Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = beta-pinene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1345 KB  
Article
Plant Signaling Mediates Interactions Between Fall and Southern Armyworms (Lepidoptera: Noctuidae) and Their Shared Parasitoid Cotesia icipe (Hymenoptera: Braconidae)
by Ghislain T. Tepa-Yotto, Hilaire Kpongbe, Jeannette K. Winsou, Anette H. Agossadou and Manuele Tamò
Insects 2025, 16(6), 580; https://doi.org/10.3390/insects16060580 - 30 May 2025
Viewed by 858
Abstract
In Africa, the current harmful maize pest is Spodoptera frugiperda. Its attack can be severe and cause total economic losses. Spodoptera eridania is another species of the same genus, detected a few months after S. frugiperda’s outbreaks in West and Central [...] Read more.
In Africa, the current harmful maize pest is Spodoptera frugiperda. Its attack can be severe and cause total economic losses. Spodoptera eridania is another species of the same genus, detected a few months after S. frugiperda’s outbreaks in West and Central Africa. Though both species share a range of host plants, socioeconomic studies are yet to provide specific figures on the potential impacts of S. eridania. The high and inappropriate application of insecticides to control Spodoptera species has negative effects on the environmental elements’ health. Semiochemical tools are increasingly exploited to design alternative pest management strategies. We hypothesize that host plants release components used by the pests and a shared parasitoid to locate the host. To verify that hypothesis, we conducted behavioral assays and GC-MS analyses to identify the potential chemical signals involved in the communications of the moths and their shared parasitoid C. icipe. The results showed that healthy and herbivory-induced maize and amaranth produced some chemical compounds including α-pinene, limonene, isopentyl acetate, (Z)-beta-farnesene, and methyl dodecanoate, which prospects their potential use in alternative pest management strategies for recruiting C. icipe to control these pests. Further work will focus on field validation to develop an alternative control strategy for the moths. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

18 pages, 1821 KB  
Article
Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene
by Naoufal El Hachlafi, Amine Elbouzidi, Amine Batbat, Mohamed Taibi, Mohamed Jeddi, Mohamed Addi, Hanae Naceiri Mrabti and Kawtar Fikri-Benbrahim
Pharmaceuticals 2024, 17(12), 1652; https://doi.org/10.3390/ph17121652 - 8 Dec 2024
Cited by 16 | Viewed by 6736
Abstract
Background/Objectives: Essential oils (EOs) from Citrus species have attracted attention for their diverse properties, including anti-inflammatory, antioxidant and cytotoxic effects, which address critical health challenges such as chronic diseases and skin disorders. Citrus sinensis (L.) Osbeck, which is a widely cultivated citrus fruit, [...] Read more.
Background/Objectives: Essential oils (EOs) from Citrus species have attracted attention for their diverse properties, including anti-inflammatory, antioxidant and cytotoxic effects, which address critical health challenges such as chronic diseases and skin disorders. Citrus sinensis (L.) Osbeck, which is a widely cultivated citrus fruit, is attracting increasing attention in the field of medicinal research due to its richness of limonene (comprising approximately 85–90% of the oil). This study investigates the chemical profile of CS-EO and biological activities of CS-EO and limonene. Methods and Results: This study used gas chromatography–mass spectrometry (GC-MS), confirming limonene as the predominant compound (70.15%) along with other minor constituents, including thujene (10.52%), myrcene (5.54%) and α-pinene (2.81%). The biological activities of CS-EO and limonene were examined, specifically focusing on their antioxidant, anti-inflammatory, cytotoxicity and dermatoprotective effects. Antioxidant potential was evaluated using DPPH, FRAP and beta-carotene assays, with CS-EO and limonene exhibiting comparable efficacy. Anti-inflammatory properties were assessed via inhibition assays of prostaglandin E2 (PGE2) and nitric oxide (NO) production, showing significant reductions in LPS-stimulated macrophages treated by CS-EO or limonene. Cytotoxicity testing on various cell lines indicated selective activity of the tested compounds, with low toxicity observed on human skin fibroblasts. Limonene and CS-EO were highly effective on HepG2 cellules, with IC50 values of 0.55 ± 0.01 µg/mL and 15.97 ± 1.20 µg/mL, respectively. Dermatoprotective effects were further confirmed using enzymes, where CS-EO and limonene showed remarkable inhibitory potential against elastase (IC50 of 65.72 ± 1.92 and 86.07 ± 1.53 µg/mL, respectively) and tyrosinase (IC50 of 102 ± 2.16 and 78.34 ± 1.15 µg/mL, respectively) enzymes compared to quercetin used as a standard (IC50 of 111.03 ± 0.1 and 124.22 ± 0.07 µg/mL, respectively). Conclusions: The findings of this study suggest the potential for the development of new therapeutic approaches based on CS-EO, which could be applicable in the pharmaceutical, cosmetic and nutraceutical fields and have protective benefits for skin health. Full article
(This article belongs to the Special Issue Pharmaceutical Application of Essential Oils and Their Compounds )
Show Figures

