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Abstract: The peach fruit moth, Carposina sasakii, is part of the Carposinidae, and is harmful to
the families Rosaceae and Rhamnaceae. C. sasakii lays eggs on the hairy surface of the fruit’s stalk
cavity and calyx end. After hatching, the moth can bore into the fruits and feed on the flesh inside.
Chemosensory proteins (CSPs) are a class of low-molecular-weight soluble carrier proteins that are
highly evolutionarily conserved. To enhance our understanding of the recognition of host plant
volatiles by CSPs of C. sasakii, the expression patterns and binding characteristics of CsasCSP7,
CsasCSP9 and CsasCSP11 in C. sasakii were investigated. In our study, the results of real-time
quantitative polymerase chain reaction (qPCR) assays demonstrate that CsasCSP7 and CsasCSP9
transcripts were abundantly expressed in the antennae of males, and CsasCSP11 was highly expressed
in the wings of females. Fluorescence competitive binding assays with 38 candidate ligands showed
that CsasCSP7 could bind to benzaldehyde and dodecanal, whereas CsasCSP9 bound to butyl
octanoate, decanal and (-)-beta-pinene. CsasCSP11 could also bind to1-hexanol, beta-ocimene and
6-methyl-5-hepten-2-one. Our results suggest that CsasCSP7, CsasCSP9 and CsasCSP11 may play a
crucial role in locating the host plant of C. sasakii.

Keywords: Carposina sasakii; chemosensory proteins; fluorescence competitive binding; plant volatile
organic compounds

1. Introduction

The peach fruit moth, Carposina sasakii, is one of the Carposinidae, and is widely dis-
tributed in North Korea, South Korea, Japan, the Russian Far East and China. It is harmful
to apple, jujube, pear and other fruit trees from the families Rosaceae and Rhamnaceae [1].
Female adult C. sasakii prefers to lay eggs on the surface of the fruit, especially in the calyx
pits of apples. In the case of peach fruits, which are covered with fine hairs, the insect lays
eggs all over the fruit surface [2]. After hatching, C. sasakii can bore into the fruits and feed
on the flesh inside, making it difficult to reduce larvae numbers using chemicals and caus-
ing losses in fruit production [3]. Preventing oviposition could be one of the most effective
methods of controlling C. sasakii. The adult females release a sex pheromone composed
of two odorants, (Z)-7-eicosen-11-one and (Z)-7-nonadecen-11-one, which attracts adult
males for mating, and the pheromone has been used to trap adult males for controlling and
monitoring the C. sasakii population. However, it is not sufficiently effective for mating
disruption [4]. Overall, more efficacious management processes are urgently required.

Insects communicate with their environment through olfaction when detecting food
and habitats, as well as when finding mates and escaping predators. To successfully
perform such behaviors, insects must respond to chemical stimulation at the right moment.
Insects’ olfactory systems are modified depending on age, feeding state, circadian rhythm,
and mating status. Disrupting the chemical communication system as a method to disrupt
mating is a possible novel, ecologically friendly, and environmentally friendly approach
for pest control [5].
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The sex pheromone of Bombyx mori was identified first, and from then on, research
into pest olfactory systems has developed rapidly. Pest behavior regulation techniques
based on the olfactory system are internationally recognized as a green plant protection
technology. Compared to other techniques, olfactory behavior regulation technology has
five characteristics: safety, selectivity, efficiency, effectiveness and compatibility [6]. There
are two important types of compounds used as part of the technology: one relates to
the volatile organic compounds released by plants, and the other is the sex pheromones
released by insects. Both of them have several advantages. First, pheromones are natural
compounds that are generally used in very small quantities (billionth of a unit). Second,
pheromones break down relatively quickly in the environment (they do not leave residues).
Third, they are highly specific—they do not act on non-target organisms. Fourth, they allow
the rapid detection of insects in the field, aiding agricultural decision-making [7].

Plant volatile organic compounds (VOCs) are major vehicles of information transfer
between organisms, and they mediate many ecological interactions. Several herbivorous
insects utilize plant chemical cues to identify hosts for feeding. Given the multifunctional
nature of induced VOC emissions, it is safe to assume that, with changes in the selective
environment, the major function of an information-mediating trait, such as VOC emis-
sion, will shift [8]. Several insects employ plant volatile organic compounds as olfactory
cues when seeking a host plant, enabling them to discriminate between host plants and
nonhost genotypes. Herbivorous insects can search for their hosts by plant volatiles, and
the natural enemies of herbivores can find their prey by plant volatiles. Fruit-feeding
insects are, logically, attracted to fruit volatiles. For these insects, fruits are not only a
nutritional resource but also ideal mating sites. Blends of fruit volatiles indicate mating
opportunities and may stimulate calling (pheromone release) and mating behaviors [9].
From an evolutionary perspective, there is a strong selection pressure on insects to develop
sophisticated means for detecting and locating food resources upon which survival and
reproduction depend [10].

In most species of moths, the sex pheromone is a blend of several components compris-
ing fatty acid derivatives, usually alcohols, aldehydes, or acetates connected by a C10-C18
straight chain [11], and is produced and secreted by the female pheromone glands (PGs)
located between the eighth and ninth abdominal segments. Sex pheromones induce sexual
behavior in insects. A male insect may smell the sex pheromone released by the female
and then attempt to copulate with her [12]. To date, sex pheromones, especially female-
produced sex attractants, have been the most widely used semiochemicals in attract-and-kill
techniques. They are selective, often attracting only the target species [13].

