greenwood, P. An impedance model based on a transmission line circuit and a frequency dispersion Warburg component for the study of EIS in Li-ion batteries. Electroanal. Chem. 2020, 871, 114305. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling electrochemical impedance spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Amara, C.B.; Hammami, H.; Fakhfakh, S.; Kallel, A. Investigation of effects of ZrO2 doping on electrical properties of soda lime silicate glasses using dielectric spectroscopy. J. Electron. Mater. 2021, 50, 5915–5924. [Google Scholar] [CrossRef]
- Sohail, Y.; Liaquat, A.; Haq, A.U.; Zafar, M.F.; Ul-Haq, N. Impedance spectroscopy and investigation of conduction mechanism in reduced graphene/CuFe2O4 nanocomposites. Appl. Phys. A 2021, 127, 423. [Google Scholar] [CrossRef]
- Mu, Y. RyR2-Mediated Ca2+ Release Modulates SK Channels in Mice Cardiac Myocytes. Ph.D. Dissertation, Zhengzhou University, Zhengzhou, China, 2013. [Google Scholar]
- Kherodia, A.; Panchal, A.K. Poole-Frenkel emission and defect density in a-Si:H/nc-Si:H multilayer films for “all silicon” third generation photovoltaics. Thin Solid Film. 2018, 654, 16–22. [Google Scholar] [CrossRef]
- Blecher, F.; Schneider, B.; Sterzel, J.; Böhm, M. Noise of a-Si:H pin diode pixels in imagers at different operating conditions. MRS Online Proc. Libr. 1999, 557, 869–874. [Google Scholar] [CrossRef]
- Blecher, F.; Seibel, K.; Bohm, M. Photo-and dark current noise in a-Si:H pin diodes at forward and reverse bias. MRS Online Proc. Libr. 1998, 507, 175–180. [Google Scholar] [CrossRef]
- Hooge, F.N. 1/f noise sources. IEEE Trans. Electron Dev. 1994, 41, 1926–1935. [Google Scholar] [CrossRef]
- Bathaei, F.Z.; Anderson, J.C. Frequency-dependent noise in hydrogenated amorphous silicon. MRS Online Proc. Libr. 1986, 70, 197–201. [Google Scholar] [CrossRef]
- Song, B.; Zhang, L.; Qi, X.; Liu, J.; Zhang, C.; Wang, Z.; Zhang, Z. Measuring Boltzmann constant and electron charge based on circuit noise. Phys. Exp. 2023, 43, 43–49. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, F.; Dong, J.; Wang, X.; Deng, Q.; Crabbe, M.J.C.; Wang, Z. Cellular Signal Detection by Hydrogenated Amorphous Silicon Photosensitive Chip with Electroexcitation. Sensors 2025, 25, 5255. https://doi.org/10.3390/s25175255
Hou F, Dong J, Wang X, Deng Q, Crabbe MJC, Wang Z. Cellular Signal Detection by Hydrogenated Amorphous Silicon Photosensitive Chip with Electroexcitation. Sensors. 2025; 25(17):5255. https://doi.org/10.3390/s25175255
Chicago/Turabian StyleHou, Fengyan, Jianjun Dong, Xia Wang, Qiuyang Deng, M. James C. Crabbe, and Zuobin Wang. 2025. "Cellular Signal Detection by Hydrogenated Amorphous Silicon Photosensitive Chip with Electroexcitation" Sensors 25, no. 17: 5255. https://doi.org/10.3390/s25175255
APA StyleHou, F., Dong, J., Wang, X., Deng, Q., Crabbe, M. J. C., & Wang, Z. (2025). Cellular Signal Detection by Hydrogenated Amorphous Silicon Photosensitive Chip with Electroexcitation. Sensors, 25(17), 5255. https://doi.org/10.3390/s25175255