A 28 mK Resolution, −0.45 °C/+0.51 °C Inaccuracy Temperature Sensor Using Dual-Comparator Architecture and Logic-Controlled Counting Method
Abstract
1. Introduction
2. Proposed Temperature Sensor Circuit
2.1. Architecture
2.2. Operating Principle
3. Circuit Implementation
3.1. Overall Circuit Schematic
3.2. Temperature Sensing Element
3.3. Voltage-to-Time Converter
3.4. Time-to-Digital Converter
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sönmez, U.; Sebastiano, F.; Makinwa, K.A.A. Compact thermal-diffusivity-based temperature sensors in 40-nm CMOS for SoC thermal monitoring. IEEE J. Solid-State Circuits 2017, 52, 834–843. [Google Scholar] [CrossRef]
- An, Y.J.; Jung, D.H.; Ryu, K.; Woo, S.H.; Jung, S.O. An Energy-Efficient All-Digital Time-Domain-Based CMOS Temperature Sensor for SoC Thermal Management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 1508–1517. [Google Scholar] [CrossRef]
- Yang, T.; Kim, S.; Kinget, P.R.; Seok, M. Compact and Supply-Voltage-Scalable Temperature Sensors for Dense On-Chip Thermal Monitoring. IEEE J. Solid-State Circuits 2015, 50, 2773–2785. [Google Scholar] [CrossRef]
- Li, J.; Yang, T.; Yang, M.; Kinget, P.R.; Seok, M. An Area-Efficient Microprocessor-Based SoC With an Instruction-Cache Transformable to an Ambient Temperature Sensor and a Physically Unclonable Function. IEEE J. Solid-State Circuits 2018, 53, 728–737. [Google Scholar] [CrossRef]
- Luo, Y.; Teng, K.H.; Li, Y.; Mao, W.; Heng, C.H.; Lian, Y. A 93 μW 11Mbps wireless vital signs monitoring SoC with 3-lead ECG, bio-impedance, and body temperature. In Proceedings of the 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, Republic of Korea, 6–8 November 2017. [Google Scholar] [CrossRef]
- Schönle, P.; Glaser, F.; Burger, T.; Rovere, G.; Benini, L.; Huang, Q. A Multi-Sensor and Parallel Processing SoC for Miniaturized Medical Instrumentation. IEEE J. Solid-State Circuits 2018, 53, 2076–2087. [Google Scholar] [CrossRef]
- Helleputte, N.V.; Konijnenburg, M.; Kim, H.; Pettine, J.; Jee, D.; Breeschoten, A.; Morgado, A.; Torfs, T.; de Groot, H.; Hoof, C.V.; et al. 18.3 A multi-parameter signal-acquisition SoC for connected personal health applications. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 9–13 February 2014; pp. 314–315. [Google Scholar] [CrossRef]
- Lei, B.; Zeng, Y. An 11 nW, +0.34 °C/0.38 °C inaccuracy self-biased CMOS temperature sensor at sub-thermal drain voltage. Int. J. Electron. Commun. 2024, 187, 155554. [Google Scholar] [CrossRef]
- Park, J.H.; Hwang, J.H.; Shin, C.; Kim, S.J. A BJT-Based Temperature-to-Frequency Converter with ±1 °C (3σ) Inaccuracy from -40 °C to 140 °C for On-Chip Thermal Monitoring. IEEE J. Solid-State Circuits 2022, 57, 2909–2918. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, Z.; Yu, X.P.; Shi, Z.; Lin, L.; Tan, N.N. A BJT-Based CMOS Temperature Sensor With Duty-Cycle-Modulated Output and ±0.5 °C (3σ) Inaccuracy from 40 °C to 125 °C. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2780–2784. [Google Scholar] [CrossRef]