Figure 1

42 pages, 6363 KB  
Article
Phytochemical Analysis and Evaluation of Antioxidant and Antimicrobial Properties of Essential Oils and Seed Extracts of Anethum graveolens from Southern Morocco: In Vitro and In Silico Approach for a Natural Alternative to Synthetic Preservatives
by Nadia Hadi, Aziz Drioiche, El Moumen Bouchra, Soukayna Baammi, Abdelaaty Abdelaziz Shahat, Imane Tagnaout, Mohamed Radi, Fidaous Remok, Amal Bouzoubaa and Touriya Zair
Pharmaceuticals 2024, 17(7), 862; https://doi.org/10.3390/ph17070862 - 1 Jul 2024
Cited by 14 | Viewed by 4941
Abstract
Anethum graveolens is an aromatic plant traditionally used as an antispasmodic and carminative. The objective of this study is to analyze the chemical composition of the essential oils and extracts obtained from seeds gathered in Errachidia, southern Morocco. Additionally, the antioxidant and antimicrobial [...] Read more.
Anethum graveolens is an aromatic plant traditionally used as an antispasmodic and carminative. The objective of this study is to analyze the chemical composition of the essential oils and extracts obtained from seeds gathered in Errachidia, southern Morocco. Additionally, the antioxidant and antimicrobial properties of these oils and extracts will be evaluated. GC-MS analysis of the EO isolated by hydrodistillation revealed that its main compounds were E-anethole (38.13%), estragole (29.32%), fenchone (17.21%), and α-pinene (7.37%). The phenolic components were extracted using the methods of decoction and Soxhlet. The assay of the phenolic compounds showed that A. graveolens seeds contained considerable amounts of polyphenols, flavonoids, and condensed tannins, with variable levels depending on the extract analyzed. HPLC/UV-ESI-MS analyses performed on the decoction revealed a structural diversity of the molecules present in this extract, the most important of which were umbelliferone (12.35%), 3-hydroxyflavone (11.23%), rosmanol (8.95%), biotin (8.36%), emmotin H (4.91%), and coumarin (4.21%). The antioxidant activity, as determined by three techniques (DPPH•, FRAP, and CAT), demonstrated that the essential oils (EOs) and extracts had a potent capacity to counteract detrimental free radicals, control the generation of reactive oxygen species, and mitigate oxidative damages. The antimicrobial activity of the Eos and extracts was carried out in a liquid medium against five strains (E. cloacae, K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and four candidiasis (C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis) and Aspergillus niger. The results showed the effectiveness of the EOs compared to the aqueous, ethanolic, and decoction extracts against most of the microorganisms tested. In addition, the ethanolic extract showed antifungal activity that was distinguished from that of the other extracts. The antimicrobial efficacy of the essential oils under study can primarily be attributed to the synergistic interactions among its three principal constituents (E-anethole, estragole, and fenchone). Furthermore, molecular docking and molecular dynamics simulation results reveal significant interactions and stability between the selected bioactive compounds and different target proteins involved in antimicrobial and antioxidant activities. Compounds like 3-hydroxyflavone, emmotin H, trans-caftaric acid, methyl rosmarinate, 1-caffeoyl-beta-D-glucose, and kaempferol exhibited better binding energies with the explored proteins, indicating their potential as antimicrobial and antioxidant agents. Finally, our findings emphasize the significance of A. graveolens seeds as a promising reservoir of advantageous health compounds that can serve as organic substitutes for the presently employed synthetic preservatives. Full article
Show Figures