The perception of these compounds depends on the olfactory receptor neurones
(ORNs) in sensillae, mostly found on the insects’ antennae, which can recognize individual
molecular structures [14]. After odor compounds enter the sensilla via the numerous pores
on its surface, these molecules encounter an aqueous barrier, the sensillum lymph [11].
In the lymph, there are many protein families that determine the operation of the odor
compounds. Chemosensory proteins (CSPs) are one of them.

CSPs were first reported in Drosophila melanogaster and were identified as olfactory
segment D (OS-D) at the time [15]. Antennal protein 10 was also found in Drosophila
melanogaster. Subsequently, proteins with close similarities to OS-D were also found on the
antennae of several stick insects (identity 30–45%) [16–18]. A protein with a 47% structural
similarity to OS-D, named CLP-1, was found on the lips of Cactoblastis cactorum, and this
protein is expressed in females and not in males [19]. Similar proteins have also been found
in Anopheles gambiae, referred to as sensory appendage proteins (SAPs) [20,21]. CSPs were
officially named in 1999, and seven soluble proteins with structural similarities to OS-D
were discovered in the antennae of Schistocerca gregaria [22].

CSP is highly conserved in evolution, with 40–50% identical residues between species
with more orthologous phylogenetic development compared to odorant-binding proteins
(OBPs), which are only conserved at 10–15% [23]. The cause may be related to the disulfide
bond. In OBP, where three disulfide bonds bind to each other to keep the protein stable,
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the effect of residue substitution is very limited, while in CSP, two disulfide bonds are
connected to adjacent cysteines, and conservative residue sequences are folded to form
hydrophobic pockets and maintain protein stability [24].

We have evaluated the relative expression levels of CSPs from different tissues in
C. sasakii, and the results showed that CsasCSP7 and CsasCSP9 are highly expressed in the
antennae of the male and female moth, while CsasCSP11 is extremely highly expressed in
the wings. In order to better understand the function of CsasCSPs in the olfactory commu-
nication system, we analyzed the characteristics of the CsasCSPs sequence, constructed the
recombinant expression vector of CsasCSPs in a prokaryotic expression system, and tested
the binding affinities of CsasCSPs to volatile molecules through fluorescence competitive
binding assays. Our study enriches our understanding of the functions of CSPs from
C. sasakii and complex olfactory mechanisms in insects.

2. Materials and Methods
2.1. Insect Rearing and Sample Collection

The larvae of C. sasakii were collected from the apple orchard of the Institute of
Pomology, Chinese Academy of Agricultural Sciences (CAAS), Liaoning province (latitude
40.61◦ N, longitude 120.73◦ E), China. The pests were maintained under constant conditions
of 25 ± 1 ◦C, 70 ± 5% relative humidity, and a 15:9 (L:D) h photoperiod. They were fed a
10% honey solution. C sasakii commenced eclosion after 4:00 p.m., and the virgin moths
mated after 9:00 p.m. on the same day. Therefore, we infer that C. sasakii reached sexual
maturity on the day of the eclosion [25]. We separately dissected 400, 100, 100, 100, 100, and
100 1-day-old adults to get different tissues of antennae (200 males and 200 females), heads
without antennae (20 males and 20 females, respectively), thoraxes and abdomens (10 males
and 10 females, respectively), legs, and wings (50 males and 50 females, respectively). The
samples were placed in RNase-free centrifuge tubes under an optical microscope. Three
biological replicates were prepared. All samples were immediately immersed in liquid
nitrogen and stored at −80 ◦C.

2.2. Total RNA Extraction and cDNA Synthesis

The total RNA of different tissue samples was extracted using a Trizol Reagent hand-
book (TAKARA BIO Inc., Shiga, Japan). The integrity and concentration of RNA were
assessed via 1.5% agarose gel electrophoresis and an ultra-microspectrophotometer, and the
first-strand cDNA was synthesized with 1 µg of total RNA using a PrimeScript RT reagent
Kit with a gDNA eraser (TAKARA BIO Inc., Shiga, Japan) according to the manufacturer’s
instructions. This was then subjected to PCR and q-PCR.

2.3. cDNA Cloning and Sequence Analysis

PCR assays were performed in a mixture of 40 µL containing 4 µL of antennae cDNA
(100 ng), 20 µL of Primer fix Kit, 2 µL of each primer (10 µM), and 12 µL of RNase-Free
Water. The PCR amplification procedure was as follows: predenaturation at 95 ◦C for
3 min; 35 cycles of 95 ◦C for 30 s; 55 ◦C for 30 s; 72 ◦C for 45 s; and final extension at 72 ◦C
for 10 min. The PCR product was visualized using 1% agarose gel electrophoresis; the
recovered target gene was then ligated into the pMD19-T vector (TAKARA BIO Inc., Shiga,
Japan) and then transformed into DH5α competent cells (TAKARA BIO Inc., Shiga, Japan)
for splicing sequencing (BGI Genomics, Beijing, China).