- Yousefzadeh, B.; Makinwa, K.A.A. A BJT-Based Temperature-to-Digital Converter with a ±0.25 °C (3σ)-Inaccuracy From −40 °C to +180 °C Using Heater-Assisted Voltage Calibration. IEEE J. Solid-State Circuits 2019, 55, 369–377. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, T.; Chae, Y. A 0.9 V 6400-μm2 Resistor-based Temperature Sensor with a One-Point Trimmed (3σ) Inaccuracy of ±0.64 °C from −50 °C to 125 °C. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3313–3317. [Google Scholar] [CrossRef]
- Shen, Y.; Li, H.; Cantatore, E.; Harpe, P. A 2.98 pJ/conversion 0.0023 mm2 dynamic temperature sensor with fully on-chip corrections. In Proceedings of the 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–23 February 2023; pp. 1–3. [Google Scholar]
- Ku, H.S.; Choi, S.; Sim, J.Y. A 12 μs-conversion, 20mK-resolution temperature sensor based on SAR ADC. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 789–793. [Google Scholar] [CrossRef]
- Wang, H.; Mercier, P.P. A 763 pW 230 pJ/Conversion Fully Integrated CMOS Temperature-to-Digital Converter with +0.81 °C/0.75 °C Inaccuracy. IEEE J. Solid-State Circuits 2019, 54, 2281–2290. [Google Scholar] [CrossRef]
- Li, J.; Yao, B.; Fan, L.; Zhang, T.; Zhang, Y.; Wu, K.; Zhang, Z.; Zhang, Q.; Wang, Y.; Ning, N.; et al. A 20 nW +0.8 °C/−0.8 °C Inaccuracy (3σ) Leakage-Based CMOS Temperature Sensor with Supply Sensitivity of 0.9 °C/V. IEEE Trans. Circuits Syst. Part I Regular Papers 2023, 70, 12. [Google Scholar] [CrossRef]
- Li, J.; Lin, Y.; Ning, N.; Yu, Q. A +0.44 °C/−0.4 °C Inaccuracy Temperature Sensor With Multi-Threshold MOSFET-Based Sensing Element and CMOS Thyristor-Based VCO. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1102–1113. [Google Scholar] [CrossRef]
- Filanovsky, I.M.; Allam, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2002, 48, 876–884. [Google Scholar] [CrossRef]
- Magnelli, L.; Crupi, F.; Corsonello, P.; Pace, C.; Iannaccone, G. A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference. IEEE J. Solid-State Circuits 2011, 46, 465–474. [Google Scholar] [CrossRef]
- Kumar, S.; Rekha, S. A 1-V, 8.6-nA Resistor-less PTAT Current Reference with Startup Circuit. In Proceedings of the 2018 15th IEEE India Council International Conference (INDICON), Coimbatore, India, 16–18 December 2018. [Google Scholar] [CrossRef]
- Lefebvre, M.; Bol, D. A Family of Current References Based on 2T Voltage References: Demonstration in 0.18-μm WITH 0.1-nA PTAT and 1.1-μA CWT 38-ppm/°C Designs. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 3237–3250. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.H.P.; Cao, Y.; Mercier, P.P. A 0.6V 75nW All-CMOS Temperature Sensor with 1.67m°C/mV Supply Sensitivity. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2274–2283. [Google Scholar] [CrossRef]
- Denier, U. Analysis and Design of an Ultralow-Power CMOS Relaxation Oscillator. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 1973–1982. [Google Scholar] [CrossRef]