Figure 1

14 pages, 793 KB  
Article
Chemical Profiling of Drimys granadensis (Winteraceae) Essential Oil, and Their Antimicrobial, Antioxidant, and Anticholinesterase Properties
by Luis Cartuche, Camila Vallejo, Edison Castillo, Nixon Cumbicus and Vladimir Morocho
Plants 2024, 13(13), 1806; https://doi.org/10.3390/plants13131806 - 30 Jun 2024
Cited by 6 | Viewed by 1958
Abstract
A complete and comprehensive chemical and biological study of Drimys granadensis, a native Ecuadorian aromatic plant, was conducted. By conventional steam distillation from dried leaves, a yellowish, translucent essential oil (EO) with a density of 0.95 and a refractive index of 1.5090 was [...] Read more.
A complete and comprehensive chemical and biological study of Drimys granadensis, a native Ecuadorian aromatic plant, was conducted. By conventional steam distillation from dried leaves, a yellowish, translucent essential oil (EO) with a density of 0.95 and a refractive index of 1.5090 was obtained. The EO was analyzed by gas chromatography coupled to a mass spectrometer (GC/MS) and an FID detector (GC/FID), respectively. Enantiomeric distribution was also carried out by GC/MS using a chiral selective column (diethyl tert-butylsilyl-BETA-cyclodextrin). The microdilution broth method was employed to assess the antibacterial and antifungal activity of the EO against a panel of opportunistic microorganisms. Antioxidant capacity was measured using diphenyl picryl hydrazyl (DPPH) and azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. Finally, the inhibitory potential of the EO against acetylcholinesterase was also valued. Sixty-four chemical compounds, constituting 93.27% of the total composition, were identified, with major components including γ-muurolene (10.63%), spathulenol (10.13%), sabinene (5.52%), and δ-cadinene (4.22%). The characteristic taxonomic marker of the Drimys genus, Drimenol, was detected at very low percentages (<2%). Two pairs of enantiomers ((1S,5R)-(+)-α-pinene/(1S,5S)-(–)-α-pinene; (1S,5R)-(+)-β-pinene/(1S,5S)-(–)-β-pinene) and one pure enantiomer (1R,4S)-(–)-camphene were identified. Regarding antimicrobial potency, the EO exhibited a significant moderate effect on Listeria monocytogenes with a minimal inhibitory concentration (MIC) value of 250 µg/mL, while with the remaining microorganisms, it exerted less potency, ranging from 500 to 2000 µg/mL. The EO displayed moderate effects against the ABTS radical with a half scavenging capacity of 210.48 µg/mL and no effect against the DPPH radical. The most notable effect was noticed for acetylcholinesterase, with a half inhibition concentration (IC50) of 63.88 ± 1.03 µg/mL. These antiradical and anticholinesterase effects hint at potential pharmacological applications in Alzheimer’s disease treatment, although the presence of safrole, albeit in low content (ca. 2%), could limit this opportunity. Further in vivo studies are necessary to fully understand their potential applications. Full article
(This article belongs to the Special Issue Chemical Analysis and Biological Activities of Plant Essential Oils)
Show Figures