The open reading frames (ORFs) for these sequences were found using the ORF Finder
(http://www.ncbi.nlm.nih.gov/gorf/gorf.html, accessed on 9 March 2022). The signal
peptides of CsasCSPs were predicted using the SignalP 5.0 Server (http://www.cbs.dtu.dk/
services/SignalP/, accessed on 9 March 2022) [26]. The molecular weight was computed
using ProtParam (http://web.expasy.org/protparam/, accessed on 1 May 2022). The
isoelectric point was also calculated using the same software. The C. sasakii CSPs were
chosen for phylogenetic analysis along with CSPs from Lepidoptera, Diptera, Hemiptera
and Coleoptera, which were downloaded from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://web.expasy.org/protparam/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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cgi, accessed on 1 October 2021). DNAMAN (Lynnon Biosoft, San Ramon, CA, USA) was
used for multiple sequence alignment. A phylogenetic tree was constructed in MEGA7.0
using the neighbor-joining method with 1000 bootstrap replicates and clarified with iTOL
(https://itol.embl.de/, accessed on 10 October 2021).

2.4. Expression Levels of Three CSPs mRNA from C. sasakii

The RT-qPCR assay was carried out using the CFX96 Connect Real-Time Detection
System produced by BioRad in the USA using β-actin and elongation factor 1α (EF-1α)
as the endogenous gene, the cDNA obtained as above as the template, and the female
head (without antennae) as a control. In the experiment, RT-qPCR primers were designed
using Beacon Design 8.0 (Table 1), and the amplification efficiencies were 90–110%. Three
biological replicates were performed, and two technical replicates were also performed.
The specific operation is detailed below.

Table 1. Primers used in this study.

Primer Name Primer Sequence (5′-3′) Length (bp) Purpose

CsasCSP7-F AGGTTATTGAGCATCTGATTAAG
95

Fluorescence quantification

CsasCSP7-R TTCATACTTCTTTCTCCACTTG
CsasCSP9-F GTTATGGAGTACATCATAGATC

102CsasCSP9-R TTTCTTCTCTTCATACTTACTC
CsasCSP11-F CAAGTAGTCCGATACATTAGG

125CsasCSP11-R TAATCATCAGAAGCGAAGAAT
CsasCSP7-F CGGGATCCATGGAAGAAAAGTATTCGGACAAATA

342

Prokaryotic expression

CsasCSP7-R TGGAATTCCTATTTTTCAGGTATTTCAATACCCCT
CsasCSP9-F CGGGATCCATGCGCCCCGAAGAGCACT

432CsasCSP9-R TGGAATTCTTATGGCCTTGACGGTGCG
CsasCSP11-F CGGGATCCATGGATGAGGAGCAGTATACAGATAGAT

333CsasCSP11-R TGGAATTCTTAATCATCAGAAGCGAAGAATG

Note: The restriction sites are underlined.

Reaction system: Each RT-qPCR reaction was conducted in a 20 µL reaction mixture
containing 10 µL of SYBR Master Mix, 1 µL of sample cDNA, 0.5 µL of each primer
(10 µmol/L), and 8 µL of sterilized ddH2O. Reaction procedure: denaturation at 95 ◦C for
3 min; 40 cycles of 95 ◦C for 10 s, 55 ◦C for 30 s, and 72 ◦C for 30 s.

After the program, the Ct values of the endogenous and target genes were obtained.
According to the endogenous gene, the relative expression of the target gene was calculated
from the 2−∆∆Ct. A significant difference analysis of the target genes between different
tissues was undertaken using a one-way analysis of variance (ANOVA), and then Tukey’s
honestly significant difference (p < 0.05) method was employed for multiple comparisons.
These were implemented through the SPSS Statistics 19.0 software.

2.5. Expression and Purification of Recombinant CsasCSPs Proteins

The target gene was amplified through adult antennae cDNA, and primers were
designed using Primer Premier 5 (Table 1). The PCR product was ligated to the pMD-19T
vector, then to the pET-28a vector (EcoRI, XhoI). It was then transformed into BL21 (DE3)
competent cells [3]. After positive verification had been performed, the bacterial solution
was cultured in 500 mL of liquid Luria–Bertani (LB) medium containing 50 µg/mL of
kanamycin at 37 ◦C. When the OD600 reached 0.6–0.8, the recombinant protein was induced
at 37 ◦C for 10 h using isopropyl β-d-1-thiogalactopyranoside (IPTG) at a final concentration
of 1 mM. The cells were harvested via centrifugation at 12,000 rpm for 10 min, suspended
in lysis buffer (80 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 4% glycerol, pH 7.2 and
0.5 mM PMSF), sonicated in ice for 3 s, over five passes, and then centrifuged again. The
15% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) assay showed
that these proteins persisted in the inclusion body. A refolding inclusion body assessment
was conducted via the redox method. The proteins were concentrated in the 10 kDa and

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://itol.embl.de/


Agriculture 2023, 13, 2066 5 of 17

30 kDa ultrafiltration cube. Before the 15% SDS-PAGE analysis, the solutions containing the
proteins were dialyzed using 500 mL of Tris-HCl buffer at a final concentration of 20 mM
three times at 4 ◦C.

2.6. Fluorescence Competitive Binding Assay

Thirty-six common volatile components and two sex pheromones from C. sasakii were
chosen as ligands for use in the fluorescence competitive binding assays (Table 2). Fluores-
cence binding assays were performed using a multimode reader. The fluorescent emission
spectra of the probe, 1-Aminoanthraquinone (1-AMA, Sigma–Aldrich, St. Louis, MO, USA),
were recorded in the range of 400 to 750 nm with an excitation wavelength of 260 nm.
To measure the affinity of 1-AMA to each protein, 2 µM of protein in 50 mM Tris–HCl
(pH 7.2) was titrated with 1 mM 1-AMA to final concentrations ranging from 2 to 80 µM.
Dissociation constants for the protein/1-AMA complex were inferred from Scatchard plots
of the binding data. Ligands with concentrations ranging from 1 to 30 µM were added to
the mixtures of protein and probe at the same final concentration of 2 mM. The dissociation
constants of the competitors were calculated from their corresponding IC50 values (con-
centrations of ligands halving the initial fluorescence value of 1-AMA), using the equation
Ki = [IC50]/ (1 + [1-AMA]/K1-AMA), where [1-AMA] is the free concentration of 1-AMA,
[IC50] is the ligand concentration displacing 50% of the fluorescent reporter, and K1-AMA
is the dissociation constant of the complex protein/1-AMA. All values were obtained
from three independent measurements. The protein with 100% activity was assumed,
inferred via the stoichiometry assessment of a 1:1 ratio of protein/ligand, and the data were
analyzed as above.