- Someya, T.; Islam, A.M.; Sakurai, T.; Takamiya, M. An 11-nW CMOS Temperature-to-Digital Converter Utilizing Sub-Threshold Current at Sub-Thermal Drain Voltage. IEEE J. Solid-State Circuits 2019, 54, 613–622. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J.; Luo, Z.; Zeng, Y. A Sub-0.01 °C Resolution All-CMOS Temperature Sensor with 0.43 °C/–0.38 °C Inaccuracy and 1.9 pJ·K2 Resolution FoM for IoT Applications. Micromachines 2024, 15, 1132. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Fang, Q.; Wu, J.; Law, M.K.; Mak, P.I.; Martins, R.P. High Linearity BJT-Based Time-Domain CMOS Temperature Sensor. In Proceedings of the 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Shenzhen, China, 11–13 November 2022; pp. 153–156. [Google Scholar]
- Kim, J.; Lee, S.; Lee, M. A 0.9V Self-Referenced Resistor-Based Temperature Sensor with 0.62/+0.81°C (3σ) Inaccuracy. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 4319–4323. [Google Scholar] [CrossRef]
This Work | JSSC [24] | TCAS-I [17] | TCAS-I [16] | MDPI [25] | APCCAS [26] | TCAS-II [27] | |
---|---|---|---|---|---|---|---|
Year | 2025 | 2019 | 2021 | 2023 | 2024 | 2022 | 2023 |
Technology (nm) | 180 | 180 | 130 | 180 | 180 | 180 | 28 |
Transducer type | MOS | MOS | MOS | MOS | MOS | BJT | RES |
Result | Post-Sim | Mea | Mea | Mea | Sim | Sim | Mea |
Area (mm2) | 0.015 | 0.074 | 0.07 | 0.055 | N/A | N/A | 0.0092 |
Temperature Range (°C) | −40–130 | −20–80 | 0–80 | 0–100 | 0–120 | −40–125 | −40–100 |
Calibration | 2-point | 2-point | 2-point | 2-point | 2-point | 1-point | 2-point |
Inaccuracy (°C) | −0.45/+0.51 | −0.9/+1.2 | −0.4/+0.44 | −0.5/+0.4 | −0.38/+0.43 | −0.3/+0.3 | −0.62/+0.81 |
Relative Inaccuracy a (%) | 0.57 | 2.1 | 1.05 | 0.9 | 0.675 | 0.36 | 1.02 |
Supply Voltage (V) | 1 | 0.8 | 0.95 | 1 | 1.2 | 1 | 0.9 |
Power (nW) | 503 | 11 | 196 | 20 | 1480 | 14500 | 123500 |
Conversion Time (ms) | 20 | 839 | 59 | 50 | 26 | 0.204 | 0.404 |
Energy/Conversion (nJ) | 10.06 | 8.9 | 11.56 | 1 | 38.39 | 2.96 | 49.9 |
Resolution (mK) | 28 | 145 | 100 | 120 | 7.1 | 70 | 56.5 |
Resolution FoM b | 7.9 | 190 | 120 | 14.4 | 1.9 | 14.5 | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Luo, T.; Peng, L. A 28 mK Resolution, −0.45 °C/+0.51 °C Inaccuracy Temperature Sensor Using Dual-Comparator Architecture and Logic-Controlled Counting Method. Micromachines 2025, 16, 947. https://doi.org/10.3390/mi16080947
Xu Y, Luo T, Peng L. A 28 mK Resolution, −0.45 °C/+0.51 °C Inaccuracy Temperature Sensor Using Dual-Comparator Architecture and Logic-Controlled Counting Method. Micromachines. 2025; 16(8):947. https://doi.org/10.3390/mi16080947
Chicago/Turabian StyleXu, Yubin, Tongyu Luo, and Lin Peng. 2025. "A 28 mK Resolution, −0.45 °C/+0.51 °C Inaccuracy Temperature Sensor Using Dual-Comparator Architecture and Logic-Controlled Counting Method" Micromachines 16, no. 8: 947. https://doi.org/10.3390/mi16080947
APA StyleXu, Y., Luo, T., & Peng, L. (2025). A 28 mK Resolution, −0.45 °C/+0.51 °C Inaccuracy Temperature Sensor Using Dual-Comparator Architecture and Logic-Controlled Counting Method. Micromachines, 16(8), 947. https://doi.org/10.3390/mi16080947