Figure 1

16 pages, 2461 KB  
Article
Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis
by David J. Mager, Yoni E. van Dijk, Özgü Varan, Susanne J. H. Vijverberg, Suzanne W. J. Terheggen-Lagro, Anke-Hilse Maitland-van der Zee, Hettie M. Janssens and Paul Brinkman
Separations 2024, 11(5), 150; https://doi.org/10.3390/separations11050150 - 14 May 2024
Cited by 4 | Viewed by 2213
Abstract
Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological [...] Read more.
Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological standardization, we developed the SPIRITAS (Standardized Product for Inexpensive Respiratory InvesTigation: A breath Sampler), a low-cost, disposable breath sampler. This study evaluates the SPIRITAS’s effectiveness in detecting targeted VOCs. We tested the SPIRITAS using the Peppermint Experiment, a standardized protocol that allows for comparison between different breath sampling and analytical practices by assessing the ability to detect five peppermint-specific VOCs after ingestion of a 200-milligram peppermint oil capsule. We included ten subjects and performed six breath samples per participant, including a baseline measurement taken before ingestion. We used the Wilcoxon signed-rank test to evaluate whether baseline values were significantly lower than the peak values of the targeted VOCs. Additionally, we conducted an experiment utilizing humidified medical-grade air to identify any VOCs attributable to the SPIRITAS setup itself. Results showed successful detection of four out of five targeted “peppermint-associated” VOCs: alpha-pinene (p ≤ 0.01), beta-pinene (p ≤ 0.01), menthone (p = 0.01), and menthol (p = 0.02), indicating significant differences between the baseline and peak values in the volunteers’ breath. However, detection of eucalyptol was inconsistent. In addition, we identified 16 VOCs that were released by the SPIRITAS, one of which remains unidentified. Our findings underscore the SPIRITAS’s potential for clinical applications, paving the way for broader biomarker research. The combination of ease of use, low cost, reduced risk of contamination, and standardization makes SPIRITAS very suitable for large-scale international studies. Furthermore, we have demonstrated the SPIRITAS’s effectiveness in detecting specific VOCs and identified 16 compounds originating from the SPIRITAS, ensuring that these compounds would not be mis-qualified as potential biomarkers in future clinical studies. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Figure 1

16 pages, 8887 KB  
Article
Aviation Mutagenesis Alters the Content of Volatile Compounds in Dahongpao (Camellia sinensis) Leaves and Improves Tea Quality
by Jianghua Ye, Qi Zhang, Pengyuan Cheng, Yuhua Wang, Jishuang Zou, Shaoxiong Lin, Mingzhe Li, Miao Jia, Yiling Chen, Xiaoli Jia and Haibin Wang
Foods 2024, 13(6), 946; https://doi.org/10.3390/foods13060946 - 20 Mar 2024
Cited by 5 | Viewed by 2151
Abstract
Aviation mutagenesis is a fast and efficient breeding method. In this study, we analyzed the effect of aviation mutagenesis on volatile compounds and odor characteristics in Dahongpao fresh leaves and gross tea for the first time. The results showed that aviation mutagenesis significantly [...] Read more.
Aviation mutagenesis is a fast and efficient breeding method. In this study, we analyzed the effect of aviation mutagenesis on volatile compounds and odor characteristics in Dahongpao fresh leaves and gross tea for the first time. The results showed that aviation mutagenesis significantly increased the total volatile compounds of Dahongpao fresh leaves and gross tea. Aviation mutagenesis most critically significantly increased the content of beta-myrcene in Dahongpao fresh leaves, prompting its conversion to beta-pinene, cubebol, beta-phellandrene, zingiberene, (Z,Z)-3,6-nonadienal, and 6-pentyloxan-2-one after processing, which in turn enhanced the fruity, green, spicy, and woody odor characteristics of the gross tea. This study provided a reference for further exploration of aviation mutagenic breeding of Camellia sinensis. Full article
(This article belongs to the Special Issue Study on Aroma Components and Bioactive Compounds of Tea)
Show Figures

Figure 1

17 pages, 7716 KB  
Article
EsigPBP3 Was the Important Pheromone-Binding Protein to Recognize Male Pheromones and Key Eucalyptus Volatiles
by Hengfei Fu, Guipeng Xiao, Zhende Yang and Ping Hu
Int. J. Mol. Sci. 2024, 25(5), 2940; https://doi.org/10.3390/ijms25052940 - 3 Mar 2024
Cited by 5 | Viewed by 2282
Abstract
Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. [...] Read more.
Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (−)-β-pinene, and (−)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones. Full article
(This article belongs to the Special Issue Molecular Mechanisms Subserving Taste and Olfaction Systems)
Show Figures