Table 2. Plant volatiles and sex compounds for this experiment.

Code Prospective Ligand CAS Molecular Weight
/g·mol−1 Purity/%

L1 2-Methylbutyl acetate 624-41-9 130.18 99
L2 Butyl butyrate 109-21-7 144.21 >99
L3 Butyl heptanoate 5454-28-4 186.29 >99
L4 Butyl octanoate 589-75-3 200.32 >99
L5 Ethyl butyrate 105-54-4 116.16 99
L6 Ethyl heptanoate 106-30-9 158.24 >98
L7 Ethyl hexanoate 123-66-0 144.21 99
L8 Hexyl hexanoate 6378-65-0 200.32 98
L9 Isoamyl acetate 123-92-2 130.19 99

L10 Methyl jasmonate 39,924-52-2 224.3 95
L11 Propyl octanoate 624-13-5 186.29 98
L12 Tert-butyl acetate 540-88-5 116.15 99
L13 (Z)-3-Hexenyl acetate 3681-71-8 142.2 98
L14 Benzaldehyde 100-52-7 106.12 >99
L15 Decanal 112-31-2 156.27 97
L16 Dodecanal 112-54-9 184.32 >95
L17 (E)-Hex-2-enal 6728-26-3 98.14 98
L18 Hexanal 66-25-1 100.16 97
L19 Honanal 124-19-6 142.24 96
L20 Octanal 124-13-0 128.215 97
L21 1-Hexanol 111-27-3 102.18 >98
L22 2-Ethylhexanol 104-76-7 130.22 99
L23 3-Methyl-1-butanol 123-51-3 88.15 99
L24 (E)-2-Hexen-1-ol 928-95-0 100.16 97
L25 (Z)-Hex-3-en-1-ol 928-96-1 100.16 ≥98
L26 Decane 124-18-5 142.29 >99
L27 Hexadecane 544-76-3 226.45 >98
L28 Octadecane 593-45-3 254.49 98
L29 Pentadecane 629-62-9 212.41 98
L30 Tetradecane 629-59-4 198.39 ≥99
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Table 2. Cont.

Code Prospective Ligand CAS Molecular Weight
/g·mol−1 Purity/%

L31 alpha-Farnesene 502-61-4 204.25 >99
L32 Beta-Ocimene 13,877-91-3 136.23 >90
L33 (-)-beta-Pinene 18,172-67-3 136.24 >94
L34 Myrcene 123-35-3 136.236 >80
L35 6-Methyl-5-hepten-2-one 110-93-0 126.2 >98
L36 Benzonitrile 100-47-0 103.12 >99
L37 Z-7-Eicosene-11-one 63,408-44-6 294.5 >99
L38 Z-7-Nonadecen-11-one 63,408-45-7 280.5 >99

3. Results
3.1. Sequence Analysis of CsasCSPs

The length of the open reading frame (ORF) of CsasCSP7, CsasCSP9 and CsasCSP11
was 387-bp, 432-bp and 402-bp, respectively. This encoded 128 amino acids, 143 amino acids
and 133 amino acids, respectively. At the N-terminus of the polypeptide chain, CsasCSP7
was predicted to contain a signal peptide consisting of 19 amino acid residues. CsasCSP9
was predicted to contain a signal peptide consisting of 15 amino acid residues. CsasCSP11
was predicted to contain a signal peptide consisting of 24 amino acid residues. As the
signal peptide was cleaved off, the MW of the mature protein CsasCSP7 was 13.25 kDa with
an isoelectric point of 5.36. The predicted MW of the CsasCSP9 protein was 14.54 kDa, and
the isoelectric point was 4.93. The predicted MV of the CsasCSP11 protein was 13.15kDa,
and the isoelectric point was 8.53. The results of multiple alignments show that CsasCSP7,
CsasCSP9 and CsasCSP11 presented a typical four-cysteine signature, forming two pairs of
disulfide bonds (Figure 1). To analyze the phylogenetic relationships of CsasCSPs with other
insects, including Lepidoptera, Diptera, Hemiptera and Coleoptera, a phylogenetic tree
was constructed. The results clearly show that CsasCSPs were located in the Lepidoptera
group. Compared to other orders, Lepidoptera were explicitly clustered together (Figure 2).
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(AHX37218.1), Dendrolimus kikuchii (AII01035.1), Dioryctria abietella (QQG64119.1, QJX59148.1),
Glyphodes pyloalis (QIJ45712.1), Grapholita molesta (ALC79596.1), Helicoverpa armigera (AAK53762.1),
Helicoverpa assulta (ABB91378.1), Helicoverpa zea (AAN63675.1), Lobesia botrana (AXF48707.1), Ostrinia
furnacalis (BAV56805.1, BAV56812.1) and Semiothisa cinerearia (QRF70949.1). The red stars explain four
highly conserved cysteine residues of the CSP family.
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Figure 2. Phylogenetic tree of CsasCSPs and other organisms. Diptera included Bactrocera minax
and Drosophila melanogaster; Hemiptera included Myzus persicae, Nilaparvata lugens and Tropidothorax
elegans; Coleoptera included Holotrichia oblita, Anomala corpulenta and Oedaleus asiaticus; Lepidoptera
included Athetis dissimilis, Conogethes pinicolalis, Conogethes punctiferalis, Dendrolimus kikuchii, Dioryctria
abietella, Glyphodes pyloalis, Grapholita molesta, Helicoverpa armigera, Helicoverpa assulta, Helicoverpa zea,
Lobesia botrana, Ostrinia furnacalis and Semiothisa cinerearia.