Figure 1

16 pages, 2234 KB  
Article
Coconut Juice Enhances Rooting and Leaf Essential Oils of Juniperus sabina L. Cuttings
by Maliheh Abshahi, Francisco Antonio García-Morote, Hossein Zarei, Bahman Zahedi and Abdolhossein Rezaei Nejad
Forests 2024, 15(1), 67; https://doi.org/10.3390/f15010067 - 29 Dec 2023
Viewed by 2697
Abstract
Juniperus sabina L. (J. sabina L.) represents a compelling forest species due to the presence of metabolites in its leaves, which possess diverse applications in the fields of cosmetics, pharmaceuticals, and medicine. However, the species presents difficulties with regard to natural regeneration. [...] Read more.
Juniperus sabina L. (J. sabina L.) represents a compelling forest species due to the presence of metabolites in its leaves, which possess diverse applications in the fields of cosmetics, pharmaceuticals, and medicine. However, the species presents difficulties with regard to natural regeneration. This research aimed to improve the propagation conditions of J. sabina by using cuttings to enhance both the rooting percentage and essential oil (EO) content in the leaves. To do this, sampled cuttings underwent pretreatment with four different doses of coconut juice (25%, 50%, 75%, and 100%) within four substrates or rooting media, namely perlite, mixed substrate, pumice, and perlite–cocopeat. The study was carried out over the course of all four growing seasons to examine the impact of harvesting time as well. The best results for rooting were observed with the pretreatment of coconut juice at 25% in spring and in the substrate of perlite–cocopeat (37.10% rooting). The coconut juice also significantly increased the percentage of EOs in spring (0.82% of essential oil yield). Beta-pinene was the essential oil component with the highest representation (34.7% in fall), whereas in the spring, the best season to collect cuttings, the dominant component was nerodiol. Our study can contribute to the planning of culture systems using cuttings and to the control of the production of EOs from the leaves of J. sabina. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 9458 KB  
Article
Effect of Capsaicin Stress on Aroma-Producing Properties of Lactobacillus plantarum CL-01 Based on E-Nose and GC–IMS
by Qian Zhang, Junni Tang, Jing Deng, Zijian Cai, Xiaole Jiang and Chenglin Zhu
Molecules 2024, 29(1), 107; https://doi.org/10.3390/molecules29010107 - 23 Dec 2023
Cited by 9 | Viewed by 2434
Abstract
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum [...] Read more.
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum (L. plantarum) is unclear. The present study attempted to illustrate the effect of capsaicin stress on the aroma-producing properties of L. plantarum CL-01 isolated from traditionally fermented peppers based on E-nose and GC–IMS. The results showed that E-nose could clearly distinguish the overall flavor differences of L. plantarum CL-01 under capsaicin stress. A total of 48 volatile compounds (VOCs) were characterized by means of GC–IMS, and the main VOCs belonged to acids and alcohols. Capsaicin stress significantly promoted L. plantarum CL-01 to produce alpha-pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol, 1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and 2-heptanone (p < 0.05). In addition, under capsaicin stress, the contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl alcohol, isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, diethyl malonate, acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal, 2-methylbutyl acetate, and 2-heptanone produced by L. plantarum CL-01 were significantly increased along with the fermentation time (p < 0.05). Furthermore, some significant correlations were observed between the response values of specific E-nose sensors and effective VOCs. Full article
Show Figures

Figure 1

17 pages, 4627 KB  
Article
Molecular Characterization of Three Chemosensory Proteins from Carposina sasakii
by Liu Liu, Guisheng Qiu, Huaijiang Zhang, Qiang Yue, Wentao Yan and Lina Sun
Agriculture 2023, 13(11), 2066; https://doi.org/10.3390/agriculture13112066 - 27 Oct 2023
Cited by 1 | Viewed by 1935
Abstract
The peach fruit moth, Carposina sasakii, is part of the Carposinidae, and is harmful to the families Rosaceae and Rhamnaceae. C. sasakii lays eggs on the hairy surface of the fruit’s stalk cavity and calyx end. After hatching, the moth can bore [...] Read more.
The peach fruit moth, Carposina sasakii, is part of the Carposinidae, and is harmful to the families Rosaceae and Rhamnaceae. C. sasakii lays eggs on the hairy surface of the fruit’s stalk cavity and calyx end. After hatching, the moth can bore into the fruits and feed on the flesh inside. Chemosensory proteins (CSPs) are a class of low-molecular-weight soluble carrier proteins that are highly evolutionarily conserved. To enhance our understanding of the recognition of host plant volatiles by CSPs of C. sasakii, the expression patterns and binding characteristics of CsasCSP7, CsasCSP9 and CsasCSP11 in C. sasakii were investigated. In our study, the results of real-time quantitative polymerase chain reaction (qPCR) assays demonstrate that CsasCSP7 and CsasCSP9 transcripts were abundantly expressed in the antennae of males, and CsasCSP11 was highly expressed in the wings of females. Fluorescence competitive binding assays with 38 candidate ligands showed that CsasCSP7 could bind to benzaldehyde and dodecanal, whereas CsasCSP9 bound to butyl octanoate, decanal and (-)-beta-pinene. CsasCSP11 could also bind to1-hexanol, beta-ocimene and 6-methyl-5-hepten-2-one. Our results suggest that CsasCSP7, CsasCSP9 and CsasCSP11 may play a crucial role in locating the host plant of C. sasakii. Full article
(This article belongs to the Special Issue Advances in Integrated Pest Management Strategies)
Show Figures

Figure 1

14 pages, 4988 KB  
Article
Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arâr Plants
by Ghada Beniaich, Mustapha Beniken, Rajae Salim, Nadia Arrousse, Elhachmia Ech-chihbi, Zakia Rais, Asmae Sadiq, Hiba-Allah Nafidi, Yousef A. Bin Jardan, Mohammed Bourhia and Mustapha Taleb
Separations 2023, 10(7), 396; https://doi.org/10.3390/separations10070396 - 10 Jul 2023
Cited by 9 | Viewed by 2539
Abstract
This article is part of the contribution to the development of two medicinal plants widely used by the Moroccan population: white wormwood (Artemisia herba-alba) andArâr (Juniperus phoenicea), species belonging to the Asteraceae and Cupressaceae families, respectively. The present work [...] Read more.
This article is part of the contribution to the development of two medicinal plants widely used by the Moroccan population: white wormwood (Artemisia herba-alba) andArâr (Juniperus phoenicea), species belonging to the Asteraceae and Cupressaceae families, respectively. The present work was conducted to investigate the chemical composition and anticorrosive properties of essential oils (EOs) extracted from these plants. The chemical analysis of the essential oils (EOs) was carried out by GC-MS/MS. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and quantum chemical calculations by density-functional theory at B3lYP were used to study the anticorrosive effect of the researched oils on mild steel in 1 M hydrochloric acid solution. Moreover, SEM-EDX analysis was used to identify the surface morphology of mild steel surface. GC-MSMS results showed the presence of 32 potentially active compounds in the EOs of Artemisia herba-alba. The average yield of the EOs was about 1.39 ± 0.17 mL/100 g dry matter. Beta thujone (30.07%) and alpha thujone (13.32%) are the main components, while for the EOs of Juniperus phoenicea, the study showed the presence of 30 constituents, with alpha-pinene (43.61%) and manoyl oxide (11.5%) as the main components. The average yield of HE was 1.10 ± 0.03 mL/100 g dry matter. The findings demonstrated an important anticorrosive action of EOs from Artemisia herba-alba and Juniperus phoenicea. Notably, the experimental results showed good efficiency of the studied essential oils and correlated well with the density-functional theory (DFT) calculations. The results of potentiodynamic polarization measurements showed that hydrazone acted as a mixed-type inhibitor. The EIS results showed an increase in charge transfer resistance accompanied by a noticeable decrease in Cdl values, revealing that both studied oils were effective as reliable inhibitors for the protection of mild steel in 1 M HCl solution. Also, the efficiency decreased with decreasing inhibitor concentrations. Surface studies ensure the effectiveness of both investigated oils and the reduction of the surface roughness of mild steel. Furthermore, DFT results of the major constituents of Artemisia herba-alba and Juniperus phoenicea EOs revealed insights into the chemical reactivity of the tested oils while supporting the experimental conclusions and showed outstanding adsorption ability of both investigated EOs on the steel surface. Full article
Show Figures