3.2. Tissue Expression Patterns of CsasCSPs

To better understand the function of CsasCSPs, their expression patterns in different
tissues were measured via RT-qPCR. The expression analysis revealed similar expression
patterns of CsasCSP9 in both males and females. CsasCSP9 was predominantly expressed
in the antennae of both sexes, with the lowest expression observed in the other tissues.
CsasCSP7 and CsasCSP11 showed broad expression profiles in the whole body of male
and female adults, but CsasCSP7 was predominantly expressed in the male antennae, and
CsasCSP11 was expressed at a significantly higher level in female wings (Figure 3).
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3.3. Bacterial Expression and Purification of CsasCSPs

The pET-28a (+)/CsasCSPs proteins were assessed for expression in vitro (Escherichia
coli BL21 (DE3) cells), and the target proteins were found more abundantly in the insoluble
fraction containing inclusion bodies compared to the supernatant when induced with IPTG
via 15% SDS-PAGE. The 15% SDS-PAGE analysis revealed that the final purified proteins
were present in single bands of approximately 13.25 kDa, 14.54 kDa and 13.15 kDa, as is
consistent with the MW of the recombinant proteins (Figure 4).
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3.4. Binding Properties of Recombinant CsasCSPs

For the further characterization of CsasCSPs ligand-binding affinity to host volatiles,
1-AMA was used as a competitive fluorescent reporter. When 1-AMA was added dropwise
to the protein solution, the maximum emission peak at 420 nm was shifted to approximately
560 nm. CsasCSP7, CsasCSP9 and CsasCSP11 bind to the fluorescent probe 1-AMA rather
weakly, with dissociation constants of 20.10, 12.39 and 13.83 µM, respectively, yielded by
the Scatchard equation (Figure 5). Therefore, the Ki (the ratio of the dissociation constant of
the competitor to the partition coefficient of the competitor in the aqueous phase) and IC50
(the concentration of the competitor when the fluorescence intensity of the complex
protein/1-AMA declined to 50% of the initial fluorescence) values of the ligands with
CsasCSPs are presented in Tables 3–5. Compounds that we tested that reduced the fluores-
cence intensity of the complex systems to 50% or lower were regarded as binding ligands.
This group of chemicals includes two sex pheromone components and 36 plant volatiles.
Two volatiles, benzaldehyde (Ki = 7.25 ± 0.23 µM) and dodecanal (Ki = 13.61 ± 0.54 µM),
were tested for use as potential ligands for CsasCSP7. CsasCSP9 showed high capacities
for binding to three chemical volatiles, namely, butyl octanoate (Ki = 1.47 ± 0.13 µM),
decanal (Ki = 1.65 ± 0.31 µM) and (-)-beta-pinene (Ki = 14.26 ± 0.62 µM). Three of the
ligands tested, 1-hexanol (Ki = 8.13 ± 0.78 µM), beta-ocimene (Ki = 1.83 ± 0.66 µM) and
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6-methyl-5-hepten-2-one (Ki = 0.71± 0.07 µM), exhibited relatively strong binding affinities
for CsasCSP11. Besides this, the CsasCSPs showed no affinity for the components of sex
pheromones (Figure 6).

Table 3. Binding affinities of CsasCSP7 to all tested ligands.

Ligand Ki IC50 Ligand Ki IC50 Ligand Ki IC50

2-Methylbutyl
acetate - >50 Benzaldehyde 7.25 ± 0.23 8.00 ± 0.59 Hexadecane - >50

Butyl butyrate - >50 Decanal - >50 Octadecane - >50
Butyl heptanoate - >50 Dodecanal 13.61 ± 0.54 14.97 ± 0.60 Pentadecane - >50
Butyl octanoate - >50 (E)-Hex-2-enal - >50 Tetradecane - >50
Ethyl butyrate - >50 Hexanal - >50 alpha-Farnesene - >50

Ethyl heptanoate - >50 Honanal - >50 Beta-Ocimene - >50
Ethyl hexanoate - >50 Octanal - >50 (-)-beta-Pinene - >50
Hexyl hexanoate - >50 1-Hexanol - >50 Myrcene - >50

Isoamyl acetate - >50 2-Ethylhexanol - >50 6-Methyl-5-hepten-2-
one - >50

Methyl jasmonate - >50 3-Methyl-1-butanol - >50 Benzonitrile - >50
Propyl octanoate - >50 (E)-2-Hexen-1-ol - >50 Z-7-Eicosene-11-one - >50
Tert-butyl acetate - >50 (Z)-Hex-3-en-1-ol - >50 Z-7-Nonadecen-11-one - >50

(Z)-3-Hexenyl
acetate - >50 Decane - >50

IC50 labeled “>50” indicates that binding affinities could not be calculated with the tested ligand concentrations,
so Ki of the ligands is represented as “-”.