Figure 1

16 pages, 6126 KB  
Article
Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide
by Sudarut Nadon, Noppol Leksawasdi, Kittisak Jantanasakulwong, Pornchai Rachtanapun, Warintorn Ruksiriwanich, Sarana Rose Sommano, Amin Mousavi Khaneghah, Juan M. Castagnini, Francisco J. Barba and Yuthana Phimolsiripol
Plants 2023, 12(11), 2211; https://doi.org/10.3390/plants12112211 - 3 Jun 2023
Cited by 7 | Viewed by 3972
Abstract
This research aimed to optimize pressure (10–20 MPa) and temperature (45–60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and [...] Read more.
This research aimed to optimize pressure (10–20 MPa) and temperature (45–60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and antimicrobial activities of the extracts, were assessed and optimized using a central composite design. The optimal SFE conditions were found to be 20 MPa at 60 °C, which resulted in the highest yield (19%) and a total phenolic compound content of 31.54 mg GAE/mL extract. IC50 values for DPPH and ABTS assays were determined to be 26.06 and 19.90 μg/mL extract, respectively. Overall, the ME obtained through SFE exhibited significantly better physicochemical and antioxidant properties compared to ME obtained through hydro-distillation extraction. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that beta-pinene was the major component in the ME obtained through SFE (23.10%), followed by d-limonene, alpha-pinene, and terpinen-4-ol at concentrations of 16.08, 7.47, and 6.34%, respectively. On the other hand, the hydro-distillation-extracted ME showed stronger antimicrobial properties than the SFE-extracted ME. These findings suggest that both SFE and hydro-distillation have the potential for extracting Makwaen pepper, depending on the intended purpose of use. Full article
Show Figures

Figure 1

12 pages, 1841 KB  
Article
Nematicidal and Toxicity Effects of Eupatorium adenophorum Spreng against the Root-Knot Nematode Meloidogyne incognita in Soil Producing Cucumber
by Shiva Parsiaaref, Aocheng Cao, Yuan Li, Asgar Ebadollahi, Ghasem Parmoon, Qiuxia Wang, Dongdong Yan, Wensheng Fang and Min Zhang
Agriculture 2023, 13(6), 1109; https://doi.org/10.3390/agriculture13061109 - 23 May 2023
Cited by 10 | Viewed by 2477
Abstract
The root-knot nematode (Meloidogyne incognita) is a plant pathogen that causes significant economic damage to important food crops. The nematicidal and insecticidal effects of the essential oil and extract of the root and stem of different species of Eupatorium have been [...] Read more.
The root-knot nematode (Meloidogyne incognita) is a plant pathogen that causes significant economic damage to important food crops. The nematicidal and insecticidal effects of the essential oil and extract of the root and stem of different species of Eupatorium have been studied in several countries. We investigated the impact of root stems and leaves of the E. adenophorum on the second-stage juveniles (J2s) of M. incognita. Nematode mortality decreased by root-stem treatment and increasing temperature and time. Nematodes (J2) were more sensitive to root-stem treatment than leaf treatment at all tested conditions. For example, the half maximal effective concentration (EC50) root-stems at 35 °C was estimated as 10.3 mg/g and in the 8th week as 7.8 mg/g, while the maximal effective concentration (ECmax) in leaf treatment is 20.3 and 10.1 mg/g, respectively. The E. adenophorum 40 mg/g concentration of root stems also produced the highest height of the cucumber stem and the highest cucumber fresh weight in the greenhouse. (E)-beta-farnesene, α-pinene and D-limonene, as the main identified components in fumigant plants, increased the mortality rate of J2s in root-stems treatment. We conclude that E. adenophorum dried root stems added to the soil in greenhouses have the potential as a bio-fumigant for M. incognita management. Full article
(This article belongs to the Special Issue Sustainable Pest Management in Agriculture)
Show Figures

Figure 1

20 pages, 8766 KB  
Article
Optimization of the Geraniol Transformation Process in the Presence of Natural Mineral Diatomite as a Catalyst
by Anna Fajdek-Bieda
Catalysts 2023, 13(4), 777; https://doi.org/10.3390/catal13040777 - 20 Apr 2023
Cited by 4 | Viewed by 1946
Abstract
Process optimization is increasingly finding applications in chemical engineering. The reason for this increase in applications is to create more efficient and sustainable technological processes. Thanks to innovative models, it is possible to plan an experiment in a given field of study without [...] Read more.
Process optimization is increasingly finding applications in chemical engineering. The reason for this increase in applications is to create more efficient and sustainable technological processes. Thanks to innovative models, it is possible to plan an experiment in a given field of study without much complication and carry out the optimization of such a process, achieving goals in a much shorter time period. This paper describes the performance of optimization of the geraniol transformation process in the presence of a catalyst of natural origin—diatomite. Response surface methodology (RSM) was chosen as the method. For this purpose, the following parameters were used as variables: temperature (80, 110, and 150 °C), catalyst concentration (1 wt%, 5 wt%, and 10 wt%), and reaction time (0.25 h, 12 h, and 24 h). At the same time, the functions describing the process and response functions were the conversion of geraniol (GA) as well as the selectivity of conversion to beta-pinene (BP), respectively. The obtained results made it possible to identify the optimal set of parameters at which the highest values of GA conversion and the selectivity of conversion to BP are obtained. It turned out that the GA transformation process is best carried out at 80 °C at a diatomite concentration of 1.0 wt% and a reaction time of 0.25 h. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

17 pages, 4625 KB  
Article
In Vitro Screening Studies on Eight Commercial Essential Oils-Derived Compounds to Identify Promising Natural Agents for the Prevention of Osteoporosis
by Marta Trzaskowska, Vladyslav Vivcharenko, Paulina Kazimierczak, Agata Wolczyk and Agata Przekora
Biomedicines 2023, 11(4), 1095; https://doi.org/10.3390/biomedicines11041095 - 4 Apr 2023
Cited by 7 | Viewed by 3665
Abstract
Over the years, essential oils (EOs) and their compounds have gained growing interest due to their anti-inflammatory, antimicrobial, antioxidant, and immunomodulatory properties. The aim of this study was to evaluate the effect of eight commercially available EO-derived compounds ((R)-(+)-limonene, (S)-(−)-limonene, sabinene, carvacrol, thymol, [...] Read more.
Over the years, essential oils (EOs) and their compounds have gained growing interest due to their anti-inflammatory, antimicrobial, antioxidant, and immunomodulatory properties. The aim of this study was to evaluate the effect of eight commercially available EO-derived compounds ((R)-(+)-limonene, (S)-(−)-limonene, sabinene, carvacrol, thymol, alpha-pinene (α-pinene), beta-pinene (β-pinene), and cinnamaldehyde) on the bone formation process in vitro to select the most promising natural agents that could potentially be used in the prevention or treatment of osteoporosis. Within this study, evaluation of cytotoxicity, cell proliferation, and osteogenic differentiation was performed with the use of mouse primary calvarial preosteoblasts (MC3T3-E1). Moreover, extracellular matrix (ECM) mineralization was determined using MC3T3-E1 cells and dog adipose tissue-derived mesenchymal stem cells (ADSCs). The two highest non-toxic concentrations of each of the compounds were selected and used for testing other activities. The conducted study showed that cinnamaldehyde, thymol, and (R)-(+)-limonene significantly stimulated cell proliferation. In the case of cinnamaldehyde, the doubling time (DT) for MC3T3-E1 cells was significantly shortened to approx. 27 h compared to the control cells (DT = 38 h). In turn, cinnamaldehyde, carvacrol, (R)-(+)-limonene, (S)-(−)-limonene, sabinene, and α-pinene exhibited positive effects on either the synthesis of bone ECM or/and mineral deposition in ECM of the cells. Based on the conducted research, it can be assumed that cinnamaldehyde and (R)-(+)-limonene are the most promising among all tested EO-derived compounds and can be selected for further detailed research in order to confirm their biomedical potential in the chemoprevention or treatment of osteoporosis since they not only accelerated the proliferation of preosteoblasts, but also significantly enhanced osteocalcin (OC) synthesis by preosteoblasts (the OC level was approx. 1100–1200 ng/mg compared to approx. 650 ng/mg in control cells) and ECM calcification of both preosteoblasts and mesenchymal stem cells. Importantly, cinnamaldehyde treatment led to a three-fold increase in the mineral deposition in ADSCs, whereas (R)-(+)-limonene caused a two-fold increase in the ECM mineralization of both MC3T3-E1 cells and ADSCs. Full article
(This article belongs to the Special Issue Preclinical Research on Osteoarthritis and Osteoporosis)
Show Figures

Figure 1

Back to TopTop