Table 4. Binding affinities of CsasCSP9 to all tested ligands.

Ligand Ki IC50 Ligand Ki IC50 Ligand Ki IC50

2-Methylbutyl
acetate - >50 Benzaldehyde - >50 Hexadecane - >50

Butyl butyrate - >50 Decanal 1.65 ± 0.31 1.92 ± 0.34 Octadecane - >50
Butyl heptanoate - >50 Dodecanal - >50 Pentadecane - >50
Butyl octanoate 1.47 ± 0.13 1.71 ± 0.16 (E)-Hex-2-enal - >50 Tetradecane - >50

Ethyl butyrate - >50 Hexanal - >50 alpha-
Farnesene - >50

Ethyl heptanoate - >50 Honanal - >50 Beta-Ocimene - >50
Ethyl hexanoate - >50 Octanal - >50 (-)-beta-Pinene 14.26 ± 0.62 16.56 ± 0.24
Hexyl hexanoate - >50 1-Hexanol - >50 Myrcene - >50

Isoamyl acetate - >50 2-Ethylhexanol - >50 6-Methyl-5-
hepten-2-one - >50

Methyl
jasmonate - >50 3-Methyl-1-

butanol - >50 Benzonitrile - >50

Propyl octanoate - >50 (E)-2-Hexen-1-
ol - >50 Z-7-Eicosene-

11-one - >50

Tert-butyl acetate - >50 (Z)-Hex-3-en-
1-ol - >50

Z-7-
Nonadecen-11-

one
- >50

(Z)-3-Hexenyl
acetate - >50 Decane - >50

IC50 labeled “>50” indicates that binding affinities could not be calculated with the tested ligand concentrations,
so Ki of the ligands is represented as “-”.

Table 5. Binding affinities of CsasCSP11 to all tested ligands.

Ligand Ki IC50 Ligand Ki IC50 Ligand Ki IC50

2-Methylbutyl acetate - >50 Benzaldehyde - >50 Hexadecane - >50
Butyl butyrate - >50 Decanal - >50 Octadecane - >50

Butyl heptanoate - >50 Dodecanal - >50 Pentadecane - >50
Butyl octanoate - >50 (E)-Hex-2-enal - >50 Tetradecane - >50
Ethyl butyrate - >50 Hexanal - >50 alpha-Farnesene - >50

Ethyl heptanoate - >50 Honanal - >50 Beta-Ocimene 1.83 ± 0.66 2.09 ± 0.76
Ethyl hexanoate - >50 Octanal - >50 (-)-beta-Pinene - >50
Hexyl hexanoate - >50 1-Hexanol 8.13 ± 0.78 9.31 ± 0.39 Myrcene - >50

Isoamyl acetate - >50 2-Ethylhexanol - >50 6-Methyl-5-hepten-2-
one 0.71 ± 0.07 0.81 ± 0.08

Methyl jasmonate - >50 3-Methyl-1-butanol - >50 Benzonitrile - >50
Propyl octanoate - >50 (E)-2-Hexen-1-ol - >50 Z-7-Eicosene-11-one - >50

Tert-butyl acetate - >50 (Z)-Hex-3-en-1-ol - >50 Z-7-Nonadecen-11-
one - >50

(Z)-3-Hexenyl acetate - >50 Decane - >50

IC50 labeled “>50” indicates that binding affinities could not be calculated with the tested ligand concentrations,
so Ki of the ligands is represented as “-”.
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4. Discussion

In this work, we cloned and sequenced the cDNA of CsasCSP7, CasaCSP9 and CasaCSP11,
and analyzed the signal peptides, isoelectric points, protein molecular weights and protein
properties of the CsasCSP7, CasaCSP9, and CasaCSP11 proteins. They all showed four
conserved cysteines and two disulfide bonds, as is typical of the CSP family.

CSP is distributed in various parts of an insect’s body, such as the antennae [27,28],
legs [29], abdomen [30], midguts [31], sensillum lymph [32] and wings [33]. There have
also been reports showing that CSP is expressed differently at different times [34]. Before
now, many studies have shown that CSPs have many different functions.

CSPMbraA and CSPMbraB, expressed in the antennae and pheromone glands, were
thought to be involved in the transport of hydrophobic molecules through different aque-
ous media, such as the sensillar lymph and the pheromonal gland cytosol, in Mamestra
brassicae [35,36]. LmigCSP91 was found to be expressed in the male organs of Locusta
migratoria, but after mating, it was also found in female organs [37]. This was also the case
for Apis mellifera AmelCSP3 [38]. It can be speculated that these proteins are key to the
transportation of pheromones.

CSP is also thought to be closely related to the reproduction, regeneration and devel-
opment of insects. Protein p10 was found in the regenerated legs of Periplaneta americana
larvae at levels 30 times higher than in normal legs. Fluorescent immunology showed
that p10 was present only in a newly formed epidermis [39,40]. Apis mellifera AmelCSP5
was specifically expressed only in the gonads of female adults. When the gene encoding
AmelCSP5 was silenced, eggs did not fully develop and did not hatch. This protein has
been shown to play a vital role in the development of eggs [41,42]. Solenopsis invicta Sin-
vCSP9 and AmelCSP5 belong to the same evolutionary branch. Gene silencing not only
affected the synthesis of fatty acids, but also the development and molting of the stratum
corneum [43]. The HamCSP4 of Helicoverpa armigera was expressed in large quantities in
the mouthparts, and has been verified as a surfactant, suggesting that it may be involved
in dissolving the terpenoids in nectar, given the affinity of HarmCSP4 with terpenoids [44].
LmigCSP IIII (Lmig EST6) in Locusta migratoria exhibited a strong binding capacity with the
non-host plant compound α-amyl cinnamaldehyde (AMCAL). AMCAL has been shown
to be an effective food repellent for use against locusts. Locusts were less sensitive to this
compound after LmicsP IIII had been knocked out [45]. Bemisia tabaci BtabCSP11 was
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highly expressed in the abdomen. After it was silenced, the fertility of female whiteflies
decreased significantly, indicating that it may be involved in their reproduction [46].

In our study, the results show that CasaCSP7 and CasaCSP9 were highly expressed
in antennae, and CasaCSP11 was highly expressed in the wings. Mythimna separata
MsepCSP5 was mainly expressed in the antennae compared to other tissues, and com-
bined with some rice volatiles, suggesting its potential major role in chemodetection [47].
Monochamus alternatus MaltCSP5 was also reported to be expressed in the antennae of both
male and female adults, and the protein showed a high binding activity to most pine
volatiles [48]. Apolygus lucorum AlucCSP2 and AlucCSP3 were specifically expressed in
female wings. AlucCSP4 was expressed relatively highly in female wings but was also
expressed in other tissues. Interestingly, the capacity of the three proteins to bind to cotton
secondary metabolites is better than their capacity to bind to plant volatiles [33]. Therefore,
it is hypothesized that not only the antennae-predominant CasaCSP7 and CasaCSP9, but
also the wing-predominant CasaCSP11, may both bind to host volatiles during olfactory
recognition.

Ligand-binding experiments have demonstrated that CsasCSPs undergo highly selec-
tive binding to volatile compounds, including benzaldehyde, dodecanal, butyl octanoate,
decanal, (-)-beta-pinene, 1-hexanol, beta-ocimene and 6-methyl-5-hepten-2-one. In previous
studies, benzaldehyde, decanal, 6-methyl-5-hepten-2-one and β-pinene were identified as
promoting aggregation behavior in insects [49–52].

Benzaldehyde is not only very common, but also a predominant component of the
floral scents of many species [53]. In single sensillum recording experiments on both male
and female Sitona humeralis antennae, olfactory sensory neurons (OSN) were stimulated
successfully using benzaldehyde in a clear dose-dependent manner. Field experiments
revealed that traps baited with benzaldehyde caught significantly more S. humeralis than
unbaited traps, indicating an attractant effect. There were no apparent differences be-
tween the sexes [54]. Meanwhile, behavioral experiments were conducted on Spodoptera
littoralis, and the results showed that the larvae were attracted to benzaldehyde at 100 and
10 µg/µL [55]. Rhopalosiphum padi males responded positively to benzaldehyde. The release
of benzaldehyde with a conspecific sex pheromone increased the catch rates of both species
of aphid [56]. Trapping tests undertaken in the field also showed that benzaldehyde has a
lure effect on Conotrachelus nenuphar [57]. In 2015, an article confirmed that benzaldehyde
has insecticidal activity against Galleria mellonella (100% insect mortality) [58]. All this
suggests that benzaldehyde can be used in the development of new insecticides.

A strong binding affinity between CsasCSP7 and dodecanal was also shown. It has
been shown that MsepCSP5 is abundantly expressed in the antennae of adult females
and selectively recognizes dodecanal [47]. The dodecanal identified in the headspace of
acidified chicken feces elicited electroantennogram responses from the antennae of Culex
quinquefasciatus females [59]. The dodecanal of 50 and 100 ppm exhibited oviposition-
deterring activities against gravid Aedes aegypti females. [60]. Olfactometer experiments
with synthetic chemical compounds revealed the significant attraction of Bactrocera dorsalis
female flies to dodecanal [61]. In addition, dodecanal was considered a sex pheromone
because it was identified on extracts of filter paper contaminated by young Cephalonomia
tarsalis females. It also had an arresting effect on males, but not on females [62]. CsasCSP7
showed sensitivities to benzaldehyde and dodecanal, suggesting that CsasCSP7 plays an
important role in the identification of host plants in the olfactory communication system.

CsasCSP9 showed strong capacities for binding to three volatiles, namely, butyl oc-
tanoate, decanal and (-)-beta-pinene. The electroantennographic results demonstrate that
decanal elicited significant antennal responses in Quadrastichus mendeli. Bioassays con-
firmed that Q. mendeli was repelled by decanal [63]. On the other hand, wind tunnel
experiments showed that decanal attracted male Lutzomyia longipalpis [64]. A pure com-
pound of decanal and 0.03 ppm decanal were also reported as attractants for Heterorhabditis
bacteriophora and Steinernema kraussei, respectively [65]. Compared with normal Sitobion
avenae SaveOBP9, in experiments with SaveOBP9 knockdown, wheat aphids showed sig-
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nificantly decreased attractive responses toward decanal [66]. Similarly, after silencing
LmigOBP1 in Locusta migratoria, the nymphs showed significantly decreased electroan-
tennography (EAG) responses to decanal [67]. In GC-EAD, the antennae of gravid female
Ostrinia nubilalis responded to decanal, which is an established maize volatile [68]. Inter-
estingly, Morawo et al. found that decanal elicited 0.82 mV EAG response in Microplitis
croceipes, which was the highest response value. However, decanal accounts for only 1% of
cotton-fed host volatiles [69].

β-pinene is a ubiquitous plant terpenoid and elicits host recognition behaviors in fe-
male Conogethes punctiferalis [70]. Under four-arm olfactometer bioassays, the Porphyrophora
sophorae larvae showed a clear preference for β-pinene, and β-pinene proved to be the
major chemical cue used by P. sphorae neonates when searching for the roots of their host
plant [71]. In a series of novel hydronopylformamides derivatives synthesized from a
naturally occurring compound, (-)-β-pinene, four exhibited repellency against Blattella
germanica at a concentration of 20 mg/mL [72]. CsasCSP9 had a binding affinity to butyl oc-
tanoate, decanal and (-)-beta-pinene, suggesting that CsasCSP9 can transport host volatiles
in the olfactory communication system.

The compound 6-methyl-5-hepten-2-one is released by animals, is also a major com-
ponent identified from flower scents and may play an important role outside animal-host
seeking [73]. In Triatoma dimidiate, both females and males were attracted to 6-methyl-5-
hepten-2-one [74]. Diaziella yangi and Lipothymus sp enter Ficus curtipes in response to the
body odors of obligate wasps and one of the main compounds emitted by figs—6-methyl-
5-hepten-2-one [75]. 6-methyl-5-hepten-2-one, which has been identified in zebra skin,
was one of the three ketones (acetophenone and geranylacetone) that reduced the catch
levels of Glossina pallidipes in field trials [76]. The mixture of 6-methyl-5-hepten-2-one and
geranylacetone in a 1:1 ratio increased the repellency of DEET to Anopheles gambiae, Culex
quinquefasciatus and Aedes aegypti when present at low concentrations. In olfactometer trials,
6-methyl-5-hepten-2-one interfered with the attraction of mosquitoes to a host [77]. A mix-
ture of two compounds, 6-methyl-5-hepten-2-one and geranylacetone, showed significant
repellency towards Culicoides impunctatus in the field [78]. The electrophysiological testing
of 6-methyl-5-hepten-2-one using five fly species (Musca autumnalis, Haematobia irritans,
Hydrotaea irritans, Stomoxys calcitrans and Wohlfahrtia magnifica) showed that it was physio-
logically active towards the flies tested. At certain concentrations, 6-methyl-5-hepten-2-one
increased upwind flight in flies and reduced fly loads [79]. As such, 6-methyl-5-hepten-
2-one may have the potential to be developed into novel repellents. Meanwhile, volatile
characterization with gas chromatography–mass spectrometry identified the contents of
Gelis agilis emissions as 6-methyl-5-hepten-2-one, a known insect defense semiochemical
that acts as an alarm pheromone in ants [80].

β-ocimene is a key plant volatile with multiple relevant functions in plants, depending
on the organ and the time of emission. AmelCSP4 has the best affinity with β-ocimene.
In AmelCSP4, Tyr98 and Asp67 are involved in β-ocimene binding [81]. Tea plants infested
with Ectropis obliqua larvae triggered neighboring plants to release β-ocimene, which repels
E. obliqua adults, especially mated females. The levels of β-ocimene released by infested tea
plants increased rapidly [82]. Pest-infested plants (Silene latifolia) emitted higher amounts
of β-ocimene [83], as did Morus alba [84]. Compared with healthy plants, the treatment of
Chinese cabbage with β-ocimene inhibited the growth and reproduction of Myzus persicae,
and we saw that winged aphids preferred to stay on the healthy plants. Aphidius gifuensis,
however, was shown to prefer cabbage treated with β-ocimene [85]. Similar results have
been reported elsewhere [86]. In male Hyphantria cunea, when β-ocimene was added
to a sex pheromone, the efficiency of trapping male moths increased [84]. Subtractive
bioassays performed in a dual-choice olfactometer showed that a 3-component terpenoid
plant-derived blend comprising (E)-linalool oxide, β-pinene and β-ocimene was more
attractive to female Anopheles gambiae [87].

In a study on Adelphocoris lineolatus, 1-hexanol was identified as the sex pheromone
antagonist [88]. However, further research found that AlinOBP10 had a higher binding
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affinity for 1-hexanol. In Y-tube olfactometer trials, 1-hexanol was repellent against female
adults [89]. In a feeding test of Ips typographus, high concentrations of 1-hexanol solution
were shown to cause food rejection (AFI = 1.00), and males were found to be more sensitive
than females [90]. In Grapholita molesta, recombinant GmolCSP8 (rGmolCSP8) also showed
the strongest binding affinity to 1-hexanol. In our research, CsasCSP11 showed sensitivities
to these three compounds, providing evidence that CsasCSP11 may be involved in the
detection of plant volatiles.

5. Conclusions

Two of the three genes selected were highly expressed in male antennae. Unfortunately,
the two genes showed nonsignificant binding affinities for sex pheromones of C. sasakii,
but were able to bind to plant volatiles. Different compounds will produce different
results in different insects. The results for some of these compounds are consistent with
our experimental results, while others are in opposition, and these compounds have
attractive/repellent effects on insects. In conclusion, our results show that CsasCSP7,
CsasCSP9 and CsasCSP11 may have a dual role in host-seeking. The characterization
and function of CsasCSP7, CsasCSP9 and CsasCSP11 from C. sasakii contributes to our
understanding of the underlying mechanisms of olfactory communication in insects.
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